
Exercises: Day 1

0.1

Why is it that T (S)/Mod(S) =M(S) (the moduli space)?

Hyperbolic geometry

0.2

Fix 0 < Θ < π. Describe a topology on the set P (6,Θ) of hyperbolic 6-gons with labeled edges 1, ..., 6 and
every interior angle equal to Θ. Prove that the map from P (6,Θ) to R3

>0 recording the lengths of sides 1, 3,
and 5 (or 2, 4, 6) is a bijection.

How would you prove that this map is a homeomorphism?

0.3

Recall the Gauss–Bonnet Theorem that for a closed surface S equipped with a Riemannian metric h:∫
S

κh dAreah = 2πχ(S),

where κh is the Gauss curvature and dAreah is the Riemannian area form for the metric h.

Prove the following: Given a closed surface S, there is a number B such that for any hyperbolic metric
h on S, there is a homotopically non-trivial simple closed curve on S of h-length at most B.

The holonomy map

0.4

Verify that the holonomy map

hol([f : S → X]) = [f∗ : π1S → PSL(2,R)]

is well defined, i.e., that if f : S → X ∼ g : S → Y , then [f∗] = [g∗].

(Hint: Give S a reference hyperbolic metric, and suppose F : S̃ → H2 and G : S̃ → H2 are bi-Lipschitz

maps, hence have well defined boundary extensions ∂F : ∂S̃ → ∂H2 and ∂G : ∂S̃ → ∂H2. Prove that if
d(F,G) <∞, then ∂F = ∂G.)

0.5

Verify that the action of Mod(S) on T (S) is by real-analytic homeomorphisms.
(Hint: Every [ϕ] ∈ Mod(S) induces an outer automorphism [ϕ∗] of π1S, i.e., an element of the group of

π1S-conjugacy classes of isomorphisms of π1S → π1S. Choose an automorphism ϕ∗ representing [ϕ∗] and
show that the action of ϕ∗ on representations Hom(π1S,PSL(2,R)) is by polynomial maps.)

Fenchel–Nielsen coordinates

0.6

Prove that #P = 3g − 3 and that S \ P consists of 2g − 2 3-times punctures spheres.
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1 Exercises: Day 2

Fenchel–Nielsen coordinates

1.1

Conclude the proof that the RP -action by twists is simply transitive: That is, if twP(X,Y ) = 0 for two
points X and Y in the same `P -fiber, then X is Teichmüller equivalent to Y .1

1.2

Given a section σ of `P : T (S)→ RP>0, the rule

Fσ : X ∈ T (S) 7→ (`P(X), twP(σ(`P(X)), X)) ∈ RP>0 × RP

defines a bijection that is often called ”Fenchel–Nielsen coordinates.”
Sketch a strategy for showing that Fσ is homeomorphic if σ is continuous. That is, explain why Fσ and

F−1
σ are both continuous (proving the statement that `P is a principal RP -bundle).

Earthquakes

1.3

Let X ∈ T (S) with universal cover π : X̃ → X and deck group Γ ≤ PSL(2,R). Let γ ⊂ X be a simple closed

geodesic, and identity X̃ with H2. Let P be the collection of connected components of H2 \ π−1(γ). Given
t ∈ R, denote by

Etγ : P × P → PSL(2,R)

the cocycle from lecture. Here is its definition again: for p, q ∈ P , let Λ(p, q) ⊂ π−1(γ) be the geodesics that
a path from p to q crosses, in order. Given them orientations so that the positive orientation is to the left
(as seen from p). Then

Etγ(p, q) :=
∏

g∈Λ(p,q)

T tg .

Prove the following

1. Etγ(p, p) = id and E0
γ(p, q) = id.

2. Etγ(p, q) = Etγ(q, p)−1

3. Etγ(p, q) = Etγ(p, r)Etγ(r, q)

4. for all η ∈ Γ, Etγ(ηp, ηq) = ηEtγ(p, q)η−1.

5. Fix p ∈ P . For all t, the rule ρtγ : η 7→ Etγ(p, ηp)η is a group homomorphism.

6. The rule t 7→ ρtγ ∈ Hom(Γ,PSL(2,R) is continuous, i.e., for all η ∈ Γ, t 7→ ρtγ(η) ∈ PSL(2,R) is
continuous.

7. [ρtγ ] = hol(Eqtγ(X)).

1I’m using shorthand/suppressing the equivalence relation and marking, here. By X, I really mean [f : S → X] and so on.
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1.4

Recall the following from lecture:

Theorem 1.1 (First variation of length). Let θγη : γ t η → (0, π) be the function that measures the angle,
measured counter clockwise, from η to γ. Then

d

dt

∣∣∣∣
t=0

`η(Eqtγ(X)) =
∑
p∈γtη

cos θνµ(p)

Theorem 1.2 (Convextiy). Then the function

t 7→ `η(Eqtγ(X))

is convex and strictly convex if i(η, γ) 6= 0.

Prove that if γ ⊂ X is a simple closed geodesic, and η is another closed geodesic, then

`η(Eqtγ(X))

t
→ i(γ, η), t→∞.

Try proving the following statement: For every closed curve η with i(γ, η) 6= 0 and ε > 0, there is a T
such that for all t ≥ T , we have

`η(Eq(T+t)γ(X))− `η(EqTγ(X)) ≥ (1− ε)i(γ, η)t.
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Exercises: Day 1

0.1 Hyperbolic geometry

0.1.1

Fix 0 < Θ < π and n ≥ 3. Describe a topology on the set P (6,Θ) of hyperbolic 6-gons with labeled edges
1, ..., 6 and every interior angle equal to Θ. Prove that the map from P (6,Θ) to R3

>0 recording the lengths
of sides 1, 3, and 5 (or 2, 4, 6) is a bijection.

Sketch a proof that this map is also a homeomorphism (This might involve constructing a map between
two hexagons with given edge-lengths; you would want your maps to be close to an isometry if the lengths
are all close).

For n ≥ 3, describe the space P (2n, π/2) of right angled 2n-gons with labeled edges.

0.1.2

Recall the Gauss–Bonnet Theorem that for a closed surface S equipped with a Riemannian metric h that∫
S

κh dAreah = 2πχ(S),

where κh is the Gauss curvature and dAreah is the Riemannian area form for the metric h.

Prove the following: Given a closed surface S, there is a number B such that for any hyperbolic metric
h on S, there is a homotopically non-trivial simple closed curve on S of h-length at most B.

0.2 Fenchel–Nielsen coordinates

0.2.1

Prove that #P = 3g − 3 and that S \ P consists of 2g − 2 3-times punctures spheres.

0.2.2

We saw that that the RP-action on fibers of π is transitive. Now prove that the action is simply transitive.
That is, if tw(X,Y ) = 0 for two points X and Y in the same `P-fiber, then X is Teichmüller equivalent to
Y .1

0.2.3

Given a section σ of `P : T(S)→ RP
>0, the rule

Fσ : X ∈ T(S) 7→ (`P(X), twP(σ(`P(X)), X)) ∈ RP
>0 × RP

defines a bijection that is often called ”Fenchel–Nielsen coordinates.”
Sketch a strategy for showing that Fσ is homeomorphic if σ is continuous. That is, explain why Fσ and

F−1
σ are both continuous.

1I’m using shorthand/suppressing the equivalence relation and marking, here. By X, I really mean [f : S → X] and so on.
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1 Exercises: Day 2

Here, you will complete the proof of The Earthquake Theorem. We have already proven continuity of the
map

EqX :ML→ T(S)

µ 7→ EqX(µ).

Since ML ∪ {0} and T(S) are both cells of dimension 6g − 6, it suffices to prove that EqX is injective
and proper. We then conclude by Invariance of Domain.

The following two results and their proofs from the lecture will be useful.

Theorem 1.1 (Variation of length). Let µ and λ ∈ ML. Let θνµ : µ ∩ λ → [0, π] be the function that
measures the angle, measured counter clockwise, from leaves of µ to leaves of ν. Then

d

dt

∣∣∣∣
t=0

`µ(EqX(tν)) =

∫∫
cos(θνµ) dµdν = − d

dt

∣∣∣∣
t=0

`ν(EqX(tµ)).

(Note that θµν = π − θνµ, so that cos(θµν) = − cos(θνµ).)

Theorem 1.2 (Convexity of length functions). Let µ ∈ML and γ be a closed curve. Then the function

t 7→ `γ(EqX(tµ))

is convex and strictly convex if i(µ, γ) 6= 0.

1.0.1

Prove that EqX is proper along rays. That is, prove that if µ ∈ML, then there is a curve γ such that

`γ(EqX(tµ))→∞, t→∞.

Note that this would follow from the following statement: For every closed curve γ with i(γ, µ) 6= 0 and
ε > 0, there is a T such that for all t ≥ T , we have

`γ(EqX((T + t)µ))− `γ(EqX(Tµ)) ≥ (1− ε)t.

1.0.2

To prove that EqX is proper (i.e., the preimage of a compact set is compact), consider a compact K ⊂ T(S).
Suppose γ1, ..., γn are closed curves that fill S, so that the function

f : Y ∈ T(S) 7→
∑
i

`γi(X) ∈ R

is proper. Thus there is an L > 0 such that K is contained in the compact set BL(X) = f−1([0, L]), so it
suffices to prove that Eq−1

X (BL(X)) is compact.
Use properness of EqX along rays, continuity, and convexity of length functions along earthquake paths

to prove this.

1.0.3

Now we prove that EqX is injective.

1. First along rays: Let µ ∈ ML and consider a curve γ with i(γ, µ) 6= 0. Consider the function
Y 7→

∫
γ

cos
(
θYµγ
)
dµ.2 Use Theorems 1.1 and 1.2 to deduce that this function is strictly increasing

along the ray t 7→ EqX(tµ) (hence no two points on the ray coincide).

2Here, I’m emphasizing that the angle is measured on the hyperbolic structure Y ∈ T(S).
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2. Next we show that if µ and ν are projectively distinct, then EqX(R≥0µ)∩EqX(R≥0ν) = {X}. For the
case that i(ν, µ) > 0, use a similar argument to prove that these two rays only intersect at X.

3. Finally, assume that i(ν, µ) = 0. The difficult case is that the supports of ν and µ coincide (why?).

Fact 1.3. If µ and ν are distinct measures with the same supports, then for any ε > 0, there is a
closed curve γ such that

1− ε < cos θµγ = cos θµγ < 1

and
i(µ, γ)

i(ν, γ)
>

1

1− ε
.

Given a small positive ε > 0, let γ be as in the fact and prove that

(1− ε)i(γ, µ) ≤ `γ(EqX(µ))− `γ(X) ≤ i(γ, µ)

and
(1− ε)i(γ, ν) ≤ `γ(EqX(ν))− `γ(X) ≤ i(γ, ν).

Now assume that EqX(µ) = EqX(ν) and use the fact to derive a contradiction.

This completes the proof of the Earthquake Theorem.
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