0.1

Why is it that $\mathcal{T}(S)/\operatorname{Mod}(S) = \mathcal{M}(S)$ (the moduli space)?

Hyperbolic geometry

0.2

Fix $0 < \Theta < \pi$. Describe a topology on the set $P(6, \Theta)$ of hyperbolic 6-gons with labeled edges 1, ..., 6 and every interior angle equal to Θ . Prove that the map from $P(6,\Theta)$ to $\mathbb{R}^3_{>0}$ recording the lengths of sides 1, 3, and 5 (or 2, 4, 6) is a bijection.

How would you prove that this map is a homeomorphism?

0.3

Recall the Gauss–Bonnet Theorem that for a closed surface S equipped with a Riemannian metric h:

$$\int_{S} \kappa_h \, dArea_h = 2\pi \chi(S),$$

where κ_h is the Gauss curvature and $dArea_h$ is the Riemannian area form for the metric h.

Prove the following: Given a closed surface S, there is a number B such that for any hyperbolic metric h on S, there is a homotopically non-trivial simple closed curve on S of h-length at most B.

The holonomy map

0.4

Verify that the holonomy map

$$hol([f: S \to X]) = [f_*: \pi_1 S \to PSL(2, \mathbb{R})]$$

is well defined, i.e., that if $f: S \to X \sim g: S \to Y$, then $[f_*] = [g_*]$. (Hint: Give S a reference hyperbolic metric, and suppose $F: \widetilde{S} \to \mathbb{H}^2$ and $G: \widetilde{S} \to \mathbb{H}^2$ are bi-Lipschitz maps, hence have well defined boundary extensions $\partial F : \partial \widetilde{S} \to \partial \mathbb{H}^2$ and $\partial G : \partial \widetilde{S} \to \partial \mathbb{H}^2$. Prove that if $d(F,G) < \infty$, then $\partial F = \partial G$.)

0.5

Verify that the action of Mod(S) on $\mathcal{T}(S)$ is by real-analytic homeomorphisms.

(Hint: Every $[\varphi] \in Mod(S)$ induces an outer automorphism $[\varphi_*]$ of $\pi_1 S$, i.e., an element of the group of $\pi_1 S$ -conjugacy classes of isomorphisms of $\pi_1 S \to \pi_1 S$. Choose an automorphism φ_* representing $[\varphi_*]$ and show that the action of φ_* on representations $\operatorname{Hom}(\pi_1 S, \operatorname{PSL}(2, \mathbb{R}))$ is by polynomial maps.)

Fenchel-Nielsen coordinates

0.6

Prove that $\#\mathcal{P} = 3g - 3$ and that $S \setminus \mathcal{P}$ consists of 2g - 2 3-times punctures spheres.

Fenchel–Nielsen coordinates

1.1

Conclude the proof that the $\mathbb{R}^{\mathcal{P}}$ -action by twists is simply transitive: That is, if $tw_{\mathcal{P}}(X,Y) = 0$ for two points X and Y in the same $\ell_{\mathcal{P}}$ -fiber, then X is Teichmüller equivalent to Y.¹

1.2

Given a section σ of $\ell_{\mathcal{P}} : \mathcal{T}(S) \to \mathbb{R}^{\mathcal{P}}_{>0}$, the rule

$$F_{\sigma}: X \in \mathcal{T}(S) \mapsto (\ell_{\mathcal{P}}(X), tw_{\mathcal{P}}(\sigma(\ell_{\mathcal{P}}(X)), X)) \in \mathbb{R}_{>0}^{\mathcal{P}} \times \mathbb{R}^{\mathcal{P}}$$

defines a bijection that is often called "Fenchel-Nielsen coordinates."

Sketch a strategy for showing that F_{σ} is homeomorphic if σ is continuous. That is, explain why F_{σ} and F_{σ}^{-1} are both continuous (proving the statement that $\ell_{\mathcal{P}}$ is a principal $\mathbb{R}^{\mathcal{P}}$ -bundle).

Earthquakes

1.3

Let $X \in \mathcal{T}(S)$ with universal cover $\pi : \widetilde{X} \to X$ and deck group $\Gamma \leq \text{PSL}(2, \mathbb{R})$. Let $\gamma \subset X$ be a simple closed geodesic, and identity \widetilde{X} with \mathbb{H}^2 . Let P be the collection of connected components of $\mathbb{H}^2 \setminus \pi^{-1}(\gamma)$. Given $t \in \mathbb{R}$, denote by

$$E_{\gamma}^t: P \times P \to \mathrm{PSL}(2,\mathbb{R})$$

the cocycle from lecture. Here is its definition again: for $p, q \in P$, let $\Lambda(p,q) \subset \pi^{-1}(\gamma)$ be the geodesics that a path from p to q crosses, in order. Given them orientations so that the positive orientation is to the left (as seen from p). Then

$$E_{\gamma}^{t}(p,q) := \prod_{g \in \Lambda(p,q)} T_{g}^{t}.$$

Prove the following

1.
$$E_{\gamma}^t(p,p) = id$$
 and $E_{\gamma}^0(p,q) = id$.

2.
$$E_{\gamma}^{t}(p,q) = E_{\gamma}^{t}(q,p)^{-1}$$

3.
$$E_{\gamma}^t(p,q) = E_{\gamma}^t(p,r)E_{\gamma}^t(r,q)$$

- 4. for all $\eta \in \Gamma$, $E_{\gamma}^t(\eta p, \eta q) = \eta E_{\gamma}^t(p, q) \eta^{-1}$.
- 5. Fix $p \in P$. For all t, the rule $\rho_{\gamma}^t : \eta \mapsto E_{\gamma}^t(p,\eta p)\eta$ is a group homomorphism.
- 6. The rule $t \mapsto \rho_{\gamma}^t \in \text{Hom}(\Gamma, \text{PSL}(2, \mathbb{R}) \text{ is continuous, i.e., for all } \eta \in \Gamma, t \mapsto \rho_{\gamma}^t(\eta) \in \text{PSL}(2, \mathbb{R}) \text{ is continuous.}$
- 7. $[\rho_{\gamma}^t] = hol(\mathsf{Eq}_{t\gamma}(X)).$

¹I'm using shorthand/suppressing the equivalence relation and marking, here. By X, I really mean $[f: S \to X]$ and so on.

1.4

Recall the following from lecture:

Theorem 1.1 (First variation of length). Let $\theta_{\gamma\eta} : \gamma \pitchfork \eta \to (0, \pi)$ be the function that measures the angle, measured counter clockwise, from η to γ . Then

$$\left. \frac{d}{dt} \right|_{t=0} \ell_{\eta}(\mathsf{Eq}_{t\gamma}(X)) = \sum_{p \in \gamma \land \eta} \cos \theta_{\nu\mu}(p)$$

Theorem 1.2 (Convextiy). Then the function

 $t \mapsto \ell_{\eta}(\mathsf{Eq}_{t\gamma}(X))$

is convex and strictly convex if $i(\eta, \gamma) \neq 0$.

Prove that if $\gamma \subset X$ is a simple closed geodesic, and η is another closed geodesic, then

$$\frac{\ell_{\eta}(\mathsf{Eq}_{t\gamma}(X))}{t} \to i(\gamma,\eta), \ t \to \infty.$$

Try proving the following statement: For every closed curve η with $i(\gamma, \eta) \neq 0$ and $\epsilon > 0$, there is a T such that for all $t \geq T$, we have

$$\ell_{\eta}(\mathsf{Eq}_{(T+t)\gamma}(X)) - \ell_{\eta}(\mathsf{Eq}_{T\gamma}(X)) \ge (1-\epsilon)i(\gamma,\eta)t.$$

0.1 Hyperbolic geometry

0.1.1

Fix $0 < \Theta < \pi$ and $n \ge 3$. Describe a topology on the set $P(6, \Theta)$ of hyperbolic 6-gons with labeled edges 1, ..., 6 and every interior angle equal to Θ . Prove that the map from $P(6, \Theta)$ to $\mathbb{R}^3_{>0}$ recording the lengths of sides 1, 3, and 5 (or 2, 4, 6) is a bijection.

Sketch a proof that this map is also a homeomorphism (This might involve constructing a map between two hexagons with given edge-lengths; you would want your maps to be close to an isometry if the lengths are all close).

For $n \geq 3$, describe the space $P(2n, \pi/2)$ of right angled 2n-gons with labeled edges.

0.1.2

Recall the Gauss–Bonnet Theorem that for a closed surface S equipped with a Riemannian metric h that

$$\int_{S} \kappa_h \, dArea_h = 2\pi \chi(S),$$

where κ_h is the Gauss curvature and $dArea_h$ is the Riemannian area form for the metric h.

Prove the following: Given a closed surface S, there is a number B such that for any hyperbolic metric h on S, there is a homotopically non-trivial simple closed curve on S of h-length at most B.

0.2 Fenchel–Nielsen coordinates

0.2.1

Prove that $\#\mathcal{P} = 3g - 3$ and that $S \setminus \mathcal{P}$ consists of 2g - 2 3-times punctures spheres.

0.2.2

We saw that that the $\mathbb{R}^{\mathbb{P}}$ -action on fibers of π is transitive. Now prove that the action is simply transitive. That is, if tw(X,Y) = 0 for two points X and Y in the same $\ell_{\mathbb{P}}$ -fiber, then X is Teichmüller equivalent to Y.¹

0.2.3

Given a section σ of $\ell_{\mathbb{P}} : \mathsf{T}(S) \to \mathbb{R}^{\mathbb{P}}_{>0}$, the rule

$$F_{\sigma}: X \in \mathsf{T}(S) \mapsto (\ell_{\mathbb{P}}(X), tw_{\mathbb{P}}(\sigma(\ell_{\mathbb{P}}(X)), X)) \in \mathbb{R}^{\mathbb{P}}_{>0} \times \mathbb{R}^{\mathbb{P}}$$

defines a bijection that is often called "Fenchel-Nielsen coordinates."

Sketch a strategy for showing that F_{σ} is homeomorphic if σ is continuous. That is, explain why F_{σ} and F_{σ}^{-1} are both continuous.

¹I'm using shorthand/suppressing the equivalence relation and marking, here. By X, I really mean $[f: S \to X]$ and so on.

Here, you will complete the proof of The Earthquake Theorem. We have already proven continuity of the map

$$\mathsf{Eq}_X: \mathcal{ML} \to \mathsf{T}(S)$$
$$\mu \mapsto \mathsf{Eq}_X(\mu).$$

Since $\mathcal{ML} \cup \{0\}$ and $\mathsf{T}(S)$ are both cells of dimension 6g - 6, it suffices to prove that Eq_X is injective and proper. We then conclude by Invariance of Domain.

The following two results and their proofs from the lecture will be useful.

Theorem 1.1 (Variation of length). Let μ and $\lambda \in \mathcal{ML}$. Let $\theta_{\nu\mu} : \mu \cap \lambda \to [0, \pi]$ be the function that measures the angle, measured counter clockwise, from leaves of μ to leaves of ν . Then

$$\left. \frac{d}{dt} \right|_{t=0} \ell_{\mu}(\mathsf{Eq}_X(t\nu)) = \iint \cos(\theta_{\nu\mu}) \ d\mu d\nu = -\left. \frac{d}{dt} \right|_{t=0} \ell_{\nu}(\mathsf{Eq}_X(t\mu)).$$

(Note that $\theta_{\mu\nu} = \pi - \theta_{\nu\mu}$, so that $\cos(\theta_{\mu\nu}) = -\cos(\theta_{\nu\mu})$.)

Theorem 1.2 (Convexity of length functions). Let $\mu \in \mathcal{ML}$ and γ be a closed curve. Then the function

$$t \mapsto \ell_{\gamma}(\mathsf{Eq}_{X}(t\mu))$$

is convex and strictly convex if $i(\mu, \gamma) \neq 0$.

1.0.1

Prove that Eq_X is proper along rays. That is, prove that if $\mu \in \mathcal{ML}$, then there is a curve γ such that

$$\ell_{\gamma}(\mathsf{Eq}_X(t\mu)) \to \infty, \ t \to \infty.$$

Note that this would follow from the following statement: For every closed curve γ with $i(\gamma, \mu) \neq 0$ and $\epsilon > 0$, there is a T such that for all $t \geq T$, we have

$$\ell_{\gamma}(\mathsf{Eq}_X((T+t)\mu)) - \ell_{\gamma}(\mathsf{Eq}_X(T\mu)) \ge (1-\epsilon)t.$$

1.0.2

To prove that Eq_X is proper (i.e., the preimage of a compact set is compact), consider a compact $K \subset \mathsf{T}(S)$. Suppose $\gamma_1, ..., \gamma_n$ are closed curves that fill S, so that the function

$$f: Y \in \mathsf{T}(S) \mapsto \sum_{i} \ell_{\gamma_i}(X) \in \mathbb{R}$$

is proper. Thus there is an L > 0 such that K is contained in the compact set $B_L(X) = f^{-1}([0, L])$, so it suffices to prove that $\mathsf{Eq}_X^{-1}(B_L(X))$ is compact.

Use properness of Eq_X along rays, continuity, and convexity of length functions along earthquake paths to prove this.

1.0.3

Now we prove that Eq_X is injective.

1. First along rays: Let $\mu \in \mathcal{ML}$ and consider a curve γ with $i(\gamma, \mu) \neq 0$. Consider the function $Y \mapsto \int_{\gamma} \cos(\theta_{\mu\gamma}^Y) d\mu^2$ Use Theorems 1.1 and 1.2 to deduce that this function is strictly increasing along the ray $t \mapsto \mathsf{Eq}_X(t\mu)$ (hence no two points on the ray coincide).

²Here, I'm emphasizing that the angle is measured on the hyperbolic structure $Y \in \mathsf{T}(S)$.

- 2. Next we show that if μ and ν are projectively distinct, then $\mathsf{Eq}_X(\mathbb{R}_{\geq 0}\mu) \cap \mathsf{Eq}_X(\mathbb{R}_{\geq 0}\nu) = \{X\}$. For the case that $i(\nu, \mu) > 0$, use a similar argument to prove that these two rays only intersect at X.
- 3. Finally, assume that $i(\nu, \mu) = 0$. The difficult case is that the supports of ν and μ coincide (why?).

Fact 1.3. If μ and ν are distinct measures with the same supports, then for any $\epsilon > 0$, there is a closed curve γ such that

$$1 - \epsilon < \cos \theta_{\mu\gamma} = \cos \theta_{\mu\gamma} < 1$$

and

$$\frac{i(\mu,\gamma)}{i(\nu,\gamma)} > \frac{1}{1-\epsilon}.$$

Given a small positive $\epsilon > 0$, let γ be as in the fact and prove that

$$(1-\epsilon)i(\gamma,\mu) \le \ell_{\gamma}(\mathsf{Eq}_X(\mu)) - \ell_{\gamma}(X) \le i(\gamma,\mu)$$

and

$$(1-\epsilon)i(\gamma,\nu) \le \ell_{\gamma}(\mathsf{Eq}_X(\nu)) - \ell_{\gamma}(X) \le i(\gamma,\nu).$$

Now assume that $\mathsf{Eq}_X(\mu) = \mathsf{Eq}_X(\nu)$ and use the fact to derive a contradiction.

This completes the proof of the Earthquake Theorem.