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Exercise 1: Computing chordal Loewner energy

Recall that the chordal Loewner energy of a simple chord «y from 0 to oo in the upper half-plane
H, denoted Ip,0,00(7), is the Dirichlet energy of its driving function W:
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If v is a chord in (D, a,b), then

Ip.ap(y) = Im0,00(0(7))

where ¢ : D — H is a conformal map with ¢(a) =0 and ¢(b) = cc.

1. Let v be a chord in (H, 0, 0o) with mapping out functions ¢;(z) and driving function W;.
Show that T, has the following transformation properties. (Hint: use the expansion of
g:(z) at 00.)

(a) (Additivity) Let 4 = g;(7) — W;. Show that the driving function W, of 7 is
WS = Wt+3 - Wt-
(b) (Scaling) Let A > 0 and ¥ = A\y. Show that the driving function of this curve is
W, = AW, ..
2. Let v be the imaginary axis in H.

(a) Compute the capacity parametrization of v and the mapping out function of [0, t].

(b) Show that W; =0 for all ¢t > 0.
3. Consider the ray 7, = {z € H:argz = a} in H at angle 0 < a < 7/2.

(a) Show that the driving function of 7, is W, (t) = Cv/t, where C is a constant
depending on « with C' = 0 if and only if & = 7/2. (Hint: use that ~, is preserved
under scaling.)

(b) Calculate the chordal Loewner energy of v, in (H,0,00) and observe that it is
infinite when « # /2.

4. Consider the semicircular curve v, in H which intersects the real axis at 79 = 0 and
~vr = 1, for some T > 0 which is the half-plane capacity of the half-disk of radius 1/2.
Let K; be the compact H-hull generated by +; (for t < T, Ky = v[0,¢], and K7 is the
half disk of radius 1/2 and center 1/2). Let g; : H\ K; — H be their mapping out
functions and t — W; be the driving function of ~.

(a) Show that [0, 7] and g;(~[t, T]) are self-similar. Namely, show that for all ¢t < T,
g:(7[t,T)) is also a semicircle with endpoints Wy = g:(v¢) and V; := g¢ (7).



(b) Let W be the driving function of . Take the following as fact (you can also try to
show it yourseliﬂ):
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Using the self-similarity and the Loewner equation, show that for ¢ < T,

dW; 6 dV; 2
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(c) Use the differential equations above to compute 7" and show that the Loewner
energy of v in (H, 0, c0) is infinite.

Exercise 2: Computing Loop Loewner energy

In the lecture, we saw that the Loewner energy I”(-) of a Jordan curve is defined as a limit
of chordal Loewner energies and can be viewed as a generalization. The set of Jordan curves
v with I () < oo is exactly the set of Weil-Petersson quasicircles. There are equivalent
expressions of the Loewner energy, one for bounded loops (i.e., ones that don’t contain oo)
and one for unbounded loops.

o (Bounded case.) Suppose that « is a bounded Jordan curve separating a bounded region
Q from an unbounded region Q*. Let f : D — Q and h : D* — Q* be conformal maps

with A fixing co. Then
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where dA is the Euclidean area measure.

f// h// 2
dA + 4log| £/ (0)] — 4log I (c0)

e (Unbounded case.) Suppose that v is a Jordan curve passing through oo separating
the regions H and H*. Let f: H — H and h : H* — H* be conformal maps fixing co.
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1. Show in two ways that the loop v = R, U (e?*R,) with 0 < o < 7 satisfies I*(7) = occ.
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Suggestion: Use the ray example from Exercise 1.

2. (Challenging) We show that Weil-Petersson curves may have spirals. Use Loewner
loop energy to show that the spiral ¢ — texp(iloglog|1/t|) can be completed into a
Weil-Petersson quasicircle.

3. (Very Challenging) Since the Loewner energy is Mobius invariant, can you show directly
that the expressions for I” for bounded and unbounded loops are equivalent? (The
proof I know is indirect and uses the relationship to zeta-regularized determinants of
Laplacians.)

1See, e.g., |arxiv 2006.08574, Section 4, page 30, eq. (4.3)] or |[Exact Solutions for Loewner Evolutions,
Section 5].
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