Loewner transform and Loewner energy

Yilin Wang

Exercise 1: Computing chordal Loewner energy

Recall that the chordal Loewner energy of a simple chord γ from 0 to ∞ in the upper half-plane \mathbb{H} , denoted $I_{\mathbb{H},0,\infty}(\gamma)$, is the Dirichlet energy of its driving function W:

$$I_{\mathbb{H},0,\infty}(\gamma) = \frac{1}{2} \int_0^\infty \left| \frac{\mathrm{d}W_t}{\mathrm{d}t} \right|^2 \mathrm{d}t.$$

If γ is a chord in (D, a, b), then

$$I_{D,a,b}(\gamma) := I_{\mathbb{H},0,\infty}(\phi(\gamma))$$

where $\phi: D \to \mathbb{H}$ is a conformal map with $\phi(a) = 0$ and $\phi(b) = \infty$.

- 1. Let γ be a chord in $(\mathbb{H}, 0, \infty)$ with mapping out functions $g_t(z)$ and driving function W_t . Show that W_t has the following transformation properties. (Hint: use the expansion of $g_t(z)$ at ∞ .)
 - (a) (Additivity) Let $\tilde{\gamma} = g_t(\gamma) W_t$. Show that the driving function \tilde{W}_s of $\tilde{\gamma}$ is $\tilde{W}_s = W_{t+s} W_t$.
 - (b) (Scaling) Let $\lambda > 0$ and $\tilde{\gamma} = \lambda \gamma$. Show that the driving function of this curve is $\tilde{W}_s = \lambda W_{\lambda^{-2}s}$.
- 2. Let γ be the imaginary axis in \mathbb{H} .
 - (a) Compute the capacity parametrization of γ and the mapping out function of $\gamma[0,t]$.
 - (b) Show that $W_t = 0$ for all $t \ge 0$.
- 3. Consider the ray $\gamma_{\alpha} = \{z \in \mathbb{H} : \arg z = \alpha\}$ in \mathbb{H} at angle $0 \le \alpha \le \pi/2$.
 - (a) Show that the driving function of γ_{α} is $W_{\alpha}(t) = C\sqrt{t}$, where C is a constant depending on α with C = 0 if and only if $\alpha = \pi/2$. (Hint: use that γ_{α} is preserved under scaling.)
 - (b) Calculate the chordal Loewner energy of γ_{α} in $(\mathbb{H}, 0, \infty)$ and observe that it is infinite when $\alpha \neq \pi/2$.
- 4. Consider the semicircular curve γ_t in \mathbb{H} which intersects the real axis at $\gamma_0 = 0$ and $\gamma_T = 1$, for some T > 0 which is the half-plane capacity of the half-disk of radius 1/2. Let K_t be the compact \mathbb{H} -hull generated by γ_t (for t < T, $K_t = \gamma[0, t]$, and K_T is the half disk of radius 1/2 and center 1/2). Let $g_t : \mathbb{H} \setminus K_t \to \mathbb{H}$ be their mapping out functions and $t \mapsto W_t$ be the driving function of γ .
 - (a) Show that $\gamma[0,T]$ and $g_t(\gamma[t,T])$ are self-similar. Namely, show that for all t < T, $g_t(\gamma[t,T])$ is also a semicircle with endpoints $W_t = g_t(\gamma_t)$ and $V_t := g_t(\gamma_T)$.

(b) Let W be the driving function of γ . Take the following as fact (you can also try to show it yourself¹):

$$\left. \frac{\mathrm{d}W_t}{\mathrm{d}t} \right|_{t=0} = 6.$$

Using the self-similarity and the Loewner equation, show that for t < T,

$$\frac{\mathrm{d}W_t}{\mathrm{d}t} = \frac{6}{V_t - W_t}; \qquad \frac{\mathrm{d}V_t}{\mathrm{d}t} = \frac{2}{V_t - W_t}.$$

(c) Use the differential equations above to compute T and show that the Loewner energy of γ in $(\mathbb{H}, 0, \infty)$ is infinite.

Exercise 2: Computing Loop Loewner energy

In the lecture, we saw that the Loewner energy $I^L(\cdot)$ of a Jordan curve is defined as a limit of chordal Loewner energies and can be viewed as a generalization. The set of Jordan curves γ with $I^L(\gamma) < \infty$ is exactly the set of Weil-Petersson quasicircles. There are equivalent expressions of the Loewner energy, one for bounded loops (i.e., ones that don't contain ∞) and one for unbounded loops.

• (Bounded case.) Suppose that γ is a bounded Jordan curve separating a bounded region Ω from an unbounded region Ω^* . Let $f: \mathbb{D} \to \Omega$ and $h: \mathbb{D}^* \to \Omega^*$ be conformal maps with h fixing ∞ . Then

$$I^L(\gamma) = \frac{1}{\pi} \iint_{\mathbb{D}} \left| \frac{f''}{f'} \right|^2 \mathrm{d}A + \frac{1}{\pi} \iint_{\mathbb{D}^*} \left| \frac{h''}{h'} \right|^2 \mathrm{d}A + 4\log|f'(0)| - 4\log|h'(\infty)|$$

where dA is the Euclidean area measure.

• (Unbounded case.) Suppose that γ is a Jordan curve passing through ∞ separating the regions H and H^* . Let $f: \mathbb{H} \to H$ and $h: \mathbb{H}^* \to H^*$ be conformal maps fixing ∞ . Then

$$I^L(\gamma) = \frac{1}{\pi} \iint_{\mathbb{H}} \left| \frac{f''}{f'} \right|^2 \mathrm{d}A + \frac{1}{\pi} \iint_{\mathbb{H}^*} \left| \frac{h''}{h'} \right|^2 \mathrm{d}A.$$

- 1. Show in two ways that the loop $\gamma = \mathbb{R}_+ \cup (e^{i\alpha}\mathbb{R}_+)$ with $0 < \alpha < \pi$ satisfies $I^L(\gamma) = \infty$. Suggestion: Use the ray example from Exercise 1.
- 2. (Challenging) We show that Weil–Petersson curves may have spirals. Use Loewner loop energy to show that the spiral $t \mapsto t \exp(\mathfrak{i} \log \log |1/t|)$ can be completed into a Weil–Petersson quasicircle.
- 3. (Very Challenging) Since the Loewner energy is Möbius invariant, can you show directly that the expressions for I^L for bounded and unbounded loops are equivalent? (The proof I know is indirect and uses the relationship to zeta-regularized determinants of Laplacians.)

 $^{^{1}}$ See, e.g., [arxiv 2006.08574, Section 4, page 30, eq. (4.3)] or [Exact Solutions for Loewner Evolutions, Section 5].