

Sheet I: Hyperbolic geometry

Mini-course: Random hyperbolic 3-manifolds

Winter School Côte d'Azur 2026

■ 1) In the upper half-space model of \mathbb{H}^3 , every orientation-preserving isometry corresponds to an element of $\text{PSL}(2, \mathbb{C})$, acting as a Möbius transformation on the boundary $\partial\mathbb{H}^3$. Let $\gamma \in \text{PSL}(2, \mathbb{C})$.

- A parabolic element fixes exactly one point in $\partial\mathbb{H}^3$.
 - Show that any parabolic element is conjugate to the Euclidean translation : $z \mapsto z + 1$.
 - Deduce that γ is parabolic if and only if $|\text{tr}(\gamma)| = 2$.
- A hyperbolic (loxodromic) element fixes two points in $\partial\mathbb{H}^3$.
 - Show that any hyperbolic (loxodromic) element is conjugate to the translation (plus rotation) : $z \mapsto \lambda^2 z$, with $|\lambda| > 1$.
 - Prove that γ is hyperbolic (loxodromic) if and only if $\text{tr}(\gamma) \in \mathbb{C} \setminus [-2, 2]$.
- An elliptic element fixes a point in the interior of \mathbb{H}^3 .
 - Show that any elliptic element is conjugate to the rotation : $z \mapsto e^{2i\theta} z$, with $\theta \not\equiv 0 \pmod{\pi}$.
 - Prove that γ is elliptic if and only if $\text{tr}(\gamma) \in (-2, 2)$.
- Let $\Gamma \subset \text{PSL}(2, \mathbb{C})$ be a discrete subgroup acting freely on \mathbb{H}^3 (so that $M = \mathbb{H}^3/\Gamma$ is a hyperbolic 3-manifold). Explain why Γ cannot contain any elliptic elements.
- Show that two conjugate elements are of the same type.

■ 2) Let $M = \mathbb{H}^3/\Gamma$ by a complete hyperbolic manifold, and let $\gamma \in \Gamma$ be a hyperbolic isometry. The translation length of γ , defined as the minimal displacement :

$$\ell(\gamma) = \min_{x \in \mathbb{H}^3} d(x, \gamma x),$$

is realised in its unique invariant geodesic in \mathbb{H}^3 , its axis.

(a) Prove that γ is conjugate to

$$\begin{pmatrix} e^{\ell/2} & 0 \\ 0 & e^{-\ell/2} \end{pmatrix},$$

where $\ell = \ell(\gamma)$. Hint : In the upper-half space, the distance between two vertical points P_1, P_2 is given by : $d(P_1, P_2) = \int_{t_1}^{t_2} \frac{|dt|}{t}$.

Deduce that

$$l(\gamma) = \text{Re} \left(\cosh^{-1} \left(\frac{\text{tr}(\gamma)}{2} \right) \right).$$

(b) Suppose γ_1, γ_2 are conjugate in Γ . Show that their corresponding closed geodesics have the same length.

3) Show that in every homotopy class of non-trivial, non-parabolic closed curves in M , there exists a unique geodesic representative.

4) Let $M = \mathbb{H}^3/\Gamma$ be a hyperbolic 3-manifold. Given the previous exercises, show that there is a 1-to-1 correspondence between free homotopy classes of closed curves in M and conjugacy classes in Γ .

5) Let p be a point in $\partial\mathbb{H}^n$. A *horosphere* O centred at p is a connected hypersurface orthogonal to all the geodesic lines exiting from p . In the upper half-space model of \mathbb{H}^3 , they are easily visualised : by sending p to infinity the horospheres centred at p are precisely the horizontal planes $\{t = k\}$ with $k > 0$.

Given a horosphere O centred at $p \in \partial\mathbb{H}^n$ and a domain $D \subset O$, the *cone* C of D over p is the union of all half-lines exiting from D and pointing toward p .

(a) Prove that :

$$Vol(C) = \frac{Vol_O(D)}{2},$$

where Vol_O is the area of the flat surface O . How is it for

(b) Use it to show that a finite polyhedron has finite volume.

6) Prove that every closed irreducible 3-manifold M with infinite $\pi_1(M)$ not containing $\mathbb{Z} \times \mathbb{Z}$ is hyperbolic.

Sheet II: Triangulations

Mini-course: Random hyperbolic 3-manifolds

Winter School Côte d'Azur 2026

1) Let M be a closed, oriented smooth n -dimensional manifold. The *simplicial volume* (or *Gromov norm*) of M is defined as

$$\|M\| = \inf \left\{ \sum_i |\lambda_i| \left| \left[\sum_i \lambda_i \sigma_i \right] = [M] \in H_n(M; \mathbb{R}) \right. \right\},$$

where the infimum is taken over all real singular cycles that represent the fundamental class $[M]$.

For a closed hyperbolic 3-manifold $M = \mathbb{H}^3/\Gamma$, Gromov and Thurston proved that

$$\|M\| = \frac{\text{Vol}(M)}{v_3},$$

where $v_3 \approx 1.01494$ is the hyperbolic volume of a regular ideal tetrahedron in \mathbb{H}^3 . Show, using this, that the minimal number of tetrahedra in a smooth triangulation T of M is at least $\|M\|$.

2) In 1970, Andreev characterised compact hyperbolic polyhedra in \mathbb{H}^3 with acute dihedral angles. This was further generalized in 1996 by Rivin to ideal (non-compact) hyperbolic polyhedra as follows.

Let P be an abstract 3-dimensional polyhedron, and let P^* denote its dual polyhedron—that is, the polyhedron whose vertices correspond to the faces of P , whose edges correspond to the edges of P , and whose faces correspond to the vertices of P .

For each edge e of P , assign a number $\phi(e) \in (0, \pi)$ which will denote the exterior dihedral angle of e , defined as $\phi(e) = \pi - \psi(e)$, where $\psi(e)$ is the interior dihedral angle of e .

Theorem 1 (Rivin, 1996) *There exists a convex ideal polyhedron $Q \subset \mathbb{H}^3$ of the same combinatorial type of P and with exterior dihedral angles given by ϕ if and only if the following conditions hold :*

(a) *For every vertex $v \in V$,*

$$\sum_{e \in E_v} \phi(e) = 2\pi,$$

where E_v is the set of all edges containing v .

(b) *For every simple closed curve γ in the 1-skeleton of the dual polyhedron P^* that bounds a disk in S^2 and does not correspond to a single vertex of P ,*

$$\sum_{e \in E_\gamma} \phi(e) > 2\pi,$$

where E_γ is the set of edges of P crossed by γ .

(c) $\phi(e) \in (0, \pi)$ for all $e \in E$.

Moreover, when such an ideal polyhedron exists, it is unique up to isometry of \mathbb{H}^3 .

- (a) Show, using this, that there exists a unique hyperbolic ideal right-angled regular octahedra up to isometry. Realise the polyhedron on \mathbb{H}^3 .
- (b) Can other platonic solids be realised as ideal hyperbolic polyhedra in \mathbb{H}^3 ?

3) Let \mathcal{K} be a 3-dimensional polyhedral complex, in which every maximal cell is a 3-dimensional convex polyhedron. The *dual graph* $G(\mathcal{K})$ is defined as follows :

- Vertices : correspond to 3-cells of \mathcal{P} .
- Edges : connect two vertices if the corresponding 3-cells share a 2-dimensional face.

Let M be a tetrahedral hyperbolic 3-manifold, that is, a hyperbolic 3-manifold made out of a gluing of regular ideal hyperbolic tetrahedra.

- (a) What is the dual graph of the underlying complex?
- (b) Show that the M deformation retracts onto the dual graph.
- (c) Deduce that free homotopy classes of closed curves in M are in bijection with closed paths in $G(M)$.

4) A *tessellation* of \mathbb{H}^n (or $\mathbb{R}^n, \mathbb{S}^n$) is a locally finite set of polyhedra that cover the space and may intersect only in common faces.

Let $S \subset \mathbb{H}^n$ be a discrete set. For every point $p \in S$ we define the *Voronoi cell* :

$$D(p) = \{q \in \mathbb{H}^n \mid d(q, p) \leq d(q, p') \ \forall p' \in S\}.$$

(a) Prove that :

- i. The set $D(p)$ is a polyhedron.
- ii. The polyhedra $D(p)$ as $p \in S$ varies form a tessellation of \mathbb{H}^n . This is called the Voronoi tessellation of S .

Let $\Gamma < \text{Isom}(\mathbb{H}^n)$. A *fundamental domain* for Γ is a polyhedron D in \mathbb{H}^n such that the translates $g(D)$ as $g \in \Gamma$ varies form a tessellation of \mathbb{H}^n .

Let $M = \mathbb{H}^n/\Gamma$ be a hyperbolic manifold and D a fundamental domain for Γ .

- (a) Prove that the projection $\pi : \mathbb{H}^n \rightarrow M$ restricts to a surjective map $D \rightarrow M$ that sends $\text{int}(D)$ isometrically onto an open dense subset of M . Deduce that $\text{Vol}(D) = \text{Vol}(M)$.
- (b) A *Dirichlet domain* for Γ centered at $p \in \mathbb{H}^n$ is

$$D_p = \{x \in \mathbb{H}^n \mid d(x, p) \leq d(x, \gamma p) \ \forall \gamma \in \Gamma\}.$$

Prove that D_p is a fundamental domain, and that $M = \mathbb{H}^n/\Gamma$ is compact if and only if D_p is compact.

5) Create other models for random 3-manifolds.