
Sheet I: Hyperbolic geometry

Mini-course: Random hyperbolic 3-manifolds

Winter School Côte d’Azur 2026

1) In the upper half-space model of H
3
, every orientation-preserving isometry corresponds

to an element of PSL(2,C), acting as a Möbius transformation on the boundary ωH
3
. Let

ε → PSL(2,C).

(a) A parabolic element fixes exactly one point in ωH
3
.

i. Show that any parabolic element is conjugate to the Euclidean translation :

z ↑↓ z + 1.

ii. Deduce that ε is parabolic if and only if |tr(ε)| = 2.

(b) A hyperbolic (loxodromic) element fixes two points in ωH
3
.

i. Show that any hyperbolic (loxodromic) element is conjugate to the translation

(plus rotation) : z ↑↓ ϑ
2
z, with |ϑ| > 1.

ii. Prove that ε is hyperbolic (loxodromic) if and only if tr(ε) → C \ [↔2, 2].

(c) An elliptic element fixes a point in the interior of H
3
.

i. Show that any elliptic element is conjugate to the rotation : z ↑↓ e
2iω
z, with

ϖ ↗↘ 0 (mod ϱ).

ii. Prove that ε is elliptic if and only if tr(ε) → (↔2, 2).

(d) Let ! ≃ PSL(2,C) be a discrete subgroup acting freely on H
3

(so that M = H
3
/! is

a hyperbolic 3-manifold). Explain why ! cannot contain any elliptic elements.

(e) Show that two conjugate elements are of the same type.

2) Let M = H
3
/! by a complete hyperbolic manifold, and let ε → ! be a hyperbolic isometry.

The translation length of ε, defined as the minimal displacement :

ς(ε) = min
x→H3

d(x, εx),

is realised in its unique invariant geodesic in H
3
, its axis.

(a) Prove that ε is conjugate to (
e
ε/2 0
0 e

↑ε/2

)
,

where ς = ς(ε). Hint : In the upper-half space, the distance between two vertical

points P1, P2 is given by : d(P1, P2) =
∫

t2

t1

|dt|
t

.

Deduce that

l(ε) = Re

(
cosh↑1

(tr(ε)
2

))
.

(b) Suppose ε1, ε2 are conjugate in !. Show that their corresponding closed geodesics

have the same length.
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3) Show that in every homotopy class of non-trivial, non-parabolic closed curves in M , there

exists a unique geodesic representative.

4) Let M = H
3
/! be a hyperbolic 3-manifold. Given the previous exercises, show that

there is a 1-to-1 correspondence between free homotopy classes of closed curves in M and

conjugacy classes in !.

5) Let p be a point in ωH
n
. A horosphere O centred at p is a connected hypersurface ortho-

gonal to all the geodesic lines exiting from p. In the upper half-space model of H
3
, they

are easily visualised : by sending p to infinity the horospheres centred at p are precisely

the horizontal planes {t = k} with k > 0.

Given a horosphere O centred at p → ωH
n

and a domain D ↑ O, the cone C of D over p

is the union of all half-lines exiting from D and pointing toward p.

(a) Prove that :

V ol(C) =
V olO(D)

2
,

where V olO is the area of the flat surface O. How is it for

(b) Use it to show that a finite polyhedron has finite volume.

6) Prove that every closed irreducible 3-manifold M with infinite ε1(M) not containing Z↓Z

is hyperbolic.
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Sheet II: Triangulations

Mini-course: Random hyperbolic 3-manifolds

Winter School Côte d’Azur 2026

1) Let M be a closed, oriented smooth n-dimensional manifold. The simplicial volume (or
Gromov norm) of M is defined as

→M→ = inf

{
∑

i

|ωi|

∣∣∣∣∣
[∑

i

ωiεi

]
= [M ] ↑ Hn(M ;R)

}
,

where the infimum is taken over all real singular cycles that represent the fundamental
class [M ].

For a closed hyperbolic 3-manifold M = H
3
/!, Gromov and Thurston proved that

→M→ =
Vol(M)

v3
,

where v3 ↓ 1.01494 is the hyperbolic volume of a regular ideal tetrahedron in H
3. Show,

using this, that the minimal number of tetrahedra in a smooth triangulation T of M is
at least →M→.

2) In 1970, Andreev characterised compact hyperbolic polyhedra in H
3 with acute dihedral

angles. This was further generalized in 1996 by Rivin to ideal (non-compact) hyperbolic
polyhedra as follows.
Let P be an abstract 3–dimensional polyhedron, and let P

→ denote its dual polyhedron
-that is, the polyhedron whose vertices correspond to the faces of P , whose edges corres-
pond to the edges of P , and whose faces correspond to the vertices of P .
For each edge e of P , assign a number ϑ(e) ↑ (0, ϖ) which will denote the exterior dihedral
angle of e, defined as ϑ(e) = ϖ ↔ ϱ(e), where ϱ(e) is the interior dihedral angle of e.

Theorem 1 (Rivin, 1996) There exists a convex ideal polyhedron Q ↗ H
3 of the same

combinatorial type of P and with exterior dihedral angles given by ϑ if and only if the
following conditions hold :
(a) For every vertex v ↑ V , ∑

e↑Ev

ϑ(e) = 2ϖ,

where Ev is the set of all edges containing v.
(b) For every simple closed curve ς in the 1-skeleton of the dual polyhedron P

→ that
bounds a disk in S

2 and does not correspond to a single vertex of P ,
∑

e↑Eω

ϑ(e) > 2ϖ,

where Eω is the set of edges of P crossed by ς.
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(c) ϑ(e) ↑ (0, ϖ) for all e ↑ E.
Moreover, when such an ideal polyhedron exists, it is unique up to isometry of H3.

(a) Show, using this, that there exists a unique hyperbolic ideal right-angled regular
octahedra up to isometry. Realise the polyhedron on H

3.
(b) Can other platonic solids be realised as ideal hyperbolic polyhedra in H

3 ?

3) Let K be a 3-dimensional polyhedral complex, in which every maximal cell is an 3-
dimensional convex polyhedron. The dual graph G(K) is defined as follows :

— Vertices : correspond to 3-cells of P .
— Edges : connect two vertices if the corresponding 3-cells share a 2-dimensional face.

Let M be a tetrahedral hyperbolic 3-manifold, that is, a hyperbolic 3-manifold made out
of a gluing of regular ideal hyperbolic tetrahedra.
(a) What is the dual graph of the underlying complex ?
(b) Show that the M deformation retracts onto the dual graph.
(c) Deduce that free homotopy classes of closed curves in M are in bijection with closed

paths in G(M).

4) A tessellation of Hn (or R
n, Sn) is a locally finite set of polyhedra that cover the space

and may intersect only in common faces.
Let S ↗ H

n be a discrete set. For every point p ↑ S we define the Voronoi cell :

D(p) = {q ↑ H
n | d(q, p) ↘ d(q, p↓) ≃p↓ ↑ S}.

(a) Prove that :
i. The set D(p) is a polyhedron.
ii. The polyhedra D(p) as p ↑ S varies form a tessellation of Hn. This is called the

Voronoi tessellation of S.
Let ! < Isom(Hn). A fundamental domain for ! is a polyhedron D in H

n such that the
translates g(D) as g ↑ ! varies form a tessellation of Hn.
Let M = H

n
/! be a hyperbolic manifold and D a fundamental domain for !.

(a) Prove that the projection ϖ : Hn ⇐ M restricts to a surjective map D ⇐ M that
sends int(D) isometrically onto an open dense subset of M . Deduce that Vol(D) =
Vol(M).

(b) A Dirichlet domain for ! centered at p ↑ H
n is

Dp = {x ↑ H
n | d(x, p) ↘ d(x, ςp) ≃ς ↑ !}.

Prove that Dp is a fundamental domain, and that M = H
n
/! is compact if and only

if Dp is compact.

5) Create other models for random 3-manifolds.
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