

Random complex curves
Exercices

Curvature reminder. Let M be a submanifold of dimension m of the Riemannian n -dimensional manifold (N, g) . Let

$$\begin{aligned}\sigma : T_x M \times T_x M &\rightarrow N_x M \\ (X, Y) &\mapsto (\nabla_X Y)^\perp\end{aligned}$$

where $NM \subset TN$ denotes the normal bundle of M in N , and ∇ the Levi–Civita connection associated to g . Recall that σ is symmetric. Then for any $x \in M$, (Gauss's equations [3, Theorem 3.6.2])

$$\begin{aligned}\forall X, Y, Z, W \in T_x M, \quad \langle R^M(X, Y)Z, W \rangle &= \langle R^N(X, Y)Z, W \rangle + \\ &\quad \langle \sigma(Y, Z), \sigma(X, W) \rangle - \langle \sigma(X, Z), \sigma(Y, W) \rangle,\end{aligned}$$

where R^M and R^N denote the Riemannian curvature tensor for $(M, g|_M)$ and (N, g) respectively. Recall that the sectional curvature along the plane $P \subset T_x M$ is

$$K(P) = \langle R^M(X, Y)Y, X \rangle,$$

where X, Y is an ONB of P .

Exercice 1

1. Let $n \geq 1$ be an integer and $f : \mathbb{R}^n \rightarrow \mathbb{R}$ be a smooth function, vanishing transversely at 0, that is

$$\forall x \in \mathbb{R}^n, \quad f(x) = 0 \Rightarrow df(x) \neq 0.$$

Let $Z(f) := \{f = 0\}$. Express the Riemannian curvature $R(X, Y, Z, W)$ of $(Z(f), g_{0|Z(f)})$ in terms of ∇f and $d\nabla f$.

From now on, under the hypotheses of the curvature reminder, assume that (N, g, J) is a Kähler metric, that is J is a complex structure such that $\nabla J = 0$. Assume also that $M \subset N$ is a complex submanifold.

2. [4, Proposition 9.2] For any complex line $P \subset T_x M$, express $K(P)$ in terms of $K^N(P)$ and $\|\sigma(X, X)\|^2$. Compare both.
3. Assume that $N = \mathbb{C}^2$. Show that the complex curve N has a non-positive curvature.

Exercice 2 Prove that for any integer $d \geq 1$,

$$N_d := \dim_{\mathbb{C}} \mathbb{C}_d^{hom}[Z_0, \dots, Z_n] = \binom{n+d}{d}.$$

Hint : to choose a monomial is to choose a sequence of d stars $*$ and n bars $|$, where a $*$ is a cumulating exponent and a bar is separating two consecutive variables. For instance, $* * || *$ denotes $Z_0^2 Z_2$.

In the sequel, we define the following Hermitian product on $\mathbb{C}_d^{hom}[Z_0, \dots, Z_n]$:

$$\langle P, Q \rangle_d = \frac{1}{(d+n)! \pi^{n+1}} \int_{\mathbb{C}^{n+1}} P(Z) \bar{Q}(Z) e^{-\|Z\|^2} |dZ|^2,$$

with

$$|dZ|^2 = \prod_{k=0}^n dX_k \otimes dY_k,$$

where $Z_k = X_k + iY_k$.

Exercice 3 [2, Lemma 3.1.1] Show that the family

$$\left(\sqrt{\frac{n+d}{i_0! \dots i_n!}} Z_0^{i_0} \dots Z_n^{i_n} \right)_{i_0+\dots+i_n=d}$$

is an ONB of $(\mathbb{C}_d^{hom}[Z_0, \dots, Z_n], \langle \cdot, \cdot \rangle_d)$.

Exercice 4 [2, Lemma 3.1.1] Let $q \in \mathbb{C}[z_1, \dots, z_n]$ and for any $d \geq 1$. define

$$Q_d(Z) := Z_0^d q \left(\frac{Z_1}{Z_0} \sqrt{d}, \dots, \frac{Z_n}{Z_0} \sqrt{d} \right).$$

1. Check that Q_d is a degree d homogeneous polynomial. Describe briefly its vanishing locus in $\mathbb{C}P^n$ for large d .
2. Show that

$$\|Q_d\|_d^2 \sim_{d \rightarrow \infty} d^n \int_{\mathbb{C}^n} |q|^2 e^{-\|z\|^2} |dz|^2.$$

Exercice 5 [2, p. 39] Let

$$P = \sum_{i_0+\dots+i_n=d} a_{i_0 \dots i_n} \sqrt{\frac{n+d}{i_0! \dots i_n!}} X_0^{i_0} \dots X_n^{i_n}$$

be a random Fubini-Study complex polynomial (recall that $\Re a_I, \Im a_I$ are independent and follow the normal law $N(0, 1)$).

1. Show that the probability measure is invariant under the action of $U(n+1)$ on $\mathbb{C}_d^{hom}[Z_0, \dots, Z_n]$ by $P \mapsto P \circ T$.
2. For any $[Z] \in \mathbb{C}P^n$, For any $P \in \mathbb{C}_d^{hom}[Z_0, \dots, Z_n]$, let

$$|P([Z])|_d^2 = \frac{|P(Z)|^2}{\|Z\|^{2d}}.$$

show that

$$\mathbb{E} (|P([Z])|_d^2) \sim_{d \rightarrow \infty} d^n.$$

Hint : Compute at $[1 : 0 \dots : 0]$ and use the invariance of the measure.

Exercice 6 [1, Ex 5-23] Let $P \in \mathbb{C}_d^{hom}[Z_0, Z_1, Z_2]$ be a generic polynomial, and $C = Z(P)$ (C is smooth). The *flexes* of C are the points x of C where the contact between $T_x C$ and C is of order ≥ 3 . Let $\text{Hess } P$ be the Hessian matrix of P , that is

$$\text{Hess } P = \left(\frac{\partial^2 P}{\partial Z_i \partial Z_j} \right)_{0 \leq i, j \leq 2},$$

and $H = \det \text{Hess } P$. We want to prove that

$$x \text{ is a flex} \Leftrightarrow H(x) = 0.$$

1. Show that both terms of the latter equivalence are invariants under the action of $PGL_3(\mathbb{C})$. In particular, it is enough to prove it for $x = [1 : 0 : 0]$ and if $T_x C = \{Y = 0\}$. We will assume this in the sequel.
2. What is the degree of H ?
3. Let $f(x, y) = P(1, x, y)$ and $h(x, y) = H(1, x, y)$. Let also

$$g(x, y) = f_y^2 f_{xx} + f_x^2 f_{yy} - 2f_x f_y f_{xy}.$$

Show that

$$(f, h)(x, y) = 0 \Leftrightarrow (f, g)(x, y) = 0.$$

Hint : use the Euler formula to prove

$$\forall 0 \leq j \leq 2, (d-1)P_j = \sum_{i=0}^2 P_{ij}$$

and simplify the determinant.

4. Near $(0, 0)$, write

$$f(x, y) = y + ax^2 + bxy + cy^2 + dx^3 + \text{other terms.}$$

What is the condition that x is a flex ? that $g(x) = 0$? Conclude.

Références

- [1] William Fulton and Richard Weiss, *Algebraic curves : an introduction to algebraic geometry*, 1969.
- [2] Damien Gayet, *Topology of random algebraic and analytic hypersurfaces*, <https://www-fourier.univ-grenoble-alpes.fr/~gayetd/course-geo-random.pdf>, 2019.
- [3] Jürgen Jost, *Riemannian geometry and geometric analysis*, vol. 42005, Springer, 2008.
- [4] Shoshichi Kobayashi and Katsumi Nomizu, *Foundations of differential geometry, volume 2*, Intersciences Publishers, 1969.