

An introduction to mixing for Anosov representations

Exercises

Exercises are ranked by difficulty:

- (*) Guided exercises.
- (**) Less guidance.
- (***) Requires a good knowledge of Lie theory.

Exercise 1. The geodesic flow of \mathbb{H}^d (*)

Consider the bilinear form $\langle x, y \rangle = x_1 y_1 + \cdots + x_d y_d - x_{d+1} y_{d+1}$ on \mathbb{R}^{d+1} and the hyperboloid model $\mathbb{H}^d \subset \mathbb{R}^{d,1}$ defined as

$$\mathbb{H}^d = \left\{ x \in \mathbb{R}^{d+1} \mid \langle x, x \rangle = -1, x_{d+1} > 0 \right\},$$

with Riemannian metric g defined on the tangent spaces

$$T_x \mathbb{H}^d = \left\{ v \in \mathbb{R}^{d+1} \mid \langle x, v \rangle = 0 \right\}$$

by the formula $g_x(v, v') = \langle v, v' \rangle$.

1. Describe the unit tangent bundle $T^1 \mathbb{H}^d$ as a submanifold of $\mathbb{R}^{d+1} \times \mathbb{R}^{d+1}$.
2. For $(x, v) \in T^1 \mathbb{H}^d$, describe the tangent space $T_{(x,v)} \mathbb{H}^d \subset \mathbb{R}^{d+1} \times \mathbb{R}^{d+1}$.
3. Check that the geodesic flow $\varphi_{\mathbb{H}^d}^t : T^1 \mathbb{H}^d \rightarrow T^1 \mathbb{H}^d$ is given by:

$$\varphi_{\mathbb{H}^d}^t(x, v) = \left(\cosh t x + \sinh t v, \sinh t x + \cosh t v \right).$$

4. Give an explicit formula for the geodesic vector field $\mathcal{Z} : T^1 \mathbb{H}^d \rightarrow T(T^1 \mathbb{H}^d)$ defined by

$$\mathcal{Z}(x, v) = \left. \frac{d}{dt} \right|_{t=0} \varphi_{\mathbb{H}^d}^t(x, v) \in T_{(x,v)}(T^1 \mathbb{H}^d).$$

5. For $(x, v) \in T^1 \mathbb{H}^d$, we set:

$$\begin{aligned} E_{(x,v)}^s &= \left\{ (y, -y) \in \mathbb{R}^{d+1} \times \mathbb{R}^{d+1} \mid \langle x, y \rangle = \langle v, y \rangle = 0 \right\} \\ E_{(x,v)}^u &= \left\{ (y, y) \in \mathbb{R}^{d+1} \times \mathbb{R}^{d+1} \mid \langle x, y \rangle = \langle v, y \rangle = 0 \right\} \end{aligned}$$

Check that $T_{(x,v)}(T^1 \mathbb{H}^d) = E_{(x,v)}^s \oplus E_{(x,v)}^u \oplus \mathbb{R} \mathcal{Z}(x, v)$, and that this splitting is invariant under the differential of the geodesic flow.

6. For $(x, v) \in T^1 \mathbb{H}^d$, consider the bilinear form $\tilde{g}_{(x, v)}$ on $T_{(x, v)} T^1 \mathbb{H}^d \subset \mathbb{R}^{d+1} \times \mathbb{R}^{d+1}$ defined by

$$\tilde{g}_{(x, v)}((y_x, y_v), (y'_x, y'_v)) = \langle y_x, y'_x \rangle + \langle y_v, y'_v \rangle + \langle y_x, v \rangle \langle y'_x, v \rangle.$$

Prove that this defines a Riemannian metric on $T^1 \mathbb{H}^d$ for which the action of $\text{Isom}(\mathbb{H}^d)$ is isometric.

7. Defining norms with the Riemannian metric \tilde{g} , compute the ratio

$$\frac{\left\| d\varphi_{\mathbb{H}^d}^t|_{(x, v)}(y_x, y_v) \right\|_{\varphi^t(x, v)}}{\|(y_x, y_v)\|_{(x, v)}}$$

for $(y_x, y_v) \in E_{(x, v)}^s$ and $(y_x, y_v) \in E_{(x, v)}^u$.

8. Prove that the geodesic flow of a closed hyperbolic manifold is Anosov.

Exercise 2. Ergodicity and mixing of the geodesic flow (**)

1. Read about *Hopf's argument* to prove that the geodesic flow of a closed hyperbolic manifold is ergodic with respect to the Riemannian volume measure.
2. Read about the proof of mixing of the geodesic flow of a closed hyperbolic surface using Howe-Moore's Theorem for unitary representations.

Exercise 3. The geodesic flow of $\mathbb{H}_{\mathbb{R}}^2$ and the flow $\varphi_{\mathbb{L}}^t$ (*)

1. Prove that there is an $\text{SL}_2(\mathbb{R})$ -equivariant diffeomorphism between the unit tangent bundle $T^1 \mathbb{H}_{\mathbb{R}}^2$ and the space

$$\mathbb{L} = \{[v : \alpha] \in \mathbb{P}(\mathbb{R}^2 \oplus (\mathbb{R}^2)^*) \mid \alpha(v) > 0\}$$

that conjugates the flow

$$\varphi_{\mathbb{L}}^t([v : \alpha]) = [e^t v : e^{-t} \alpha]$$

to a constant speed reparametrisation of the geodesic flow.

2. Prove that for a projective Anosov representation $\rho : \Gamma \rightarrow \text{SL}_2(\mathbb{R})$, the domain

$$\widehat{\mathbb{M}}_{\rho} = \{[v : \alpha] \in \mathbb{L} \mid \forall \eta \in \partial_{\infty} \Gamma, [v] \pitchfork \xi^*(\eta) \text{ or } \xi(\eta) \pitchfork [\alpha]\}$$

is equal to the whole space \mathbb{L} .

Exercise 4. Proximality (*)

Prove the following claims:

1. If $g \in \text{SL}(V)$ is proximal, the attracting fixed point $\ell^+(g) \in \mathbb{P}(V)$ of g and the repelling fixed point $H^-(g) \in \mathbb{P}(V^*)$ are transverse.
2. If $g \in \text{SL}(V)$ is proximal and so is g^{-1} , then $\ell^+(g^{-1}) \subset H^-(g)$.

Exercise 5. Convex cocompact subgroups of $\text{Isom}(\mathbb{H}_{\mathbb{R}}^d)$ (*)

1. State/explain/prove the results mentioned in the lectures for hyperbolic groups acting on their Gromov boundary in the setting of a convex cocompact subgroup $\Gamma < \text{Isom}(\mathbb{H}^d)$ acting on its limit set $\Lambda_{\Gamma} \subset \partial_{\infty} \mathbb{H}^d$.
2. Prove that the non wandering set $\text{NW}(\varphi_{\Gamma}^t)$ of the geodesic flow $\varphi_{\Gamma}^t : M_{\Gamma} \rightarrow M_{\Gamma}$ (where $M_{\Gamma} = \Gamma \backslash T^1 \mathbb{H}^d$) has the following description:

$$\text{NW}(\varphi_{\Gamma}^t) = \Gamma \backslash \left\{ (x, v) \in T^1 \mathbb{H}^d \mid \lim_{t \rightarrow \pm\infty} \varphi_{\mathbb{H}^d}^t(x, v) \in \Lambda_{\Gamma} \right\}.$$

3. Using the description of the geodesic flow in Exercise 1, prove that the geodesic flow of a convex cocompact subgroup of $\text{Isom}(\mathbb{H}^d)$ is Axiom A.

Exercise 6. Real hyperbolic groups (**)

Let $\Gamma < \text{Isom}_{\circ}(\mathbb{H}_{\mathbb{R}}^d)$ be a convex cocompact subgroup, and consider the inclusion $\iota : \text{Isom}_{\circ}(\mathbb{H}_{\mathbb{R}}^d) = \text{SO}_{\circ}(d, 1) \hookrightarrow \text{SL}_{d+1}(\mathbb{R})$. Using your favorite definition of Anosov representations, prove that $\iota : \Gamma \rightarrow \text{SL}_{d+1}(\mathbb{R})$ is projective Anosov.

Exercise 7. The discontinuity domain for Benoist representations (***)

Consider a hyperbolic group Γ and a *Benoist representation* $\rho \in \text{Hom}(\Gamma, \text{SL}(V))$. This means that ρ is projective Anosov, and preserves a properly convex domain $\Omega_{\rho} \subset \mathbb{P}(V)$ with \mathcal{C}^1 boundary on which Γ acts properly discontinuously and cocompactly. In this case, the limit map $\xi : \partial_{\infty} \Gamma \rightarrow \mathbb{P}(V)$ is a homeomorphism onto $\partial \Omega_{\rho}$, and for every $\eta \in \partial_{\infty} \Gamma$ we have the correspondence

$$T_{\xi(\eta)} \partial \Omega_{\rho} = \xi^*(\eta).$$

1. Explain the identification between the tangent space $T_{\eta} \partial \Omega_{\rho}$ and an element of $\mathbb{P}(V^*)$.
2. Describe the subsets $\widehat{K}_{\rho} \subset \widehat{M}_{\rho} \subset \mathbb{L}$. Draw a picture in an affine chart of $\mathbb{P}(V)$ when $\dim V = 3$.

Exercise 8. The flow $\varphi_{\mathbb{L}}^t$ is not a geodesic flow (**)

1. Prove that the only $\text{SL}(V)$ -equivariant vector subbundles of $T\mathbb{L}$ are $E^0, E^s, E^u, E^s \oplus E^0, E^u \oplus E^0$ and $E^s \oplus E^u$.
2. Why can this be interpreted as stating the the flow $\varphi_{\mathbb{L}}^t : \mathbb{L} \rightarrow \mathbb{L}$ is not the geodesic flow on the unit tangent bundle of some homogeneous $\text{SL}(V)$ -space?

Exercise 9. Complex hyperbolic groups (***)

Let $\Gamma < \text{Isom}(\mathbb{H}_{\mathbb{C}}^d)$ be a convex cocompact subgroup, and consider the adjoint representation $\text{Ad} : \text{Isom}(\mathbb{H}_{\mathbb{C}}^d) = \text{SU}(d, 1) \rightarrow \text{SL}(\mathfrak{su}(d, 1)) = \text{SL}_{d^2+2d}(\mathbb{R})$. Using your favorite definition of Anosov representations, prove that $\text{Ad} : \Gamma \rightarrow \text{SL}_{d^2+2d}(\mathbb{R})$ is projective Anosov. What about the real hyperbolic and quaternionic hyperbolic cases?