Théorème de Sylav

O) Terminology: l'action de G $\mathbb{Q} \times \mathbb{C}$ est fidèle si $g \times \mathbb{C} \times \mathbb{C}$ partaut $\times \mathbb{C} \times \mathbb{C}$, alors g = e.

proposition: $G \cap X$ fidels \iff Morphisms d'action $G \rightarrow \text{Bij}(X)$ est injectif.

ex: also actions à dirite et à gaucle de 60,6 sont fidèles.

1 quelques groupes et saus groupes importants
(a) le groupe $O_m = Bij \sqrt{1, ..., m}$

prop: tout groupe d'ordre n'est isomorphe à un sous-groupe de Sn

a d'action à gauche de G G donne un morphisme $G \to Bij(G)$, $g \mapsto \varphi_g$ ai $\varphi_g(R) = gR$ l'application φ est injective! Si $\varphi_g = Id$, alors $g = g \cdot e = \varphi_g(e) = e$.

be groupe GL(m, K) pour un corpo K de cordinal R

proposition: $\#GL_n(\mathbb{K}) = \mathcal{R}^{n-1}(\mathcal{R}^n - 1) \#GL_{n-1}(\mathbb{K})$

Application de la formule des classes, rue en exercice ▶
proposition: il existe une injection de on dans GLn(1K)

Corollaire: Pour tout Graupe fini G d'ordre n, pour touit corps IK, il existe une injection de G dans GL(n, IK)

* Pour tout corps, IK un groupe d'ordre n eot un sous groupe de GLn(IK) >>

© be groupe $B_n(|K) = \begin{pmatrix} a \\ 0 \end{pmatrix}_a < GL_n(|K)$

■ Groupe: $g(e_1)=e_1$; $g(e_j)=e_j+u_j$ avec $u_j \in \mathcal{P}_{j-1}=\langle e_1,...,e_{j-1}\rangle$ ⇒ Sig, R ∈ P_j alors $g: R \in \mathcal{B}_h(\mathbb{F}_p)$

Inverse $g(\bar{g}'(e_i)) = e_i$ j donc $\bar{g}'(e_i) \in P_i$ $e_i = \alpha \cdot e_i + u_i \Rightarrow \alpha \cdot e_i + g(u_i) + u_i = e_i \Rightarrow \alpha = 4$ $e_i = \alpha \cdot e_i + u_i \Rightarrow \alpha \cdot e_i + g(u_i) + u_i = e_i \Rightarrow \alpha = 4$

2. Saw groupes de Sylow

Sait G-un groupe d'ordre m, Sait p un nombre promier et supposons $m=p^{\alpha}q$ avec q premier cruec pUn p groupe de G est un saus groupe d'ordre p^m avec p premier

Un p-groupe de Sylow est un saus groupe de G d'ordre p^{α}

Prop Soit Sun p-groupe agricant sur X alors

#X = n [p] ou n = nombre de pt fixes de
l'action de S (i e orbite reduite à un proint) sur P

example:

 $G = GLn(F_{pr})$ les matrices triangulaires superieures forment un p groupes de Sylow

$GL_n(F) = k^{n-1}(k^m) \# GL_{n-1}(k)$; Demonstrons occi par récurrence

supposons $\#GL_n$ $(F) = k^{\frac{m(n-1)}{2}} g_n$ arec g_n premier arec pAlone $\#GL_{n+1}(F) = k^{\frac{m+1}{2} + (\frac{m+n}{2})} g_n$ (k^{n+1})

Comme $n+(\frac{n(n-1)}{2})=\frac{1}{2}(n(n+1))$ et $(k^{n+1})=1$ [p], le resultat est démontré par recursonce. Mountenant $\#B_n(\mp)=k^{n(n-1)}$. le résultat suit \blacksquare

Ramarque: si Hest un p-groupe, ou un p-groupe de Sylow tout conjugué de Hest un p-groupe (de Sylow)

Si a∈6, la conjugaison u +> auà est une bijection ►
3. le Théorème de Sylow

Theorème: & Gest d'ordre pag avec p premier et q premier avec p alors

- (i) Gontient un p-groupe de sybw
- (ii) tout les p-groupes de Eylow sont conjugués
- (iii) tout p-groups est inclus dans un groups de Sylow
- (iv) le nombre mp de p-sylon est = 1[p] et divise q

Corollaire de (ii): si un p-sylour est diotingué c'est l'unique p sylour. (*)
Grummence par

- Soit F un groupe ayant S comme p groupe de Sy low, S at G < F, alors le existe α tel que G $\cap \alpha S \overline{\alpha}'$ est un p-groupe de Sy low de G
- Gn ameridaire X = F/S, par construction si $\#F = p^{\alpha}q$ area q premier area p alors #X = q; Gn fait agir G à gaudhe &x = F/S

Si Stab(α S) n'est par un p-grayer de Sylow alors $P \mid \#G(\alpha S)$

· Naw powers raisonner par contradiction: si

G n xSiz' ni est jumais un p-Sylon, alors p divise le cardunal de tauts les orbits et donc $p \mid \# \times$ et la ontradiction.

Demonstration de $G \hookrightarrow GLn(\mathcal{H}_p)$ qui possède un p-sylow.

Demonstration de (ii) et (iii) Sait $H \angle G$ un p-groupe; Sait S un p-sylow de G on sait qui il existe ∞ tel que $H \cap \infty S \bar{\infty}'$ est un p-sylow de H, or G and G are G are G and G are G and G are G are G are G and G are G are G and G are G are G are G and G are G are G and G are G are G are G and G are G are G are G are G and G are G are G are G and G are G and G are G are G are G and G are G and G are G are

Enparticulier si S'est un autre p-sylow $S \subset \infty S \widehat{\alpha}'$ et comme S' et $\infty S \widehat{\alpha}'$ ont $S \cap \alpha'$ and anal, ils sont egave

Demonstration de (iv)

Sait $X = \{p - \text{Sylow}\}$; alors on fault agir G par Conjugaison sur X. On observe tout d'abord

Si $S_0 \in X$, Alons $S_0 \triangleleft$ Stab(S_0). En partiaulier

(i) So est l'unique p-Sylow de Stab(So) eis $S_0 < Stab(S) \cap S_0 \Rightarrow S = S_0$

A pour tout or de So, on a $xS_0\bar{x}'=S_0$; donc $x\in Stab(S_0)$.

Par ailleus, par definition pour tout y de $Stab(S_0)$, $yS_0\bar{y}'=S_0$ donc S_0A $Stab(S_0)$. (i) est alors une consequence du conollante (*).

Si maintenant S_0 Z $Stab(S_0)$. Alors S_0 est un p. Sylow de $Stab(S_0)$ donc par (i) $S=S_0$

Comme $S_0 < 8 tab(S_0)$, # $S tab(S_0) = q'p^{\alpha}$. De plus, comme tous les p. Sylow sont conjugués . # $X = \#G/_{\#} S tab(S_0) =: m_p$ donc $m_p q' = q : m_p$ divise q

Gn fait agir $S_{\rm o} \times$ par anjugaison, le stabilisateur de S par cotte action est $Stab(S) \cap S_{\rm o}$ Gn rient de monther que \times a une seule orbite triviale donc $\# \times \equiv 1$ [p]