Feuille d'exercices nº 1

Exercice 1

Donner un exemple de groupe non abélien.

Exercice 2

Donner un exemple de groupe contenant exactement 3 éléments.

Exercice 3

Quelle est la loi naturelle qui permet de munir l'ensemble \mathbb{C}^* des complexes non nuls d'une structure de groupe? Quel est l'ordre de \mathbf{i} pour cette loi? Quel est l'ordre de 2?

Exercice 4

Si R est un rectangle (non carré), donner la liste des isométries du plan préservant ce rectangle. Cet ensemble est-il un groupe?

Exercice 5

Donner un exemple de groupe d'ordre fini, abélien et non cyclique.

Exercice 6

Soit $\sigma \in \mathcal{S}_8$ le produit de cycles suivant

$$\sigma = (1\ 2\ 3\ 4\ 5\ 6) \circ (7\ 5\ 3\ 1) \circ (8\ 2\ 3)$$

Calculer la décompositon canonique de σ .

Exercice 7

Soit T un triangle équilatéral de sommets A, B et C et soit $Isom(T) = \{id, s_A, s_B, s_C, r_{\frac{2\pi}{3}}, r_{-\frac{2\pi}{3}}\}$ le groupe des isométries du plan préservant ce triangle.

Expliciter un isomorphisme du groupe Isom(T) vers le groupe symétrique S_3 .

Exercice 8

Soit T un triangle équilatéral de sommets A, B et C et soit $Isom(T) = \{id, s_A, s_B, s_C, r_{\frac{2\pi}{3}}, r_{-\frac{2\pi}{3}}\}$ le groupe des isométries du plan préservant ce triangle.

Si $H = \{id, s_A\}$, donner un exemple d'élément $g \in Isom(T)$ tel que les classes à gauche et à droite de g soient distinctes, *i.e.* $gH \neq Hg$.

Exercice 9

Calculer l'ordre de la permutation $\sigma \in \mathcal{S}_{10}$ suivante

$$\sigma = (1\ 2\ 3\ 4\ 5) \circ (6\ 7\ 8) \circ (9\ 10)$$

Exercice 10

Donner une permutation $\sigma \in \mathcal{S}_6$ telle que $\sigma \circ (1\ 3\ 5) \circ \sigma^{-1} = (2\ 4\ 6)$.

Exercice 11

Donner la liste des classes de conjugaison avec leur cardinal pour le groupe alterné A_5 .

Donner un exemple de deux groupes d'ordre 8 non abéliens et non isomorphes.

Exercice 13

Parmi les ensembles suivants lesquels sont des groupes pour l'opération donnée?

- 1. \mathbb{Q}^* , +;
- $2. \mathbb{Q}^*, \cdot;$
- 3. $\mathbb{Z}_{n\mathbb{Z}}, \cdot;$
- 4. $\mathbb{Z}_{n\mathbb{Z}} \setminus \{\overline{0}\}, \cdot;$
- 5. $\{M \in \mathcal{M}_{n,n}(\mathbb{R}) \mid \det M = 1\}, \cdot;$
- 6. $\{M \in M_{n,n}(\mathbb{R}) \mid \det M = 0\}, +.$

Exercice 14

Parmi les groupes suivants lesquels sont abéliens?

- 1. $\mathbb{R}[x]_{\leq 8}$, + (les polynômes de degré $d \leq 8$ dans une variable x à coefficients réels);
- 2. $GL(n, \mathbb{R})$, · (les matrices inversibles de taille $n \times n$ à coefficients réels);
- 3. \mathcal{S}_4 , \circ .

Exercice 15

Lesquels des ensembles A sont des sous-groupes du groupe G donné?

- 1. $A = \mathbb{R}[x]_8$, + (les polynômes de degré 8) et $G = \mathbb{R}[x]_{\leq 8}$, +;
- 2. $A = 100\mathbb{Z} \text{ et } G = 10\mathbb{Z};$
- 3. $A = \mathbb{Z}/_{10\mathbb{Z}}$ et $G = \mathbb{Z}/_{100\mathbb{Z}}$;
- 4. $A = \mathbb{Z}/_{10\mathbb{Z}}$ et $G = \mathbb{Z}$.

Exercice 16

Quels sont les éléments de $\left(\mathbb{Z}/_{8\mathbb{Z}}\right)^*$?

- 1. $\overline{0}$, $\overline{1}$, $\overline{2}$, $\overline{3}$, $\overline{4}$, $\overline{5}$, $\overline{6}$, $\overline{7}$;
- 2. $\overline{1}$, $\overline{2}$, $\overline{3}$, $\overline{4}$, $\overline{5}$, $\overline{6}$, $\overline{7}$;
- 3. $\overline{1}$, $\overline{3}$, $\overline{5}$, $\overline{7}$;
- 4. $\overline{3}$, $\overline{5}$, $\overline{7}$, $\overline{9}$.

Exercice 17

Pour quelles opérations parmi l'addition + et la multiplication · l'ensemble suivant est-il un groupe?

- $1. \mathbb{Z}$:
- $2. \mathbb{C};$
- $3. \mathbb{C}^*;$
- $4. \ \mathbb{Z}_{8\mathbb{Z}};$
- 5. $\left(\mathbb{Z}_{8\mathbb{Z}}\right)^*$;
- 6. $\mathbb{Z}_{7\mathbb{Z}}$;
- 7. $\left(\mathbb{Z}/_{7\mathbb{Z}}\right)^*$;
- 8. $\{1, -1\}$.

Exercice 18

- 1. Quel est l'ordre de 0 dans \mathbb{Z} ?
- 2. Quel est l'ordre de 1 dans \mathbb{Z} ?
- 3. Quel est l'ordre de 2 dans \mathbb{Z} ?

- 4. Quel est l'ordre de B dans $\mathcal{P}(A)$, Δ , avec A, $B \neq \emptyset$?
- 5. Quel est l'ordre de 1 dans $\mathbb{Z}_{/0\mathbb{Z}}$?
- 6. Quel est l'ordre de 1 dans $\left(\mathbb{Z}/_{9\mathbb{Z}}\right)^*$?
- 7. Quel est l'ordre de 4 dans $\mathbb{Z}_{9\mathbb{Z}}$?
- 8. Quel est l'ordre de 4 dans $\left(\mathbb{Z}/_{9\mathbb{Z}}\right)^*$?

Compléter pour obtenir un énoncé correct : Soit x un élément d'un groupe fini G. Si $x^k = e_G$ pour un certain $k \in \mathbb{N}^*$, alors

- 1. k divise l'ordre de G;
- 2. l'ordre de x divise k;
- 3. k divise l'ordre de x.

Exercice 20

Compléter pour obtenir un énoncé correct : Si G est le groupe $\mathbb{Z}/_{4\mathbb{Z}} \times \mathbb{Z}/_{6\mathbb{Z}}$ et $g = ([1]_4, [4]_6)$, alors

- 1. $\langle g \rangle = \{([1]_4, [4]_6), ([2]_4, [2]_6), ([3]_4, [0]_6), ([0]_4, [4]_6)\};$
- $2. \ \langle g \rangle = \{ ([1]_4, \, [4]_6), \, ([2]_4, \, [2]_6), \, ([3]_4, \, [0]_6), \, ([0]_4, \, [4]_6), \, ([1]_4, \, [2]_6), \, ([2]_4, \, [0]_6), \, ([3]_4, \, [4]_6), \, ([0]_4, \, [2]_6), \, ([1]_4, \, [0]_6), \, ([2]_4, \, [4]_6), \, ([3]_4, \, [2]_6), \, ([0]_4, \, [0]_6) \} \, ;$
- 3. $\langle g \rangle = G$.

Exercice 21

Quelles sont les implications correctes?

- 1. Si G est un groupe abélien, alors G est cyclique;
- 2. Si G est un groupe cyclique, alors G est abélien;
- 3. Si G est d'ordre p, avec p un nombre premier, alors G est cyclique;
- 4. Si G est d'ordre fini et cyclique, alors G est d'ordre premier.

Exercice 22

La décomposition de la permutation (1 2 3 4)(2 3)(1 4 3) de S_4 en cycles disjoints est :

- 1. (3 2 4);
- 2. id;
- 3. (2 4 3)(1);
- 4. (1)(2)(3)(4).

Exercice 23

L'ordre de l'élément $(1\ 3)(2\ 4\ 5)(6\ 9\ 8\ 7)$ dans \mathcal{S}_{11} est

- 1. 9;
- 2. 11;
- 3. 12;
- 4. 24.

Exercice 24

Soit $D_8 = \{id, r, r^2, r^3, s, sr, sr^2, sr^3\}$ le groupe diédral d'ordre 8. Pour rappel, dans ce groupe on a $r^4 = id$, $s^2 = id$ et $r^k s = sr^{-k}$, pour $k \in \mathbb{Z}$. Parmi les énoncés suivants lesquels sont vrais?

- 1. Dans D₈ il y a 4 réflexions et 4 rotations;
- 2. Dans D₈ il y a exactement 4 éléments d'ordre 2;
- 3. Dans D_8 il y a exactement 4 éléments d'ordre 4.

Soit G le groupe des isométries qui préservent un polygône régulier \mathcal{P} à 5 côtés. Parmi les énoncés suivants lesquels sont corrects?

- 1. $G = D_{10}$;
- 2. $G = D_5$;
- 3. Si $x \in G$ est d'ordre 2, alors x préserve exactement un sommet de \mathcal{P} ;
- 4. Si $x \in G$ est d'ordre 2, alors x préserve exactement deux sommets de \mathcal{P} ;
- 5. Dans G, il y a des éléments d'ordre 1, 2 et 5;
- 6. Dans G, il y a des éléments d'ordre 1, 2, 5 et 10.

Exercice 26

Soit $(G, *) = (\mathbb{Z}, +)$, $H = 4\mathbb{Z}$ et g = 3. Alors g * H est égal à :

- 1. $3 + 4\mathbb{Z}$
- $2.12\mathbb{Z}$;
- $3. \{\ldots, -1, 3, 7, 11, \ldots\};$
- 4. -5 * H.

Exercice 27

Soient G un groupe et H un sous-groupe distingué de G. Parmi les énoncés suivants lesquels sont corrects?

- 1. $\forall g \in G, \forall h \in H$, on a $ghg^{-1} \in H$;
- 2. $\forall g \in G, \forall h \in H, \text{ on a } g^{-1}hg \in H;$
- 3. $\forall g \in G, \forall h \in H$, on a $hgh^{-1} \in H$;
- 4. $\forall g \in G, \forall h \in H, \text{ on a } h^{-1}gh \in H.$

Exercice 28

Soient G un groupe et H un sous-groupe propre de G. Parmi les énoncés suivants lesquels sont corrects?

- 1. En général, il y a exactement une classe à gauche suivant H qui est un sous-groupe de G.
- 2. Si H est distingué dans G, alors les classes à gauche dans G suivant H sont des sous-groupes de G;
- 3. En général, il y a autant de classes à gauche que de classes à droite;
- 4. Si H est distingué dans G, alors il y a autant de classes à gauche que de classes à droite;
- 5. Soit $g \in G$. Si H est distingué dans G, alors gH = Hg.

Exercice 29

Soit G un groupe. Parmi les énoncés suivants lesquels sont corrects?

- 1. Si G n'est pas abélien, alors G a au moins un sous-groupe propre (i.e. distinct de $\{e_G\}$ et de G) qui n'est pas distingué dans G;
- 2. Si G est abélien, alors tous les sous-groupes de G sont distingués dans G;
- 3. Si G est abélien et H est un sous-groupe propre de G, alors $^{G}\!\!/_{\!H}$ est abélien ;
- 4. Si G n'est pas abélien et H est un sous-groupe distingué propre de G, alors $^{G}\!\!/_{H}$ n'est pas abélien ;
- 5. Si G est cyclique et H est un sous-groupe de G, alors G_H est cyclique;
- 6. Si G n'est pas cyclique et H est un sous-groupe de G, alors $^{G}\!\!/_{H}$ n'est pas cyclique.

Exercice 30

Soient G un groupe et H un sous-groupe de G. Parmi les énoncés suivants lesquels sont corrects?

- 1. Si l'ordre de G est infini, alors le nombre de classes à gauche dans G suivant H est infini;
- 2. Si l'ordre de G est infini et l'ordre de H est infini, alors le nombre de classes à gauche dans G suivant H est infini :
- 3. Si l'ordre de G est infini et l'ordre de H est fini, alors le nombre de classes à gauche dans G suivant H est infini ;

- 4. Si l'ordre de G est fini, alors le nombre de classes à gauche dans G suivant H divise l'ordre de H;
- 5. Si l'ordre de G est fini, alors le nombre de classes à gauche dans G suivant H divise l'ordre de G.

Pour l'action \cdot donnée du groupe G sur l'ensemble A, déterminer :

- 1. l'élément $\overline{1} \cdot \overline{3}$ si · est l'action de $G = \mathbb{Z}/_{6\mathbb{Z}}$ sur lui-même (A = G) par translation;
- 2. l'élément $\overline{5} \cdot \overline{1}$ si \cdot est l'action de $G = \left(\mathbb{Z} /_{6\mathbb{Z}} \right)^*$ sur lui-même (A = G) par translation ;
- 3. l'élément $(1\ 2)\cdot 2$ si \cdot est l'action triviale de $G = S_3$ sur $A = \{1, 2, 3, 4\}$;
- 4. l'élément $(1\ 2)\cdot(3\ 4)$ si \cdot est l'action par conjugaison de $G=\mathcal{S}_4$ sur lui-même (A=G).

Exercice 32

Soit · une action du groupe G sur l'ensemble A. Soient $g \in G$ et $a \in A$.

- 1. L'élément $g \cdot a$ à quel ensemble appartient-il?
- 2. Si $g = e_G$, alors que vaut $g \cdot a$?
- 3. Est-ce que l'orbite de a est un sous-ensemble de A ou de G?
- 4. Est-ce que le stabilisateur de a est un sous-ensemble de A ou de G?
- 5. De quel ensemble est-ce que le noyau de l'action est un sous-groupe?

Exercice 33

Soit · une action du groupe G sur l'ensemble A. Soient $g \in G$ et $a \in A$. Les assertions suivantes sont-elles vraies ou fausses?

- 1. Si $g \cdot a = b$, alors $g = b \cdot a^{-1}$;
- 2. Si $g \cdot a = b$, alors $a = g^{-1} \cdot b$;
- 3. L'orbite de a est un groupe;
- 4. Le stabilisateur de g est un groupe;
- 5. Si le noyau de l'action est $\{e_{G}\}$, alors l'action est fidèle;
- 6. L'action est transitive si et seulement s'il n'y a qu'une seule orbite;
- 7. Le stabilisateur de g est un sous-groupe distingué de G.

Exercice 34

Soit G un groupe. Soient a, b deux éléments de G d'ordre fini. Le groupe engendré par a et b est-il fini?

Exercice 35

Dans le lemme chinois expliciter rapidement comment on construit l'isomorphisme.

Exercice 36

Donner un exemple de groupe fini simple.