M1Geo Diff 2018-2019

Exercice 1 –Soit R > r > 0, on considère

$$W := \{(x, y, z) \mid \left(\sqrt{x^2 + y^2} - R\right)^2 + z^2 = r^2\}$$

- (1) Montrer que V est une sous-variété de \mathbb{R}^3 et la dessiner.
- (2) Montrez que V est compact
- (3) Quels sont les points critiques et extrema de la fonction $g(x, y, z) = x \operatorname{sur} V$
- (4) (plus dur) Montrez que V est difféomorphe à $S^1 \times S^1$.

Exercice 2 –Soit $C = \{(x, y, z) \mid x^2 + y^2 - z^2 = 0, z > 0\}.$

- (1) Montrez que C est une sous-variété, et dessinez la,
- (2) Montrez que C est difféomorphe à $\mathbf{R}^2 \setminus \{(0,0)\}$.

Exercice 3 –Soit V une sous-variété de \mathbb{R}^n . On suppose que $0 \in V$ et $\mathsf{T}_0 V =$ $\mathbf{R}^k \times \{0\}$. Soit π la projection de \mathbf{R}^n sur \mathbf{R}^k .

- (1) calculez $T_0\pi$.
- (2) Montrez que π est un difféoméorphisme local
- (3) Montrez que V est localement un graphe au voisinage de 0

Montrez en général qu'une sous-variété W est au voisinage de tout point x un graphe au-dessus de T_xW .

Exercice 4 -Rappel :Soit E un espace euclidien de dmension n. Un projecteur orthogonal est un endomorphisme p de E tel que $p = p^*$ et $p^2 = p$. Un tel projecteur est caractérisé par son image et $\dim(Im(p)) = trace(p)$. Une fois choisi une base orthogonale de E, la matrice A d'un projecteur orthogonal est symétrique et verifie verifie $A^2 = A$ On considère dans cet exercice l'espace vectoriel S des endomorphismes symétriques, et l'application $\phi: S \to S$ donnée par $\phi(A) = A^2 - A$. on rappelle que $\dim(S) = n(n+1)/2$.

- (1) Donnez l'expression de $D_B\phi(A)$
- (2) Si P est un projecteur de trace p, donnez le rang de ϕ en P en fonction de
- (3) Montrez que l'ensemble des projecteurs orthogonaux de trace p est une sousvariété et donnez sa dimension.

Exercice 5 -

- (1) Soit $E:=\{(x,y)\in\mathbb{R}^2\mid 4y^2+9x^2=1\}$ Quelle est la nature de l'ensemble E ? Dessiner E.
- (2) Soit $q(x,y) = 4y^2 3x^2$. Montrez que q admet un minimum et un maximum sur E.
- (3) Trouvez les maxima et minima de q sur E.

Exercice 6 – Cherchez les minima et maxima de la fonction f sur l'ensemble A dans les cas suivants

- (1) f(x,y,z) = x y + z, $A = \{(x,y,z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 = 2\}$. (2) $f(x,y,) = x^4 + y^4 x^2 y^2 + 1$, $A = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}$. (3) $f(x,y) = \sin(xy)$, $A = \{(x,y) \in \mathbb{R}^2 \mid x^2 + 2y^2 = 1\}$. (4) f(x,y,z) = x + y + z, $A = \{(x,y,z) \in \mathbb{R}^3 \mid x^2 y^2 = 1, 2x + z = 1\}$.

Exercice 7 - Voici des exercices d'origine géométriques

(1) Montrez que le volume du plus grand parrallélipippède rectangle qui puisse être inscrit dans l'ellipsoïde d'équation

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1,$$

est $8abc/\sqrt{3}$.

- (2) trouvez la distance minimale entre la courbe $y = x^2$ et la droite x y = 2.
- (3) Trouvez le points les plus éloignés et les plus proches du point (0,0,2) sur la sphère $x^2 + (y-1)^2 + z^2 = 1$.
- (4) Trouvez les points les plus proches et les plus éloignés de l'origine sur la courbe d'équation $x^6 + y^6 = 1$.

Exercice 8 –Un récipient cylindrique doit avoir un volume d'un litre, quel doit être sa forme (hauteur, rayon) pour minimiser la matière utilisée ?

Exercice 9 – Le but de l'exercice est de trouver le minimum du produit des distances aux côtés d'un point M intérieur au triangle. On désigne par a, b, c les longueurs des côtés du triangle A, B et C et S son aire. pour un point M, on note u, v, w les aires des triangles MBC, MCA et MAB. On a bien sûr u + v + w = S.

- (1) Montrez que le problème revient à maximiser la fonction $f(u, v, w) = \frac{8uvw}{abc}$ avec la contrainte u + v + w = S.
- (2) Montrez que ce maximum est atteint pour M le centre de gravité du triangle et qu'alors f prend la valeur $\frac{8S^3}{27abc}$

Exercice 10 –Soit C un cercle et G un point à l'intérieur du cercle. On cherche dans cet exercice les triangles d'aire maximale dont les sommets sont sur C et le centre de gravité est G.

- (1) En choisissant judicieusement des coordonnées. On suppose que $C = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}$ et que G = (0,a) avec $0 \le a < 1$ Montrez que l'ensemble W des $(u,v,w) \in C^3$ dont le centre de gravité est G forme un sous variété compacte de \mathbb{R}^6 . Quel est son espace tangent au point (u,v,w)?
- (2) Donnez l'expression de l'aire du triangle donné par (u, v, w) comme une fonction A de (u, v, w).
- (3) Trouvez les points critiques de A sur W. Quels sont les maximaux.