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Abstract. We give a short and independent proof of a theorem
of Danciger and Zhang: surface groups with Hitchin linear part
cannot act properly on the affine space. The proof is fundamentally
different and relies on ergodic methods.

1. Introduction. Our goal is to give an independent proof, based on
thermodynamical ideas, of a recent theorem by Danciger and Zhang
[7].

Theorem 1.1. Assume that a surface group acts on the affine space so that
its linear part is a Hitchin representation. Then its action on the affine space
is not proper.

The proof given in this article, which also gives results of inde-
pendent interest (Theorems 4.1 and 5.2) , uses ergodic theory and
hyperbolic dynamics: entropy, Sinai–Ruelle–Bowen measures. We
hope that the use of this type of methods will open a novel approach
on the study of proper affine actions, expanding previous work of
Goldman, Margulis and the author.

Being very optimistic, as an approach to the Auslander conjecture,
one could hope that, in the spirit of Kahn–Markovic [16] and Kahn–
Labourie–Mozes [15], the presence of free groups could help in
building surfaces groups close to being Fuchsian inside groups acting
cocompactly on the affine space.

A surface group is the fundamental group of a closed connected
oriented surface of genus at least 2. A Hitchin representation [14] is
a representation that can be deformed into a Fuchsian representation,
that is a discrete representation with values in an irreducible SL(2,R).

A conjecture, attributed to Auslander [2], states that if a group Γ
acts properly and cocompactly on the affine space then it does not
contain a non abelian free group. This conjecture has been proved
up to dimension 6 by Abels, Margulis and Soifer in [1]. On the other
hand, Margulis work in [21] has exhibited free groups acting properly
on the affine space. Work of Goldman, Margulis and the author
[11], further extended by Ghosh and Treib [10], has shown how to
characterise proper actions of a hyperbolic group using the Labourie–
Margulis diffusion, which is an extension to measures – introduced in
[17] – of the Margulis invariant introduced by Margulis in [22]. As for
surface groups, they were shown by Mess [23] to admit no proper
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affine actions on the affine 3-space. An alternate proof was given
by Goldman and Margulis [12] and then by the author [17] with the
extension to groups whose linear part is Fuchsian. On the other hand,
Danciger, Guéritaud and Kassel [6] exhibited examples of proper
affine actions of surface groups, or more generally all Coxeter groups,
in higher dimensions. For a survey and similar considerations see
[28] and [5]

I thank Sourav Ghosh, Fanny Kassel, Andrés Sambarino, Ilia Smilga
and Tengren Zhang for valuable discussions and input. An anony-
mous referee also helped improve a lot the final version of this article.

1.1. A sketch of the proof. As an initial observation, we observe that the
problem reduces to the case of representations whose linear part is in
SO(p, p−1). Indeed, according to Andrés Sambarino [?][Corollary 1.5]
preceded by oral communications by Guichard, the Zariski closure G
of a Hitchin representation in SL(m,R) always contains the irreducible
SL2(R), and, if non Zariski dense, is contained in either Sp(2p) or
SO(p, p − 1), depending if m = 2p or m = 2p − 1. Recall finally that
if an element of the affine group acts properly on the affine space,
then 1 is an eigenvalue of its linear part. Thus 1 is in the spectrum
of any element in the Zariski closure of its linear part. It follows
that the representation is in odd dimension and non Zariski dense in
SL(2p − 1), thus contained in SO(p, p − 1).

After this initial observation, the proof follows the thermodynamic
theme introduced in [17]. A sketch is as follows

From now on, let Γ be a surface group whose linear part is a Hitchin
representation in SO(p, p − 1). The Labourie–Margulis diffusion M is
a continuous function on the space of finite measures invariant by
the geodesic flow of the surface, associated to the representation on
the affine space [17]. According to a generalization of [17, 11] due to
Ghosh and Treib [10, Theorem 7.1 and Definition 4.4], if there exists a
measure µ so that M(µ) = 0, then the action on the affine space is not
proper.

As a first step in the proof, we embed the Lie algebra of Rp,p−1 o
SO(p, p − 1) as a subalgebra of the Lie algebra of SO(p, p). Thus an
affine representation is seen as a (special) infinitesimal deformation
of the linear part of the representation of so(p, p − 1) in SO(p, p). As
in [12, 9], we now interpret in lemma 6.2 the Margulis invariant as
a variation of the pth eigenvalue (or the (p + 1)st), while the other
eigenvalues remain constant.

As a consequence of the Abramov lemma and the definition of
equilibrium states as done in [26], we can now interpret, in lemma
6.4, the Margulis invariant as the variation of the topological entropy
of the last root flow, a flow for which the length of the closed orbit



ENTROPY AND AFFINE ACTIONS FOR SURFACE GROUPS 3

associated to γ is the logarithm of the product of the (p − 1)st and pth

eigenvalues of γ.
A recent series of results by Pozzetti, Sambarino and Wienhard [25]

implies among other things that this entropy is constantly equal to 1.
We prove this result independently in Theorem 5.2 by proving that the
isotropic limit curve is smooth and use an idea due to Potrie–Sambarino
[24] to obtain the same result. This is a parallel to [25, Theorem 9.9].

This smoothness, obtained in Theorem 4.1 now follows from a gen-
eral lemma about proximal bundles – lemma 4.3 – and a transversality
property – proposition 3.6 – that we prove for Fuchsian representa-
tions in SO(p, p). This transversality property is a consequence of
Lusztig positivity [20] as used in [8] and we wonder whether this
property could characterise Hitchin representations in SO(p, p) within
Anosov representations.

Combining these simple ideas, on obtains that the Labourie–
Margulis diffusion for the Bowen–Margulis measure of the last root
flow is zero and thus concludes the proof of the Theorem by Danciger
and Zhang.

2. Isotropic flags and the geometry of SO(p, p). Let F be a vector
space equipped with a metric Q of signature (p, p), let SO(p, p) be its
isometry group. For every vector space V in F we denote by V◦ its
orthogonal with respect to the quadratic form. An isotropic space is a
vector space on which the restriction of Q vanishes, a maximal isotropic
plane is an isotropic plane of dimension p. We denote by L the space
of maximal isotropic planes.

Recall that the action of SO(p, p) on L has two orbits, which are both
connected components of L. To distinguish them, let us a p-plane M,
on which the restriction of Q is positive definite, as well as orientations
on M and M◦. Any p-isotropic plane P is then the graph of a linear
anti-isometry A from M to M◦. We say P is positive when A preserves
the orientation and negative otherwise. We denote by L+ the space of
positive p-isotropic planes and L− the space of negative p-isotropic
planes. Any (p− 1)-isotropic plane is contained in exactly one positive
isotropic p-plane and one negative isotropic p-plane.

An isotropic flag is a collection of isotropic planes L = (Li)1<i6p so that
Li ⊂ Li+1, dim(Li) = i. An isotropic flag L can be positive or negative
depending on Lp. We denote by Fl the space of positive isotropic flags.
The group SO(p, p) acts transitively on Fl and the stabiliser of a point
is the minimal parabolic subgroup of SO(p, p). Observe also that Lp is
determined by Lp−1. Two isotropic flags L and M are transverse if for
all i, we have Mi ⊕ L◦i = Li ⊕M◦

i = F.
A p-tuple of lines E = (Ei)i=1,...,p is isotropic if E1 + . . . + Ep is maximal

isotropic. The isotropic flag Flag(E) associated to E is

Flag(E) B (L1, . . . ,Lp) , (1)
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where Li = E1 + . . . + Ei. Two p-tuples of lines E = (Ei)i=1,...,p and
E = (Ei)i=1,...,p are Q-paired if they are both isotropic and Q restricted to
Ei ⊕ E j is zero for i , j and non degenerate otherwise. We then have

Proposition 2.1. [Transverse flags] The map that sends (E,E) to
(Flag(E),Flag(E)) is an SO(p, p)-equivariant bijection from the space of
Q-paired p-tuples of lines to the set of transverse flags.

Let us conclude with a description of the tangent space to L: Let
M0 and M1 be two transverse isotropic planes. Let M be an isotropic
p-plane transverse to to E1, so that M is the graph of f ∈ Hom(M0,M1).
LetωM be the 2-form on M0 given byωM(u, v) = Q(u, f (v)). We observe
that Q(u, f (v)) is antisymmetric if and only if the graph of f is isotropic.
This leads to:

Proposition 2.2. [Identification] Let M0 and M1 be two transverse
isotropic p-planes. The map M → ωM is a diffeomorphism between the
space of isotropic planes transverse to M1 and Λ2(M∗

0). In particular,
TM0L = Hom(M0,M1) identifies with Λ2(M∗

0).

3. Anosov representations for SO(p, p) and SO(p, p − 1). Let Σ be a
closed hyperbolic surface, X its unit tangent bundle and

(
ϕt

)
t∈R its

geodesic flow. We also write Γ B π1(Σ).
Let ρ be a representation of Γ in SO(p, p) that we see acting on a

vector space F equipped with a quadratic form 〈|〉 of signature (p, p).
Since π1(X) is an extension of π1(Σ), we will consider ρ also as a
representation of π1(X) and denote Fρ the associated flat bundle on X
and Fx, the fibre of Fρ at a point x in X.

Observe that
(
ϕt

)
t∈R lifts to a flow (Φt)t∈R acting on Fρ by vector

bundle automorphisms which are parallel along the geodesic flow

Definition 3.1. [Anosov representations for SO(p, p)] We say ρ is
Borel Anosov for SO(p, p), if the bundle Fρ splits into 2p continuous line
bundles Ei, Ei with 1 6 i 6 p, with the following properties:

(1) The line bundles Ei and Ei are invariant under (Φt)t∈R and Q-paired,
(2) The flow (Φt)t∈R contracts the bundles

E
∗

i ⊗ Ep when i < p, (2)
E
∗

i ⊗ E j when j < i, . (3)

We recall that a flow (Φt)t∈R contracts a bundle E over a compact
manifold if there exist a continuous metric and positive constants a
and b, so that for all positive t, for all u in E, we have ‖Φtu‖ 6 ae−bt

‖u‖.
To be contracting on a compact manifold is independent of the
parametrisation of the flow or the choice of the metric.

Let Cγ be a closed orbit of the flow on X of length `γ associated
to an element γ in Γ. Then ρ(γ) is conjugated to the endomorphism
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Φ`γ of Fx, and in particular (Ei)x and (Ei)x are eigenlines of Φ`γ . We
denote by λi(ρ(γ)) and λi(ρ(γ)) the corresponding eigenvalues, which
are also eigenvalues of ρ(γ). The Anosov condition gives λi · λi = 1
and the following ordering of eigenvalues

λ1 > λ2 > . . . > sup{λp, λ
−1
p } > inf{λp, λ

−1
p } > . . . > λ1 .

3.1. Limit curves. Let ρ be an Anosov representation for SO(p, p). We
may lift the bundle Eρ to a trivial bundle over the unit tangent bundle
Y of the hyperbolic plane. The line bundles Ei and Ei also lift and
since they are invariant under (Φt)t∈R, they are constant along each
orbit of

(
φt

)
t∈R

. Let us then consider the maps

Ei : (x, y) 7→ Ei(x, y) B (Ei)z , Ei : (x, y) 7→ Ei(x, y) B (Ei)z ,

where (x, y) in a pair of distinct points in the boundary at infinity
∂∞H2 of the hyperbolic plane H2, and z is a point in a the geodesic
defined by (x, y). z in a point in the geodesic defined by the pair of
distinct points

Proposition 3.2. [Limit curve]
We have Ei(x, y) = Ei(y, x). Moreover the isotropic flag ξ(x, y) given by

(E1(x, y),E2(x, y), . . .Ep(x, y)) only depends on x.

The map ξ : x 7→ ξ(x) B ξ(x, y) from ∂∞π1(Σ) to Fl xis the limit curve
of the Anosov representation.

Proof. The continuity of the maps Ei follows from the continuity of
the bundles Ei. By density, it is enough to check the first identity
for (x, y) = (γ+, γ−) where γ+ and γ− are respectively the attracting
and repelling points of an element γ of Γ. The result follows by the
identification of Ei with eigenlines of ρ(γ). Similarly, for the second
identity we know that ξ(γ−, γ+) is an attracting point of ρ(γ). It follows
that ξ(γ−, y) = ρ(γ)nξ(γ−, γny). Since

lim
n→∞

γn(y) = γ+ ,

it follows that if y , γ−

ξ(γ−, y) = lim
n→∞

ρ(γ)nξ(γ−, γny) = ξ(γ−, γ+) .

This concludes the proof �

Using proposition 2.1, we can recover the maps Ei using the limit
curve ξ. Let us finally define the isotropic limit curves Θ and Θ from
∂∞π1(Σ) to L as

Θ B

p⊕
i=1

Ei , Θ B

p⊕
i=1

Ei . (4)
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3.2. Hitchin representations in SO(p, p − 1). By [18], if ρ is a Hitchin
representation in SL2p−1(R), we have a decomposition of the associated
bundle

Vρ =V1 ⊕ . . . ⊕V2p−1 ,

such that the line bundlesVi are invariant by the flow and the flow
contracts Hom(Vi,V j) for i > j. If furthermore the representation
is with values in SO(p, p − 1), the flow preserves a quadratic form
of signature (p, p − 1) and the restriction of this quadratic form to
the trivial bundleVp (equipped with a trivial action of the flow) is
negative definite, while the restriction to the other line bundlesVi is
zero.

Proposition 3.3. Any Hitchin representation ρ with values in SO(p, p− 1)
is Borel Anosov for SO(p, p). Thus any small deformation of ρ is also Borel
Anosov for SO(p, p).

Proof. Taking Fρ = Vρ ⊕ R – where R is the trivial line bundle with
the opposite of the euclidean metric – equipped with the product
metric, we obtain the decomposition as wished by taking for i < p,
Ei = Vi and Ei = V2p−i and finally Ep and Ep to be the two lightlike
lines inVp ⊕ R.

The last statement follows from the stability of Anosov representa-
tions [18, 13]. �

3.3. The principal SL2(R)-representations. In this section, we will give
an explicit description of the map Ei in the case of Fuchsian represen-
tations. Let

A =

(
1 z
0 1

)
, Λ =

(
λ 0
0 λ−1

)
. (5)

Recall that the (2p − 1)-dimensional irreducible representation of SL2(R)
preserves a quadratic form 〈|〉 of signature (p, p − 1). Moreover
there exists a basis ε1, . . . , ε2p−1 so that, writing εi B ε2p−i and αk,m B
〈A(εk) | εm〉, for all z , 0 and k, m in {1, . . . , 2p − 1}, we have

〈εk | εm〉 = δk,m , Λ(εm) = λ2p−2mεm

αk,m , 0 if m > k , αk,m = 0 if m < k .

The principal representation J of SL2(R) in SO(p, p) is described as
follows: let V be a vector space on which SL2(R) acts irreducibly
preserving a quadratic form of signature (p, p − 1); let (ε1, . . . ε2p−1) be
the basis of V as above; let L be a line generated by a vector f . We
take the trivial representation of SL2(R) on L. We introduce now the
base (e1, . . . , ep, e1, . . . , ep) of E B V ⊕ L where

∀i < p, ei B εi , ei B εi = ε2p−i ep B εp − f , ep = εp + f .
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Then the group SL2(R) preserves the quadratic form given in these
coordinates by

〈ei | e j〉 = 〈ei | e j〉 = 0 , 〈ei | e j〉 = δi, j

By convention, (e1, . . . , ep) generates a positive isotropic space.

3.4. The Fuchsian representations in SO(p, p − 1) and SO(p, p). Let Σ be
equipped with a hyperbolic structure and ∂∞π1(Σ) is identified with
FlP1(R). A Fuchsian representation of Γ in SO(p, p) is a representation
ρ of the form J ◦ ν where ν is a discrete representation of Γ in SL2(R).
Let for i 6 p, the lines Ei(x0, y0), respectively Ei(x0, y0) be generated
by ei, respectively ei, where (x0, y0) = ([1 : 0], [0 : 1]) are elements of
∂∞π1(Σ). Then, since the stabiliser of (x0, y0) is the group generated by
Λ, and Λ preserves both Ei(x0, y0) and Ei(x0, y0), we define coherently

Ei(Ax0,Ay0) B A(Ei(x0, y0)) , Ei(Ax0,Ay0) B A(Ei(x0, y0)) .

Then we have that for all x and y,

Ei(Ax,Ay) = A(Ei(x, y)) , Ei(Ax,Ay) = A(Ei(x, y)) .

One now immediately checks the proposition

Proposition 3.4. If Γ is a Fuchsian group in PSL(2,R), J(Γ) is an Anosov
representation for SO(p, p), whose limit curve is ξ(x) = Flag(E(x, y)), where
E(x, y) B

(
Ei(x, y)

)
i∈{1...2p−1} – see notation (1).

The following transversality property will play a crucial role in the
sequel.

Proposition 3.5. [Transversality] For all triple of pairwise distinct points
(x, y, z) in ∂∞π1(Σ)

Θ(z) t
(
Ep(x, y) ⊕ (E◦p−1(x, y) ∩Θ(y))

)
. (6)

Proof. It is enough to consider the case x B [0 : 1], y B [1 : 0] and
z B [z : 1] = A([0 : 1]) where A is as in Equation (5). Let now

u = −bp f +

p∑
m=1

bmεm ∈ Θ(x) , so that A(u) ∈ Θ(z) .

Assume furthermore that

A(u) ∈ F(x, y) , where F(x, y) B Ep(x, y) ⊕ (E◦p−1(x, y) ∩Θ(y)) .

By construction, F◦(x, y) is generated by
{
ε1, . . . , εp−1, εp+1,

}
. Thus

for k 6 p + 1 and k , p, 〈A(u) | εk〉 = 0, in other words

0 =

k∑
m=1

αm,kbm .
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The matrix corresponding to this system is upper triangular with non
zero coefficients, it follows that for all 1 6 m 6 p, we have bm = 0.
Thus Θ(z) ∩ F(x, y) = {0}. �

Corollary 3.6. Let ρ be a representation close to a Fuchsian representation.
Then the transversality property (6) holds

Proof. This follows from the continuity of limit curves as a dependence
of the representation [13, 3] and the fact that Γ acts cocompactly on
the space of triples of pairwise distinct points in ∂∞π1(Σ). �

4. The isotropic limit curves and the Smoothness Theorem.

Theorem 4.1. [Smoothness theorem] Let SO(p, p) be Anosov represen-
tation satisfying the Transversality Property (6). Let Θ be the isotropic limit
curve, defined in equation (4). Then the image of Θ is a smooth curve M.

Moreover, if (x, y) is a pair of distinct points in ∂∞π1(Σ), then, using the
identification of proposition 2.2, we have

TΘ(x)M = Λ2(E∗p−1(x, y) ⊕ E∗p(x)) .

4.1. Proof of the Smoothness Theorem 4.1. We will denote in general
by Vx the fibre at x ∈ X of a vector bundle V over a compact base
X. Let

(
ϕt

)
t∈R be a flow on X which lifts to a flow (Φt)t∈R of bundle

automorphisms on V.

Definition 4.2. [Proximal bundle] We say the lift (Φt)t∈R is proximal
if there exists a continuous (Φt)t∈R-invariant proximal decomposition
V = Z⊕W so that

(1) the subbundleZ has rank one,
(2) the flow contracts the subbundleZ and the bundle Hom(Z,W) =
Z
∗
⊗W.

The following lemma is crucial in the smoothness part of the result.

Lemma 4.3. [Proximality and smoothness] Let Zσ a never vanishing
continuous section ofZ. Let Wσ be a continuous section ofW.

Then there exist positive constants A and λ so that for all positive t

‖Φt(Wσ)‖ 6 A‖Φt(Zσ)‖λ+1 .

Proof. Let us choose an auxiliary metric onZ andW, since the flow
is contracting on Z, and Z is a line bundle, we may reparametrise
the flow so that for every u inZ,

‖Φt(u)‖ = e−t
‖v‖ . (7)

Then the contraction property onZ∗ ⊗W tells that there is a positive
constants B and λ so that for all w in Hom(Z,W) = Z∗ ⊗W

‖Φt(w)‖ 6 Be−λt
‖w‖ .
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Thus for any (u, v) inZ×W, where u is non zero, and all positive t,

‖Φt(v)‖ 6 Be−λt
·
‖Φt(u)‖
‖u‖

· ‖v‖ = B
‖Φt(u)‖1+λ

‖u‖1+λ
· ‖v‖ .

Let now

C B inf{‖Zσ(x)‖ | x ∈ X} ,
D B sup{‖Wσ(x)‖ | x ∈ X} ,

and recall that by hypothesis C is positive. Let now x be a point in X,
then for any positive t,

‖Φt(Wσ(x))‖ 6 B
(
‖Φt(Zσ(x))‖
‖Zσ(x)‖

)λ+1

‖Wσ(x)‖

6 BDC−(λ+1)
‖Φt(Zσ(x))‖λ+1 .

Thus we obtain the lemma with A = BDC−(λ+1). �

4.2. Curves in bundles. The isotropic limit curves Θ and Θ give rise
to two continuous, flow invariant maximal isotropic and transverse
subbundles (also denoted Θ and Θ) of Eρ. We see these subbundles
as sections (also denoted Θ and Θ) of Lρ the associated bundle over
X to the Grassmannian of totally isotropic planes L in E

Let us choose an orientation on Σ and thus a complex structure
associated to the hyperbolic structure, as well as an orientation on
∂∞π1(Σ).

From hyperbolic geometry, we have a Γ-equivariant map h from
the unit bundle of H2 to ∂∞π1(Σ), which associates to a unit vector
u, the end point of the geodesic given by Ju, where J is the complex
structure on Σ associated to the hyperbolic metric.

Thus we obtain a section σ of Lρ given by

σ(u) B Θ(h(u)) .

For a representation close to being Fuchsian, since Θ(z) is transverse
to Θ(w) for z , w by the Anosov property (cf definition 3.1 (1)), we
will consider σ as a section of the vector bundle

T B TΘL ⊂ Hom(Θ,Θ) .

that we freely identify with Λ2(Θ∗), using proposition 2.2 by an
identification that respects the lifts of the flow. Let us prove:

Proposition 4.4. The decomposition T = Z ⊕W is a proximal vector
bundle decomposition where

Z B Λ2
(
E∗p−1 ⊕ E∗p

)
, W B {ω ∈ Λ2(Θ∗) | ω|Ep⊕Ep−1

= 0} . (8)
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Proof. By the Anosov property, the flow contracts

Λ2(Θ∗) =
⊕
p>i> j

Λ2(E∗i ⊕ E∗j) ,

and furthermore contracts less onZ B Λ2(E∗p ⊕ E∗p−1) than onU1 B

Λ2(E∗i ⊕ E∗j) when i < j and j > p: more precisely there are positive
constants λ and K so that for all positive t and all (u, v) in Z ⊕U1,
then

‖Φt(v)‖
‖v‖

6
‖Φt(u)‖
‖u‖

Ke−λt .

The result follows. �

Lemma 4.5. For all u in X, σ(u) does no belong toWu.

Proof. In the identification Λ2(Θ) = TL ⊂ Hom(Θ,Θ),W is a subset of

W0 B { f | ∀(w, v) ∈ Ep−1 × Ep . q(w, f (v)) = q(v, f (w)) = 0}

But if f belongs toW0, then f (Ep) is included in E◦p−1 ∩Θ. Thus the

graph of f has an intersection of positive dimension with Ep⊕(E◦p−1∩Θ).
It follows from the third statement of proposition 3.6 that σ(u) does
not belongW for all u in X. �

Let then Zσ inZ, and Wσ inW, so that

σ = Wσ + Zσ .

Then, by the previous lemma, Zσ is a never vanishing section ofZ.
Let us choose some auxiliary Riemannian metric on E and denote η

the section ofZ of norm 1 which is so that for all t,

η =
Φt(Zσ(ϕ−tu))
‖Φt(Zσ(ϕ−tu))‖

.

Observe that η gives the orientation of the subbundleZ.
As a corollary of our proximal and smoothness lemma 4.3 we now

get,

Corollary 4.6. There exist positive constants A and λ, such that for all
positive t,

‖Φt(Wσ)‖ 6 A‖Φt(Zσ‖
λ+1 .

And in particular

lim
t→∞

(
Φt(σ(ϕ−tu))
‖Φt(σ(ϕ−tu))‖

)
= η .

We now explain how this corollary implies the Smoothness Theorem
4.1.
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Proof of Theorem 4.1. Let us fix two points x and y in ∂∞Σ and let γ the
geodesic joining x to y in the universal cover of Σ, lifting a geodesic
γ0 in Σ.

Then the lift of the decomposition T = Z ⊕W along γ0, gives
a trivial bundle decomposition (for the induced connection) also
denoted T = Z⊕W along γ, where

Z = Z × γ , W = W × γ , T = T × γ .

Observe that Z, T and W only depends on x and y and we identify T
as TΘ(x)L seen as a subspace of Hom(Θ(x),Θ(y)). In that identification

Z = Z(x, y) = Λ2
(
Ep−1(x, y)∗ ⊕ E∗p(x, y)

)
.

Let us now fix a point u in γ and a Riemannian metric on the vector
space Hom(Θ(x),Θ(y)), which induces Riemannian metrics on T, Z
and W. Observe now that σ lifts as map σ0 from γ to T, and that the
lift of the flow (Φt)t∈R on the bundle T acts trivially on the first factor.
Thus, corollary 4.6 translates as

lim
t→∞

(
σ0(ϕ−t(u))
‖σ0(ϕ−t(u))‖

)
= η0 ,

where η0 is the vector of norm 1 of Z giving the orientation. Interpret-
ing Hom(Θ(x),Θ(y)) as a subset of L, we then get by the definition of
σ0

lim
t→∞

Θ(h(ϕ−t(u))) −Θ(x)
‖Θ(h(ϕ−t(u)) −Θ(x)‖

= η0 .

Finally, since the map which associates h(ϕt(u)) to t is a homeomor-
phism from ] − ∞,+∞[ to the oriented arc from x to y in ∂∞Σ, the
previous assertion is equivalent to

lim
z→x+

Θ(x) −Θ(z)
‖Θ(x) −Θ(z)‖

= η0 .

Taking the opposite orientation on Σ we obtain symmetrically

lim
z→x−

Θ(x) −Θ(z)
‖Θ(x) −Θ(z)‖

= −η0 .

Hence Θ(∂∞π1(Σ)) is a C1 curve whose tangent space at x is Z. �

5. The last root flow and the Entropy Theorem. The next proposition
shows that the Margulis invariants are the variation of the length of
the closed orbit of some flow.

Proposition 5.1. For ρ with values in SO(p, p) close to a Hitchin represen-
tation in SO(p, p − 1), there exists a reparametrisation

(
ψt

)
t∈R of

(
ϕt

)
t∈R,

called the last root flow, so that the length of the closed orbit of ψ associated
to γ is logλp(ρ(γ)) + logλp−1(ρ(γ)).
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Proof. Any such ρ is Borel Anosov by proposition 3.3. Thus, the
real line bundle Z = Λ2(E∗p−1 ⊕ E∗p−1) is contracted by the flow and
its contraction spectrum associates to the closed orbit γ the number
logλp(ρ(γ)) + logλp−1(ρ(γ)). Then the result follows by [4, proposition
2.4]. �

The entropy theorem is now properly stated as

Theorem 5.2. [Entropy Theorem] For ρ close enough to a Hitchin
representation in SO(p, p − 1), the entropy of the last root flow is equal to 1.

This theorem is also a consequence to [25], which also uses a
fundamental idea due to Potrie and Sambarino [24].

Proof. We follow closely Potrie and Sambarino [24], to obtain a proof
of the Entropy Theorem 5.2. We observe that the if γ+ and γ− are
respectively the attracting and repelling fixed points of γ on ∂∞π1(Σ),
then Θ(γ+) is a fixed point of ρ(γ) in the smooth curve M = Θ(∂∞π1(Σ))
in L. Moreover, since the tangent space to M at Θ(γ+) is identified
with Λ2(E∗p(γ+, γ−) ⊕ E∗p−1(γ+)), the derivative of ρ(γ) at Θ(γ+) on M is
λp(γ)·λp−1(γ). The same discussion as in Potrie–Sambarino using Sinai–
Ruelle–Bowen measures gives us the result in the neighbourhood of
the Fuchsian representation by Corollary 3.6 and Theorem 4.1 since
the isotropic limit curve is C1. Finally, as in [24], the analyticity of
the entropy obtained in [3] implies that the entropy is constant and
equal to 1 on the neighbo rhood of the set of Hitchin representations
in SO(p, p − 1). �

It seems likely that all representations in the Hitchin component
for SO(p, p) are Anosov, in which case the previous theorem applies
to the whole Hitchin component.

6. Entropy and the Affine Action Theorem.

6.1. Affine group and quadratic forms. Let us consider a representation
ρ of a surface group in the affine group of the vector space F whose
linear part ρ0 is a Hitchin representation taking values SO(p, p − 1).
We describe the translation part as an element ω in H1

ρ0(F), defined by
the cocycle

γ 7→ ωγ B ρ(γ)(0) .

Let L be a one-dimensional vector space generated by a vector f . Let
us consider the quadratic form on E ⊕ L , given by 〈u+ | u + x f 〉 =
Q(u,u) − x2 of signature (p, p).

The corresponding embedding of SO(p, p−1) into SO(p, p) is so that
we have the SO(p, p − 1)-invariant decomposition of the Lie algebra

so(p, p) = so(p, p − 1) ⊕ F . (9)
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Accordingly, let us consider Rep(π1(Σ),SO(p, p − 1)) as a subset
of Rep(π1(Σ),SO(p, p)). Recall that by Hitchin [14], the connected
component of Rep(π1(Σ),SO(p, p)) containing the fuchsian represen-
tations in SO(p, p − 1) is smooth and its tangent space identifies with
H1

ad(ρ)(so(p, p)). Thus, the decomposition (9) gives a linear map from
H1
ρ(F) to Tρ0 Rep(π1(Σ),SO(p, p)).
We will describe this identification more explicitly in the next propo-

sition. Let us first represent elements
q
ρ in Tρ0 Rep(π1(Σ),SO(p, p)) by

coholomogy classes of cocycles
q
ρ : γ 7→

q
ργ. Let finallyH be the subset

of Tρ0 Rep(π1(Σ),SO(p, p)) defined by

H B {
q
ρ | ∀u, v ∈ E, ∀γ ∈ Γ 〈

q
ργ(u) | v〉 = 0} .

Then we have

Proposition 6.1. [Interpretation] The map
q
ρ 7→ ωγ, where ωγ is defined

by
∀v ∈ E, Q(ωγ, v) = 〈

q
ργ( f ) | ρ(γ)(v)〉

is an isomorphism betweenH and H1
ρ0(F).

6.2. Labourie–Margulis diffusion. Let X be the unit tangent bundle of
a hyperbolic surface Σ. Let ρ be a representation of π1(Σ) in the
affine group. Let ρ0 be the linear part of ρ. We assume that ρ0 is a
Hitchin representation in SO(p, p − 1). Let ω be the affine part of ρ,
that we see as a (closed) form in Ω1(X,V0), whereV0 is the flat bundle
on X associated to ρ0. By section 3.2, we have the flow invariant
decomposition:

V0 =

2p−1∑
i=1

Vi .

Let εp be a section of norm 1 of the spacelike line bundle Ep. Let us
choose a parametrisation of the geodesic flow, with generator ζ. Let µ
be a measure invariant by the geodesic flow. We define as in [17, 11]
the Labourie–Margulis diffusion

M(µ) B
∫

US
Q(εp, ω(ζ)) dµ . (10)

Let
(
ρt

)
t∈R be a family of representations of Γ in SO(p, p) associated to

ρ, according to our Interpretation Proposition 6.1, so that

d
dt

∣∣∣∣∣
t=0
ρt = ω , ρ0 = ρ0 .

For t close to zero, ρt is a Borel Anosov representation in SO(p, p)
by proposition 3.3. We can decompose the associated bundle as in
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Definition 3.1 into

Eρt =

p⊕
i=1

E
t
i ⊕

p⊕
i=1

E
t
i .

This decomposition is given by the limit curves. Since they depend
analytically on the representation [3, Theorem 6.1], we may choose
an identification of Eρt withV0 ⊕ L, where L is the trivial bundle such
that furthermore

(1) the quadratic form is constant,

(2) the bundles Et
i and E

t
i are constant and thus denoted Ei and Ei

(3) Finally Ei = Vi, Ei = V2p−i+1, for i < p, Ep and Ep are the
lightlike lines inVp ⊕ L.

Let δγ be the geodesic current supported on a closed orbit given by a
non trivial element γ of π1(Σ). The next lemma is a generalisation of
[12, Lemma 2].

Lemma 6.2. The variations of the eigenvalues are given as follows:

d
dt

∣∣∣∣∣
t=0
λp(ρt(γ)) =

1
2

M(δγ) , and for all i < p,
d
dt

∣∣∣∣∣
t=0
λi(ρt(γ)) = 0 .

Proof. We can obtain this lemma as a direct application of [19, Lemma
4.1.1], we however reproduce the easy proof in this context. We
choose bases ei and ei of Ei and Ei respectively, so that

ep =
1
2

(εp + f ) , ep =
1
2

(εp − f ) ,

where εp is a basis of Ep of norm 1 and f a basis of the trivial bundle L
of norm −1. Writing

q
a = d

dt

∣∣∣
t=0

a(t), then is equal to

M(δγ) = Q(ωγ, εp) = Q(
q
ργ( f ) εp)

= 〈ep + ep |
q
ργ(ep − ep)〉 = 2 〈

q
ργ(ep) | ep〉

= 2
q
λp .

Similarly, by proposition 3.6, 0 = 〈
q
ργ(εk) | ε2p−k〉 for k < p, thus

q
λk =

0. �

Recall that all representations ρs are associated to a last root flow(
ψs

t

)
t∈R

by proposition 5.1. Such a last root flow is a repamaretrisation

of the geodesic flow
(
φt

)
t∈R

, hence we can write if ζs is the generator
of ψs, ζs = gsζ0, where gs is a function on X; that is called the
reparametrisation of

(
ψ0

t

)
t∈R

by
(
ψ0

t

)
t∈R

. Let us define the function
q

g on
X q

g B
d
ds

∣∣∣∣∣
s=0

gs .
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Corollary 6.3. For any measure µ, if g is the variation of the reparametrisa-
tion of the last root flow

2
∫

UX

q
g dµ = M(µ) . (11)

Proof. Let δγ be the geodesic current supported on a closed orbit. Then
using the definition for the first equality, the fact that λp = 1 for an
SO(p, p − 1) representation and lemma 6.2, we have∫

UX

q
g dδγ =

q
λp−1

λp−1
+

q
λp

λp
=

q
λp =

1
2

M(δγ) .

Thus the equation (11) holds for all currents supported on closed
orbits, hence for all linear combinations of such by linearity, hence for
all measures by density of the currents supported on closed geodesics
and continuity of the diffusion. �

6.3. Abramov lemma. We will use the thermodynamic formalism and
refer to [3] for a general discussion and references. We first recall
that given a metric Anosov flow

(
ψt

)
t∈R on X, and a flow invariant

probability measure m on X we can define its entropy h(m). Moreover
there is a unique measure µeq called the Bowen–Margulis measure so
that

h(µeq) = sup
{
h(m) | m invariant by

(
ψt

)
t∈R

}
.

The number h(µeq) is called the topological entropy.
Let now

(
ψs

t

)
t∈R

be a family of metric Anosov flows on a space X
depending on some parameter s in ] − 1, 1[. Let `s

γ be the length of
every closed orbit γ for ψs. Let fs be a family of continuous functions
on X so that

`s
γ =

∫ `0
γ

0
fs ◦ ψ

0
u(x) du ,

where x is a point in γ — see [3, Paragraph 3.1] for details. If m is an
invariant measure for

(
ψ0

t

)
t∈R

, then

ms B
1∫

X
fsm

fsm , (12)

is an invariant measure for
(
ψs

t

)
t∈R

. The Abramov formula [26, Lemma
2.4] is

h(ms) =
1∫

X
fsm

h(m) . (13)

Then as a consequence.



16 FRANÇOIS LABOURIE

Lemma 6.4. Assume that f s(m) is C1 as a function in s and its derivative is
bounded as a function of m. Let hs be the topological entropy of ψs. Let µeq

the Bowen–Margulis measure of
(
ψ0

t

)
t∈R

. Assume that hs is constant and
non zero then

0 =

∫
X

d fs

ds

∣∣∣∣∣
s=0

dµeq . (14)

Proof. Let us consider µs
eq as in formula (12). By Abramov formula

for the first equality and the definition of topological entropy for the
second

h0∫
X

fs dµeq
= h(µs

eq) 6 hs = h0 .

Thus for all s, ∫
X

fsdµeq > 1 =

∫
X

dµeq =

∫
X

f0dµeq .

The result follows �

6.4. Proof of the Affine action Theorem 1.1. Let σ be a Hitchin represen-
tation in the affine group whose linear part ρ is Hitchin in SO(p, p− 1).
We interpret σ as a a family of representation (ρs)s∈[0,1] in SO(p, p) with
ρ0 = ρ as in paragraph 6.1 and proposition 6.1.

Let ψs be the last root flow of ρs and gs be a family of reparametri-

sations of ψ0 giving rise to ψs. Let
q

g =
dgs

ds

∣∣∣∣
s=0

. Since the entropy of ψs

is constant by the Entropy Theorem 5.2, we have by lemma 6.4 that∫
X

q
g dµ = 0 where µ is the Bowen–Margulis measure of the last root

flow of ρ0. Thus by corollary 6.3, M(µ) = 0.
Now by [10, Theorem 7.1 and Definition 4.4] if there is a measure

that annihilates the Labourie–Margulis diffusion (defined in equation
(10)), then the action on the affine group is not proper. This concludes
the proof of Danciger and Zhang’s Theorem 1.1 .
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