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1 Introduction

In his beautiful paper [17], N. Hitchin studies the connected components of the
space

Rep(π1(S), PSL(n,R)) = Homred(π1(S), PSL(n,R))/PSL(n,R),

of reducible representations of the fundamental group of a compact surface
S into PSL(n,R). By reducible, we mean representations which are as sum
of irreducible representations. Using Higgs bundle techniques, he proves two
remarkable results. The first deals with the number of components of this
space.

Theorem 1.1 [Hitchin] If n > 2, the space Rep(π1(S), PSL(n,R)) has three
connected components when n is odd, and six when n is even

Note that in [10], W. Goldman gives a complete description of these con-
nected components in the case of finite covers of PSL(2,R). In the case of
PSL(2,R), two homeomorphic components, called Teichmüller spaces, play a
central role. These two components are well known to be homeomorphic to a
ball of dimension 6g − 6.

N. Hitchin generalises this situation to PSL(n,R). Indeed, one of these
components when n is odd, and two when n is even, has a very simple topology.
Let us define an n-Fuchsian representation to be a representation ρ which can
be written as ρ = ι ◦ ρ0, where ρ0 is a cocompact representation with values in
PSL(2,R) and ι is the irreducible representation of PSL(2,R) in PSL(n,R),
We denote by RepH(π1(S), PSL(n,R)) a connected component that contains
Fuchsian representations, and call it a Hitchin component. In fact, when n is
odd there is one Hitchin component, and when n is even two isomorphic ones.
N. Hitchin proves in [17]

∗L’auteur remercie l’Institut Universitaire de France.
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Theorem 1.2 [Hitchin] Each component RepH(π1(S), PSL(n,R)) is homeo-
morphic to a ball of dimension χ(S)(1− n2).

This last result actually extends to the case of adjoint groups of real split forms.
Although Hitchin’s proof gives an explicit parametrisation of this component,
the construction by itself sheds no light on the geometry underlying these rep-
resentations. Using Higgs bundle techniques, one can prove that the representa-
tions in Hitchin component are irreducible (Lemma 10.1), but it seems hard to
detect by these means whether these representations are faithful, discrete, as to
understand whether the group of outer automorphisms of π1(S) acts properly
on this specific component.

Nevertheless, the geometric significance of this component is well known in
dimensions 2 and 3. For n = 2, it is the Teichmüller component, correspond-
ing to holonomies of hyperbolic structures on S. For n = 3, S. Choi and W.
Goldman proves in [4]

Theorem 1.3 [Choi-Goldman] For n = 3, Hitchin component consists of
holonomies of convex real projective structures on S. That is, for every rep-
resentation ρ in RepH(π1(S), PSL(3,R)), there exists an open set Ω in P(R3)
such that Ω/ρ(π1(S)) is homeomorphic to S.

As a consequence of this result, when n = 3, a representation ρ in Hitchin
component preserves a C1-convex curve in P(R3), namely the boundary of the
open set Ω obtained by the previous theorem.

Our first result generalises this last situation. Let us introduce a definition.
A curve ξ with values in P(Rn) is said to be hyperconvex if for any distinct points
(x1, . . . , xn) the following sum is direct

ξ(x1) + . . .+ ξ(xn).

Furthermore, we say a hyperconvex curve is a Frenet curve, if there exists a
family of maps (ξ1, ξ2, . . . , ξn−1) with ξp ⊂ ξp+1, called the osculating flag of ξ,
such that

• ξ = ξ1 and ξp takes values in the Grassmannian of p-planes,

• if (n1, . . . , nl) are positive integers such that
∑i=l

i=1 ni ≤ n, if (x1, . . . , xl)
are distinct points, then the following sum is direct

ξn1(x1) + . . .+ ξnl(xl); (1)

• finally, for every x, let p = n1 + . . .+ nl, then

lim
(y1, . . . , yl) yi all distinct

// x
(

i=l⊕
i=1

ξni(yi)) = ξp(x). (2)
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We observe that for a Frenet hyperconvex curve, ξ1 completely determines ξp.
Also, if ξ1 is C∞, then ξp(x) is generated by the derivatives at x of ξ1 up to
order p− 1. However, in general, a Frenet hyperconvex curve has no reason to
be C∞ although its image is obviously a C1-submanifold. Our main result is
the following

Theorem 1.4 For every representation ρ in a Hitchin component, there exists
a ρ-equivariant hyperconvex Frenet curve from ∂∞π1(S) to P(Rn).

Note that the Veronese embedding from P(R2) to P(Rn) is a SL(2,R)-equivariant
hyperconvex Frenet curve; it corresponds to Fuchsian representations. Our main
theorem therefore says that a curve similar to the Veronese embedding persists
under possibly large deformation of the representation.

We recall that we say that a representation ρ of Γ with values in a semi-
simple Lie group G is purely loxodromic if, for every γ in Γ different from the
identity, ρ(γ) is conjugate to an element in the interior of the Weyl chamber.
For G = PSL(n,R), this just means that the eigenvalues of ρ(γ) are real with
multiplicity 1. For G = PSL(2, C), we recover the classical definition. As a
consequence of the techniques involved in the proof, we also obtain

Theorem 1.5 Every representation in Hitchin component is discrete, faithful
and purely loxodromic.

This theorem is a generalisation of a classical result for Teichmüller Space.
It also bears some ressemblance to a recent, beautiful result of M. Burger, A.
Iozzi and A. Wienhard [3], announced while the second draft of this paper was
completed. They prove in particular that surface group representations with
maximal Toledo invariant also have discrete images. Although the methods
and the target groups are different (so that the results have non empty intersec-
tion, although neither contains the other), it appears that dynamical ideas quite
similar to those appearing in this paper can be applied to their situation, im-
proving some geometrical aspects [?]. It is also quite surprising that two classes
of groups, namely isometry groups of Hermitian symmetric spaces on the one
hand, and SL(n,R) (and quite plausibly all real split forms) on the other hand,
have some common features, not shared for instance with PSL(2,C).

We will also prove in paper [22] that the mapping class group acts properly
on the Hitchin component

We will also state converses and refinements of these results in Section 4. We
will now describe more precisely the structure of this paper, before proceeding
to discussions and conjectures.

I wish to thank Bill Goldman, Nigel Hitchin, Rick Kenyon and Frédéric
Paulin for many useful discussions and the interest they have shown in this
work. I would also like to thank David Fried for an enlightening comment on
structural stability, Olivier Biquard for help on Higgs bundles. Alessandra Iozzi
and Marc Burger are warmly thanked for pointing out an error in the original
version of this paper. Finally Graham Smith is more than warmly thanked for
comments on my english.
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1.1 Summary

We describe briefly the content of the main sections of this article.

• 2: Geometric Anosov flows. We introduce in this section the notion
of Anosov structure which are “geometric structure” related to flows. Our
main aim in this paper is to describe the representations in Hitchin com-
ponent in terms of holonomies of such structures. As a preliminary, we
will show how such holonomies form an open set in the space of represen-
tations.

• 3: Quasi-Fuchsian and Anosov representations. This geometric
structure is specified to the case of study rank 1 subgroups of semi-simple
Lie groups, and more specifically the irreducible copy of PSL(2,R) in
PSL(n,R). We introduce quasi-Fuchsian representations as deformations
of Fuchsian representations. In a similar way as for classical quasi-Fuchsian
representations in PSL(2,C), limit curves appear of taking values in the
flag manifold instead of CP1 as in the “classical“. The properties of these
curves will play a central role in the sequel.

• 4: Statement of the main results. With all the basic notions in hand,
we can state the main results of this paper: first, that the limit curve of
a quasi-Fuchsian representation is built from a hyperconvex curve and,
second, that every representation in Hitchin component is quasi-Fuchsian.
We also state converse results.

• 5: Hyperconvex curves. In this section, we study more specifically
hyperconvex curves and prove in general that they admit “left” and “right”
osculating flags. This section is independent of the rest of this paper.

• 6: Preserving hyperconvex curves. We prove that a representation
preserving a hyperconvex curve is the holonomy of an Anosov structure.

• 7: Curves and Anosov representations. This is the core of the the
article: we prove in Corollary 7.2 that the limit curve of certain Anosov
representations is the osculating flag of a Frenet hyperconvex curve .

• 8: Anosov representations, 3-hyperconvexity and Property (H)
In the core of the proof of the previous result, certain properties to be
satisfied by limit curves were introduced. We study here their relations
with quasi-Fuchsian representations.

• 9: Closedness. We show that the set of quasi-Fuchsian representations
is closed in the space of all representations. This permits us to conclude
the proofs of our main results.

• 10: Appendix: some lemmas.

4



1.2 Further discussions and conjectures

This section is rather programmatic containing various announcements and pre-
cise conjectures. This section should be skipped by a reader interested in con-
crete results. It is a rather random collection of remarks aimed at suggesting how
many aspects of Teichmüller theory considered as a dictionary between various
fields of mathematics should extend to the study of Hitchin components.

1.2.1 Crossratios: n = ∞

In a subsequent article, currently under preparation [21], we explain the relation
between Hitchin components and crossratios on π1(S). We define a crossratio
on π1(S) is a real Hölder function b defined on (∂∞π1(S))4 \ {(x, y, z, t)/x =
w, z = y} satisfying the following rules

b(x, y, z, t) =
b(x, y, z, w)
b(x,w, z, t)

,

b(x, y, z, t) = b(x, t, z, y)−1,

b(x, y, z, t) = b(z, t, x, y).

As an example of crossratio, one has the classical projective crossratio and the
crossratio associated by J.-P. Otal to a negatively curved metric on S [26].
These have been extensively studied U. Hamenstädt in [15] (Note however our
definition includes more general crossratios than those defined by Otal and that
some of their results are not true in our generality).

For a complete description of various aspects of crossratios, one is advised to
read F. Ledrappier’s presentation [23]. Associated to a crossratio are numbers
called periods. If γ is an element of π1(S), let γ+ (resp. γ−) be the attracting
(resp. repelling) fixed point of γ on ∂∞(π1(S)). We define the period l(γ) of γ
by

∀y ∈ ∂∞(π1(S)), l(γ) = log |b(γ+, γ−, y, γy)|.

It turns out that a crossratio is completely determined by its set of periods
which in the case of Otal’s crossratio is just the collection of lengths of the
corresponding closed orbits.

The main result of our article [21] explains that there exists a correspondence
between representations in a Hitchin component and crossratios satisfying some
functional relations, one for each n, which are completely explicit but technical
to state. Under this correspondence, the period of γ is equal to

log(
λmax(ρ(γ))
λmin(ρ(γ))

),

where ρ is the corresponding representation and λmax(A) (resp. λmin(A)) is the
largest (resp. smallest) real eigenvalue of the matrix A. According to this result,
each component RepH(π1(S), PSL(n,R)) embeds in the space of all crossratios,
which may be considered as a candidate for RepH(π1(S), PSL(∞,R)). This is
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a rather mysterious picture, but is has the advantage of (almost) describing
Hitchin component as a space of objects, crossratios, that may be thought as
“geometric structures” on the surface.

Following discussions with Nigel Hitchin, we have found that this picture is
coherent with a conjectural picture of his. Namely, he suggested to consider
the group SL(∞,R) as the group of symplectic diffeomorphisms of G = RP1 ×
RP1\∆. On our dynamical side, a crossratio defines a measure, equivalent to the
Lebesgue measure, on G. For instance, the choice of a negatively curved metric
defines a symplectic form on the space of geodesics by symplectic reduction, and
this space is identified with G via the identification of S1 with the boundary at
infinity. This measure is trivially invariant under the action of π1(S). It follows
that after the conjugation by a homeomorphism sending the measure associated
to the crossratio to the “standard measure” on G, we obtain a representation
of π1(S) in the group of symplectic homeomorphisms of G. It is striking that
these two pictures coming from different areas of mathematics agree.

1.2.2 Universal Hitchin components: g = ∞

One observes that Theorem 1.4 allows us to let the genus g of the surface tend to
infinity an thus provides an extension of the theory of the universal Teichmüller
space. Indeed, we may consider the space T (n) of all Frenet hyperconvex curves
in P(Rn), this is a natural candidate for the universal Hitchin component, gen-
eralising the group of quasi-symmetric homeomorphisms when n = 2. Here are
some natural questions: how do the various components sit in this space? Does
it have a Kähler geometry?

1.2.3 Frenet curves and integrable systems:

We hope to relate this subject to that of integrable systems. We strongly en-
courage the reader to consult G. Segal’s very clear exposition [30]. Hyperconvex
Frenet curve maybe constructed (at least locally) is through differential equa-
tions. Namely, we consider an nth-order linear differential operator - a Hill
operator - of the following form

L(f) = f (n) + a2f
(n−2) + a3f

(n−3) + . . . an. (3)

If (fi, . . . , fn) are n independent solutions of the equation L(f) = 0, the projec-
tive coordinates given by

[f1, . . . , fn]

define locally a hyperconvex Frenet curve. A different choice of fi yields the
same curve up to a projective transformation. Since the curves in Theorem 1.4
have low regularity (they are usually only C1), they cannot be related to smooth
regular operators like the one in Formula (3). However it would be interesting
to know whether they can described by some operator in a weak sense.

This question is motivated by the following fact: the space of Hill operators
is naturally a symplectic manifold and its Poisson algebra relates to the so-called
W (n)-algebras, where W (2) is the Virasoro Algebra (cf [30])
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Apparently, physicists tend to believe that a Teichmüller theory should hold
for those W (n)-algebras for which Hitchin components would play the role of
Teichmüller spaces [13] [12]. Honestly, I have never understood what they re-
ally expect as a link between W (n)-algebras and Hitchin components. Appar-
ently, the goal is rather to obtain the Hitchin component as a ”double quotient”
of W (n)-algebras analogously to Kontsevich’s result [18] for Virasoro algebra,
rather than to copy the relation of Virasoro algebra with the universal Te-
ichmüller space outlined in our previous discussion.

However, Theorem 1.4 provides at least a relation between W (n)-algebras
and Hitchin component which may well be consistent with the expected picture.
Moreover, the fact that we still have a candidate for a companion to W (∞) as
discussed in the Paragraph 1.2.1, seems appealing.

1.2.4 Holomorphic differentials and the link with Hitchin theory

In order to prove his theorem, N. Hitchin gives explicit parametrisations of
Hitchin components. Namely, given a choice of a complex structure J over a
given compact surface S, he identifies the component RepH(π1(S), PSL(n,R))
with the vector space

Q(2, J)⊕ . . .⊕Q(n, J),

where Q(p, J) denotes the space of holomorphic p-differentials on the Riemann
surface (S, J). The main idea in the proof is first to identify representations
with harmonic mappings as in K. Corlette’s seminal paper [5], (see also [6],
[19]), second to use the fact a harmonic mapping f taking values in a symmetric
space gives rise to holomorphic differentials q2(f), . . . in manner similar to that
in which a connection gives rise to differential forms in Chern-Weil theory.

Can one improve this parametrisation, and in particular eliminate the depen-
dance on the choice of a complex structure and thus obtain a parametrisation
by holomorphic objects invariant under the mapping class group? Here is a
suggestion: a rather standard check shows that the quadratic differential part
q2(f) vanishes exactly when f is minimal. We may now ask whether, fixing the
representation ρ, we can choose in a unique manner a complex structure on S
such that the associated harmonic is actually minimal. Another way to state
this question is the following conjecture which I have discussed many times with
Bill Goldman

Conjecture 1.6 Let ρ be a representation in Hitchin component. For every
complex structure j in Teichmüller space T , let e(j) be the energy of the corre-
sponding harmonic mapping. Then e has a unique minimum.

This conjecture is well known to be true for n = 2. For n = 3, one can
prove it using ideas linking real projective structures, affine spheres, Blaschke
metric as in J. Loftin paper [24] or in the preprint [20]; in order to complete
the circle of ideas contained in these papers, one has just to realise that, for an
affine sphere S, the Blashke metric, seen as a map from S to SL(3,R)/SO(3),
is minimal. For general n, one can at least show that e is proper [22].
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If the last conjecture is true, then following our previous discussion, we would
obtain the following result, which helps to understand the action of the mapping
class group M(S) on Hitchin components

Conjecture 1.7 The quotient RepH(π1(S), PSL(n,R))/M(S) is homeomor-
phic to the total space of the vector bundle E over the Riemann moduli space,
whose fibre at a point J is

EJ = Q(3, J)⊕ . . .⊕Q(n, J).

Again, by the previous discussion this result is true for n = 2 and n = 3. The
fact that the energy is proper would say that the map we can define using
Hitchin’s identfication (described in the beginning of this paragraph) from E to
RepH(π1(S), PSL(n,R))/M(S) is at least surjective.

1.2.5 Compactification

W. Thurston (cf [8]) gives a compactification of Teichmüller space, which has
been extended in many ways. More specifically in [27], A. Parreau gives a
compactification of the set of discrete representations in SL(n,R). Since all
representations in Hitchin component are discrete, her work provides a com-
pactification of RepH(π1(S), PSL(n,R)). It would be interesting to relate this
compactification to Theorem 1.4.

1.2.6 Further extensions and questions

This article only deals with the group PSL(n,R), although Hitchin Theorem 1.2
actually extends to adjoint groups of all real split forms. It is rather tempting
to conjecture that at least Theorem 1.5 extends to this general context. This
is trivial in cases like PSO(n, n + 1) when the corresponding component is a
subset of the component for PSL(n,R).

Another natural extension is to consider surfaces with marked points, the
holonomy around marked points being forced to preserve a full flag. To my
knowledge, even the case n = 3 is not known, although Hitchin’s version has
been studied in [1].

Note however that in their remarkable paper [9], Volodya Fock and Sacha
Goncharov provide a construction and a combinatorial description of a “Te-
ichmüller space” for surfaces with punctures or boundary, as well as coordinates
and Poisson structures. Actually their picture extends to the case of real split
groups. For the moment, although it appears quite plausible, it is clear that
their Teichmüller space is indeed is connected component.

2 Geometric Anosov Flows

Our starting point is to obtain representations in Rep(π1(S), PSL(n,R)) as ho-
lonomies of “geometric structures” associated to flows. For these new geometric
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structures, we prove Proposition 2.1 which is an analog in our context of the
Ehresman-Thurston Holonomy Theorem [25][11] and somewhat implicit in [7],
which states that a deformation of the holonomy representation of a compact
manifold can be obtained through a deformation of the structure.

We then describe an example arising from the consideration of a rank 1
subgroup of a semisimple group, thus making sense of the notion of quasi-
Fuchsian representations. We finally concentrate on the case which is the subject
of this paper, associated to the irreducible copy of PSL(2,R) in PSL(n,R).

As a motivation for our notion of geometric structure, we begin with the
following remark. When one defines a (G,X)-geometric structure on a manifold
M as an atlas modelled on X with transition maps in G, one requires that M
and X have the same dimension and that the charts are homeomorphisms (or at
least submersions in the case of transverse structures to foliations), although this
is not formally necessary. However, if X is allowed to have a larger dimension,
the corresponding “geometric structure” would not be rigid enough and would
be too vague to have a useful meaning. Nevertheless, the presence of a flow and
a subsequent hyperbolic hypothesis will allow us to enlarge the definition in this
direction, and still obtain “rigid” geometric structures.

Before proceeding to the definition, we recall that of a contracting (or dilat-
ing) bundle over a dynamical system.

Let X be a topological space equipped with a flow φt. Let E be a topological
vector bundle over X such that the action of φt lifts to an action of a flow ψt

by bundle automorphisms. Let us assume that E is equipped with a metric g.
The bundle E is contracting (resp. dilating), if there exist positive constants A
and B, such that for every u in E, for every t such that t > 0 (resp. t < 0)

‖ψt(u)‖ ≤ Ae−B|t|‖u‖.

It is useful and classical to remark that if X is compact, then

1. the metric g plays no role, and

2. the parametrisation of the flow plays no role either, that is if we change
the parametrisation of the flow the bundle will remain contracting for this
new flow.

Therefore the property of being contracting or dilating over a compact topo-
logical space X depends only on the orbit lamination L, the bundle E and the
”parallel transport” on E along leaves of L.

2.0.7 (M,G)-Anosov structure

Let M be a manifold equipped with a pair of continuous foliations E±, whose
tangential distributions are E±, such that

TM = E+ ⊕ E−.

Let G be a Lie group of diffeomorphisms preserving these foliations.
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Let V be a manifold equipped with an Anosov flow ψt. Let L be the orbit
foliation. Let Ṽ be a Galois covering of V with covering group Γ.

We shall say that V is A-modelled on M (“A” standing for Anosov), if
there exists a representation ρ of Γ in G, called the holonomy representation,
a continuous map F from Ṽ to M , called the developing map, satisying the
following properties

• Γ-equivariance:
∀γ ∈ Γ, F ◦ γ = ρ(γ) ◦ F,

• Flow invariance:
F ◦ ψt(x) = F (x),

• Hyperbolicity: We consider the induced bundle F± = F ∗E±. By flow
invariance, these bundles are equipped with a parallel transport along the
orbit of ψt (induced for instance by the pull back of any connection on
E±). By Γ-equivariance this parallel transport is invariant under Γ. Our
final hypothesis is that the corresponding lift of the action of ψt on F+

(resp. on F−) is contracting (resp. dilating).

We also say that (V,L) admits an (M,G)-Anosov structure.

2.0.8 Remarks

1. In general, in the examples we shall study, the continuous map F will have
a very low regularity. It will only be Hölder.

2. As we shall see in the proof of Proposition 2.1, it will turn out that the
notion of being A-modelled is fairly rigid. In other words, if we fix the
holonomy representation, the only allowed infinitesimal transformations
of F are translations by ψt.

3. This notion may be linked to another very classical one. We first consider
the associated M -bundle over V generated by ρ, that is, Mρ = (M× Ṽ )/Γ
where the action is the diagonal one. By construction, we have now a
Γ-invariant flow ϕt on M × Ṽ given by ϕt(m, v) = (m,ψt(v)). This flow
gives rise to a flow φt on Nρ lifting ψt. We now observe that F gives rise
to a flow equivariant section of Nρ which we call σF . Our hyperbolicity
condition now just means that σF (V ) is a hyperbolic subset of Mρ with
respect to φt.

From this last observation and the stability of hyperbolic sets, we obtain the
following Proposition

Proposition 2.1 Let M be a manifold equipped with a pair of foliations as de-
scribed above. Let G be the group of diffeomorphisms preserving these foliations.
Let V be a compact manifold equipped with an Anosov flow ψt. Let Ṽ be a Galois
covering with covering group Γ. Let O be the subset of all homomorphisms ρ
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from Γ to G which are holonomy representations of (M,G)-Anosov structures.
Then O is open.

Proof: We use the notations of the previous paragraph. We first have to
prove that σF (V ) is an isolated hyperbolic set of Nρ. That is, we have to find
an isolating neighbourhood U characterised by the property that

σF (V ) =
⋂
n∈Z

φn(U).

We recall that M has a local product structure given by the two foliations E±.
Let us denote by π the fibration Mρ → V described above. We fix for every

x in V a complete Riemannian metric gx on π−1(x) ≈M , which we may assume
depends continuously on x. If π(y) = x, we consider d±y the associated distance
on the leaves E±y through y of the foliations E±. We denote by B±y (ε) the ball
of radius ε on E± centred at y.

SinceM has a local product structure, for every y, we may find a real positive
number ε, such that

• for every x in B+
y (ε), for every t in B−y (ε), the leaves E−x and E+

z have a
unique intersection Gy(x, z) in the ball of centre y and radius 10ε, and

• Gy is a differentiable embedding.

We set
Uy(ε) = Gy

(
B+

y (ε)×B−y (ε)
)
.

Since σF (V ) is compact, we can find ε that satisfies the above conditions for all
y in σF (V ). We now consider the set

U(ε) =
⋃

y∈σF (V )

Uy(ε),

which is a neighbourhood of σF (V ).
For ε small enough, since σF (V ) is a hyperbolic set, there exists positive

constants A and B, such that

∀z, w ∈ B±y (ε),∀t > 0. dy(φ±t(z), φ±t(w)) ≤ dy(z, w)Ae−Bt,

This last condition implies that U is an isolating neighbourhood.
We recall now the strong structural stability theorem for hyperbolic sets (For

instance Theorem 7.4 of C. Robinson’s book [29] in the case of diffeomorphisms
which require the existence of an isolating neighbourhood, or more generally
Theorem 18.2.3 of [16]). By this Theorem, we deduce that σF (V ) is stable. This
exactly means that after a small perturbation ρ̂ of ρ, there exists a hyperbolic
set W of Nρ̂ (of the perturbed flow) and a homeomorphism h from σF (V ) to
W close to the identity which conjugates the flows up to a small time change.

We now prove that there exists a section σ̂ such that W = σ̂(V ). Indeed,
H = π ◦ h ◦ σF is a mapping from V to V , C0-close to the identity which
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conjugates the flows up to a small time change. Since the flow of ψt on V is
Anosov, we deduce that H is an homeomorphism. It follows that π : W → V is
also a homeomorphism. Hence, W is the image of a section σ̂.

Finally, we know that W is a hyperbolic set and recalling that the tangent
spaces to the foliations E± are invariant under the flow, it follows that these tan-
gent spaces remain contracting and dilating bundles after a small perturbation.
Q.e.d.

3 Quasi-Fuchsian and Anosov representations

We now give concrete examples of the situation described above.

3.1 Rank 1 subgroups and geometric Anosov structures

Let G be a semi-simple group and be G the associated Lie algebra. Let H be
a connected rank 1 semi-simple subgroup of G. We consider the unit tangent
bundle of the symmetric space associated to H with its geodesic flow. We are
going to describe geometric Anosov structures carried by this flow.

We introduce some notations.

• Let A be the real split Cartan subgroup of H and Z(A) the centraliser of
A in G. Let Z0(A) be the connected component of Z(A) containing the
identity.

• We denote U = Z0(A). Let M = G/U . We observe that G acts on the
left on M .

• Let U ∩H = W ×A, where the Lie algebra of W is orthogonal to A.

• We recall that the right action of A on H/W is identified with the geodesic
flow of the unit tangent bundle of the symmetric space of H. Let L be
the orbit foliation of this flow.

• Let P+ (resp. P−) be the parabolic subgroup whose Lie algebra is gen-
erated by the eigenvectors of non negative (resp. nonpositive) eigenvalues
of ad(A). Note that M is an open set in G/P+ × G/P−. Let E± be the
pair of foliations coming from this product structure on M .

We are interested in (M,G)-Anosov structures, which we abusively call
(H,G)-Anosov structures.

3.1.1 Fuchsian representations.

Our initial result is the following

Proposition 3.1 Let Γ be a torsion free discrete subgroup of H. Let V =
Γ\H/W . Then (V,L) admits a canonical (H,G)-Anosov structure. The devel-
oping map is the identification of H/W with the left orbit in H of the identity
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class in M . The corresponding holonomy representation is the injection of Γ in
G through H. We call such a representation an (H,G)-Fuchsian representation.

Proof: We let H act by the left on M = G/U . Let m0 be the class of the
identity in M . We define F from H/W to M by

F (g) = gm0.

We consider E the pulled back vector bundle on H defined by

E = F ∗TM.

We also consider the bundles E± arising from the product structure on M . We
wish to prove that the right A action on E± is contracting/dilating. We observe
that H acts by the left on E by an action that lifts the standard left action of
H on H/W . We denote by g∗ the linear map from Em0 to Egm0 associated to
the action of an element g of H.

We recall that W is compact and that Wm0 = m0. We may now choose a
metric qm0 on Em0 invariant under the action of W . We now equip the bundle E
with the metric q defined by qgm0(u, u) = (g∗qm0)(u, u) = qm0(g

−1
∗ (u), g−1

∗ (u)).
This is a well defined metric.

Note that this metric is invariant under the left action and hence under the
action of any discrete subgroup. Furthermore, every left H-invariant metric on
E arises from this construction.

We finally have a right action of A on M commuting with the left H ac-
tion. This action of A preserves globally the orbit F (H/W ). Whenever H/W
is identified with the unit tangent bundle of the symmetric space of H, the
corresponding action of A on H/W is the geodesic flow. We therefore obtain a
right action of A on E. If a is an element of A and q a left H invariant metric,
then q̃ = a∗q is also a H-invariant metric which is completely determined by q.
By construction, we have q̃m0 = Ad(a)qm0 , it thus follows that the action of A
on E± is contracting/dilating. Q.e.d.

3.1.2 Anosov, quasi-Fuchsian representations and limit curves.

We now assume that Γ is a cocompact lattice. We define an (H,G)-Anosov rep-
resentation of Γ in G as the holonomy of an (H,G)-Anosov structure on Γ\H/W
with its geodesic flow. We define an (H,G)-quasi-Fuchsian representation in G
as a representation in the connected component of Fuchsian representations of
the set of (H,G)-Anosov representations: therefore, an (H,G)-quasi-Fuchsian
representation is a representation that can be deformed through Anosov rep-
resentations to a Fuchsian one. By Proposition 2.1, the set of (H,G)-Anosov
representations is open. One may check that the (PSL(2,R), PSL(2,C))-quasi-
Fuchsian representations coincides with quasi-Fuchsian representations in the
classical sense. We recall that, in the classical case, a quasi-Fuchsian repre-
sentation preserves a quasi circle on CP 1. We now describe the non-classical
counterpart of this result.
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Proposition 3.2 Let Γ be a cocompact lattice in H. Let ρ be an (H,G)-Anosov
representation of Γ in G. Let ∂∞Γ be the boundary at infinity of Γ. Then, there
exist Hölder ρ-equivariant mappings ξ± from ∂∞Γ to G/P± called the positive
and negative limit curves of ρ. Moreover

• if x 6= y, then ξ+(x) and ξ−(y) are opposite parabolics, and

• if γ+ is an attractive fixed point of γ in ∂∞Γ, then ξ±(γ+) is an attractive
fixed point of ρ(γ) in G/P±.

Proof: By definition of an Anosov structure, the stable and unstable man-
ifolds of φt (along F (Ṽ )) are the right and left orbit foliations by P+ and P−.
Furthermore, these foliations are well known to be Hölder (see Theorem 19.1.6.
of [16])

We therefore have ρ equivariant Hölder maps from Ṽ to G/P+ and G/P−

which are constant along the central stable (resp. unstable) foliations of the
geodesic flow of H/W . Since the space of these central stable leaves is identified
with ∂∞Γ, the result now follows and the final two statements are immediate.

Q.e.d.

3.2 Irreducible copy of PSL(2, R) in PSL(n, R).

From now on we concentrate on the following example. First, we consider
V = US, the unit tangent bundle of a compact hyperbolic surface, and Ṽ the
unit tangent bundle of the universal cover of S. We consider the lamination
L given by the orbit foliation of the geodesic flow. We also consider F± the
central stable and unstable foliations of the geodesic flow. It is well known that
this data depends only on the fundamental group π1(S) of the surface. Indeed
we may describe this data the following way. Let

∆3 = {(x1, x2, x3) ∈ (∂∞π1(S))3/∃i 6= j, xi = xj}.

Let us choose an arbitrary orientation on ∂∞π1(S) and let ∂∞π1(S)3+ be the
space of positively ordered triples. Then the following identification holds

Ṽ = ∂∞π1(S)3+ \∆3

V = (∂∞π1(S)3+ \∆3)/π1(S).

Furthermore, for every x = (x+, x−, x0) in US, the leaf Lx of L through x in Ṽ
is

Lx = {(y+, y−, y0)/y+ = x+, y− = x−}.

Similarly
F±x = {y+, y−, y0)/x± = y±}.

We model these flows on a specific situation, namely we consider

• G = PSL(n,R), and
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• H the image of the irreducible representation of PSL(2,R). We recall
that when n is odd, then the irreducible representation of SL(2,R) factors
through PSL(2,R) and in this case SL(n,R) = PSL(n,R). When n is
even, then −id of SL(2,R) is mapped to −id of SL(n,R). Hence th
embedding of SL(2,R) in SL(n,R) induces an embedding of PSL(2,R)
in PSL(n,R).

In order to simplify our notation we shall speak of n-quasi-Fuchsian representa-
tions (resp. n-Anosov structures), or just quasi-Fuchsian representations when
there is no ambiguity, instead of (H,PSL(n,R))-quasi-Fuchsian representations.

3.2.1 Description of the model

In the case in question, A lies in the interior of the Weyl Chamber and U =
Z0(A) is nothing other than the full Cartan subgroup of G, that is the subgroup
of diagonal matrices in a given basis. It is useful to think of M = G/U as an
open set in Flag × Flag, where Flag is the space of flags.

We recall that a point of M is a family of n lines L = {Li}i∈{1,...,n} in a
direct sum.

3.2.2 A vector bundle description of n-Anosov representations

We immediately have

Proposition 3.3 Let ρ be an n-Anosov representation of π1(S) in PSL(n,R)
which can be lifted to SL(n,R). Let E be the associated Rn bundle over V = US
with its flat connection ∇. Then E splits as the sum of n continuous line bundles
Vi which are parallel along the leaves of L. Moreover, let E+ = (E+

i ) (resp.
E− = (E−i )) be the corresponding positive and negative flag bundles,

E+
i =

j=i⊕
j=1

Vj

E−i =
j=n⊕

j=n−i−1

Vj .

The subbundle E+
i (resp. E−i ) is parallel along F+ (resp. F−). Finally, if we

lift the action of L by the connection, this action is contracting on V ∗i ⊗ Vj for
i > j.

Furthermore, if we lift the vector bundle E over Ṽ and identify this bundle
with the trivial bundle Rn × Ṽ by the flat connection, we have the following
identification with the positive and negative limit curves of ρ

E±(x+,x0,x−) = ξ±(x±). (4)

Conversely, the holonomy of such a connection is an n-Anosov representa-
tion.
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Proof: It suffices to remark that L = (V1, . . . , Vn) is a section of the
associated M = PSL(n,R)/U bundle and the tangent spaces to the associated
foliations are

E+ =
⊕
i>j

(V ∗i ⊗ Vj),

E− =
⊕
i<j

(V ∗i ⊗ Vj).

Q.e.d.

3.2.3 Faithfulness and discreteness

We recall that an element of a semi-simple Lie group is purely loxodromic if it
is conjugate to an element in the interior of the Weyl chamber. In the case of
PSL(n,R), this just means that it is real split with eigenvalues of multiplicity
1.

Although purely loxodromic elements are referred by some as beingstrictly
hyperbolic, we feel this latter terminology may be confusing from the dynami-
cal systems point of view: purely loxodromic elements may well have 1 as an
eigenvalue whereas this is not felt to be compatible with strict hyperbolicity for
a dynamicist.

We then have

Proposition 3.4 Let ρ be an n-Anosov representation. Then, for each γ in
π1(S) different to the identity, ρ(γ) is purely loxodromic. In particular ρ is
faithful. Furthermore if ρ is n-quasi-Fuchsian, it is irreducible and discrete.

Proof: An element is purely loxodromic if it has an attractive fixed point
in the space of flags. Consequently the first assertion of the proposition follows
from Proposition 3.2. Next, ρ is obviously faithful since loxodromic elements
are non trivial. Irreducibility follows from Lemma 10.1 and discreteness from
Lemma 10.4 which are both proved in an independent appendix. Q.e.d.

3.2.4 Basic properties of limit curves and 2-hyperconvexity.

If ρ is an n-Anosov representation, by Proposition 3.2 we obtain two Hölder
mappings ξ+ and ξ− from ∂∞π1(S) into the corresponding homogeneous spaces
G/P+ and G/P−, which in our case are both identified with the space of flags.
Since, for every attracting point γ+ in ∂∞π1(S) of some element γ in π1(S),
ξ± is an attracting point of ρ(γ) in the space of flags and such an attracting
point is unique for a loxodromic element, we conclude that ξ+(γ+) = ξ−(γ+)
and hence, by density of the fixed points, that ξ+ = ξ−.

From now on, we will write

ξ± = ξ = (ξ1, ξ2, . . . , ξn−1).
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Here, ξi takes values in the Grassmannian of i-planes in E = Rn. By definition,
we have

∀x ∈ ∂∞π1(S), ξi(x) ⊂ ξi+1(x).

The curve ξ will be called the limit curve of ρ. We remark that, for x 6= y,
ξ(x) and ξ(y) are transverse flags since they correspond to opposite parabolics
(cf. Proposition 3.2). Hence, we have the following property which we shall call
2-hyperconvexity,

∀x, y ∈ ∂∞π1(S), x 6= y =⇒ ξp(x)⊕ ξn−p(y) = E. (5)

Indeed the curve ξ cannot be completely arbitrary; it must have some prop-
erties. For instance, in the (PSL(2,R), PSL(2,C)) situation, such curves are
quasi-circles. It also follows from S. Choi and W. Goldman’s work that in the
(PSL(2,R), PSL(3,R)) case, the curve ξ1 is C1 and bounds a convex set [4].

4 Statement of the main results

We state now our main theorem concerning the properties of the curve ξ, which
generalises S. Choi and W. Goldman’s result.

4.1 Quasi-Fuchsian representations, limit curves and Hit-
chin components

Our main Theorem is a slight refinement of Theorem 1.4

Theorem 4.1 Let ρ be a representation in a Hitchin component. Then ρ is
quasi-Fuchsian. Furthermore, let

ξ = (ξ1, ξ2, . . . , ξn−1)

be its limit curve. Then ξ1 is a hyperconvex Frenet curve, and ξ is its osculating
flag. Furthermore, for any triple of distinct points (x, y, z) of ∂∞π1(S) the
following sum is direct,(

ξk+1(y) + ξn−k−2(x)
)

+ (ξk+1(z) ∩ ξn−k(x)) = E. (6)

We recall that by definition, ξ is the osculating flag of the hyperconvex Frenet
curve ξ1 if:

• for (x1, . . . , xp) be pairwise distinct points of ∂∞π1(S), p be an integer,
(n1, . . . , nl) be positive integers such that

l =
i=p∑
i=1

ni ≤ n
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, the following sum is direct

i=l∑
i=1

ξni(xi), (7)

• and, for every x ∈ ∂∞π1(S),

lim
(y1,...,yp)→x,yiall distinct

(
i=p⊕
i=1

ξni(yi)) = ξl(x). (8)

As a consequence, ξ is completely determined by ξ1, and ξ1 is a C1 curve.
Theorem 4.1 together with Proposition 3.4 give rise to Theorem 1.5. Theorem
4.1 is proved in Paragraph 9.1.1.

4.2 Converse results

It turns out that the curve ξ1 contains all the information needed to reconstruct
the geometric structure.

Theorem 4.2 Let ρ be a representation of π1(S) in SL(E). Let ξ1 be a ρ-
equivariant continuous map from ∂∞π1(S) to P(E). Assume that for all distinct
points (x1, . . . , xn), we have the following direct sum

ξ1(x1) + . . .+ ξ1(xn) = E.

Then ρ is an n-Anosov representation and ξ1 is the projection in P(E) of the
limit curve ξ of ρ. Finally, ξ1 is a hyperconvex Frenet curve and ξ is its oscu-
lating flag.

This theorem is proved in Paragraph 6.2. Unfortunately, we cannot prove
that every n-Anosov representation is quasi-Fuchsian. To our present knowl-
edge, the set of n-Anosov representations may well not be connected. However,
Olivier Guichard recently proved the following result, which was conjectured in
an earlier version of the present paper and which gives a complete geometric
characterisation of Hitchin components [14]

Theorem 4.3 [Guichard] Let ρ be a representation of π1(S) in SL(E). Let
ξ1 be a ρ-equivariant continuous map from ∂∞π1(S) to P(E). Suppose that for
all distinct points (x1, . . . , xn), we have the following direct sum

ξ1(x1) + . . .+ ξ1(xn) = E.

Then the representation ρ is in the Hitchin component.

These two theorems provide a converse result to Theorem 4.1.

18



5 Hyperconvex curves

5.1 Definition and notations

Let ξ be a map from an interval J to P(E). We say that ξ is hyperconvex, if for
all n-tuples of distinct points (x1, . . . , xn), we have

ξ(x1) + . . .+ ξ(xn) = E.

If p ≤ n, and if X = (x1, . . . , xp) is a p-tuple of distinct points, we will write

ξ(p)(X) = ξ1(x1)⊕ . . .⊕ ξ1(xp).

We also say that X < x if for all i, xi < x. We write X → x+ as a shorthand
for X → x,X < x. We use a similar convention for X → x−.

We shall actually need a refinement of the notion of hyperconvexity in order
to take into account non continuous maps. Let Ω be an orientation on E. Let ξ
be a, not necessarily continuous, map from an interval J to P(E). We say that
ξ is ∗-hyperconvex if the following sum is direct,

ξ(x1) + . . .+ ξ(xp),

and if, there exists a map ξ̂, the lift of ξ, with values in E \ {0} such that the
following holds

1. for all y in J , ξ̂(y) ∈ ξ(y), and

2. for every l n-tuple of distinct increasing points X = (x1, . . . , xn), we have

Ω(ξ̂(x1), . . . , ξ̂(xn)) ≥ 0.

Note that this last inequality and the first condition actually imply that

Ω(ξ̂(x1), . . . , ξ̂(xn)) > 0. (9)

The existence of this “coherent” lift should be understood in the following
way: the map ξ, though not being continuous, preserves some ordering.

It is also obvious that such a lift exists whenever ξ is continuous. It follows that
every hyperconvex curve defined on a (contractible) interval is in particular
∗-hyperconvex.

For a ∗-hyperconvex curve, and X = (x1, . . . , Xp) a p-tuple, we write

ξp(X) = ξ(x1)⊕ . . .⊕ ξ(xp),
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5.2 Left and right osculating flags

The main result of this section is the following

Lemma 5.1 Let ξ be an ∗-hyperconvex map from J to P(E). Assume that the
sequence {Xm}m∈N (resp. {Ym}m∈N ) converges to (x1, . . . , xp) (resp. (y1, . . . , yn−p))
with

x1 ≤ . . . ≤ xp < y1 ≤ y2 . . . ≤ yn−p.

Assume also that {ξ(p)(Xm)}m∈N (resp. {ξ(n−p)(Ym)}m∈N) converges to F
(resp. G).

Then

F ⊕G = E. (10)

Furthermore, for every p, with n ≥ p ≥ 1, there exist maps ξp
+ and ξp

− from
J to Gr(p,E) such that

lim
X→x±

ξ(p)(X) = ξp
±(x), (11)

lim
(z,y)

z 6=y→ x±
(ξ(z)⊕ ξp

±(y))) = ξp+1
± (x), (12)

ξp
±(x) ⊂ ξp+1

± (x). (13)

Finally, if ξp
+ = ξp

−, then both maps are continuous and

lim
X→x

ξ(p)(X) = ξp
±(x), (14)

In particular, if ξ1+ = ξ1−, then both maps are equal to ξ and the latter is con-
tinuous.

We shall begin with some preliminaries concerning increasing maps before
proving the lemma.

5.3 Increasing maps

We clarify some properties of increasing maps. Let p an arbitrary integer. Let
I be an oriented interval. We define

I(p) = {(x1, . . . , xp) ∈ Ip/xi ≤ xi+1}.

We define partial orderings on I(p) by

(x1, . . . , xp) ≤ (y1, . . . , yp) iff ∀i, xi ≤ yi,

(x1, . . . , xp) < (y1, . . . , yp) iff ∀i, xi < yi,

We also define
Î(p) = {(x1, . . . , xp) ∈ Ip/xi < xi+1}.
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Let f be a map from Î(p) to R. We say that f is increasing if for every
(x1, . . . , xp) in Î(p) and for every j,

xj−1 < z < y < xj+1 =⇒
f(x0, . . . , xj−1, z, xj+1, . . . , xp) ≤ f(x0, . . . , xj−1, y, xj+1, . . . , xp).

Note that this immediately implies

X ≤ Y =⇒ f(X) ≤ f(Y ).

For f an increasing map and X in I(p), we define

f+(X) = inf
Y >X

f(Y )

f−(X) = sup
Y <X

f(Y ).

The next proposition summarises the properties that we shall need in the sequel.
All these properties are immediate.

Proposition 5.2 Suppose that f is increasing. Then

f−(X) = lim
Y

Y <X→ X

(f(Y )) (15)

f+(X) = lim
Y

Y >X→ X

(f(Y )) (16)

f−(X) ≤ f+(X) (17)
f+(X) ≤ f−(Y ), if X < Y, (18)
f−(X) ≥ f+(Y ), if X > Y. (19)

Finally, suppose that f+ = f− are everywhere equal. Then they are both con-
tinuous and

lim
Y→X

f(Y ) = f+(X).

5.4 ∗-Hyperconvex curves and increasing maps

We begin with the following observation which follows at once from hyper-
convexity. Let (y1, . . . , yn−1, w1, w2) be distinct points of the one-dimensional
manifold J . We denote Y = (y1, . . . , yn−1) and W = (w1, w2). Let ξ be a
∗-hyperconvex curve from J to P(E). Then

dim
(
ξ(n−1)(Y ) ∩ ξ(2)(W )

)
= 1. (20)

Let I an interval contained in J \ {w1, w2}. We now consider the map fW{
Î(n−1) → P

(
ξ(2)(W )

)
\ {ξ(w1)}

Y = (y1, . . . yn−1) 7→ ξ(n−1)(Y ) ∩ ξ(2)(W ).
.
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We observe that by Assertion (20), and since

ξ(y1)⊕ . . .⊕ ξ(yn−1)⊕ ξ(w1) = E,

this map is well defined. We now prove

Proposition 5.3 Assume that the lift ξ̂ of ξ is well defined on J . Then, for a
suitable choice of orientations on I and on P

(
ξ(2(W )

)
\ {ξ(w1)}, the map fW

is increasing.

Proof: Let u1 = ξ̂(w1). If y1 < y2 < . . . < yn−1 are in I, by Inequality 9,
we have

Ω(u1, ξ̂(y1), . . . , ξ̂(yn−1)) > 0.
We choose the orientation on ξ(2)(W ) given by the form

ω(w, t) = Ω(ξ̂(y1), . . . , ξ̂(yn−2), w, t).

By Inequality (9), we observe this orientation is independent of the choice of
(y1, . . . , yn−2) in I, provided that

y1 < . . . < yn−2.

This choice gives an ordering on P
(
ξ(2(W )

)
\ {ξ(w1)} in the following way. For

every L in P
(
ξ(2(W )

)
\{ξ(w1)}, we choose x(L) in L such that ω(u1, x(L)) > 0.

Next, we say that L < L′ if

ω(x(L), x(L′)) > 0.

We may now prove that the map fW is increasing. Let

Q = ξ(y1)⊕ . . . ξ(yn−2).

Let z be such that

y1 < y2 < . . . < yj−1 < z < yj < . . . < yn−2.

Let
Lz = fW (y1, . . . , yj−1, z, yj , . . . , yn−2).

Let x̂(z) in Lz be such that

x̂(z) = (−1)n−j−1ξ̂(z) + w(z), w(z) ∈ Q.

Then ω(u1, x̂(z)) > 0. Assume now that

y1 < . . . < yj−1 < z < t < yj < . . . < yn−2.

Then we have,

ω(x̂(z), x̂(t)) = Ω(ξ̂(y1), . . . , ξ̂(yn−2), x̂(z), x̂(t))

= Ω(ξ̂(y1), . . . , ξ̂(yj−1), ξ̂(z), ξ̂(t), ξ̂(yj), . . . , ξ̂(yn−2))
> 0.

Consequently,

fW (y1, . . . , yj−1, z, yj , . . . , yn−2) < fW (y1, . . . , yj−1, t, yj , . . . , yn−2).

Q.e.d.
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5.5 Proof of Lemma 5.1

5.5.1 First step: Assertion (11)

Proof: We use the notations of the previous paragraph. Let p be an integer
less than n. Let x be a point in J , I a small neighbourhood of x and Z =
(y1, . . . , yn−p−1, w1, w2) some tuple of cyclically ordererd points in J \ {x}. Let
us denote Y = (y1, . . . , yn−p−1), W = (w1, w2). By Propositions 5.2 and 5.3,
there exist maps F±p,Y,W from I to P(ξ(2)(W )) such that

lim
X 7→x±

(
(ξ(p)(X)⊕ ξ(n−p−1)(Y )) ∩ ξ(2)(W )

)
= F±p,Y,W (x).

Using the fact that the choice of Z is arbitrary, we now show that there exist
maps ξp

± verifying Assertion (11) characterised by(
ξp
±(x)⊕ ξ(n−p−1)(Y )

)
∩ ξ(2)(W ) = F±p,Y,W (x).

We justify this last point in detail.
This is achieved in two steps. First, we fix Y . Let U be an interval of

Jπ1(S) \ I ∪ Y . We consider the subspace

H±
Y (x) =

∑
W∈U(2)

F±p,Y,W (x).

Note that,∑
W∈U(2)

((
ξ(p)(X)⊕ ξ(n−p−1)(Y )

)
∩ ξ(2)(W )

)
⊂ ξ(p)(X)⊕ ξ(n−p−1)(Y ).

Hence,

dim
( ∑

W∈U(2)

(
ξ(p)(X)⊕ ξ(n−p−1)(Y )

)
∩ ξ(2)(W )

)
≤ n− 1. (21)

We deduce that dim(H±
Y ) ≤ n− 1. We now prove that dim(H±

Y ) = n− 1 and

lim
X 7→x±

(ξ(p)(X)⊕ ξ(n−p−1)(Y )) = H±
Y (x). (22)

Let {Xn}n∈N be a subsequence converging to (say) x+, such that

Pn = ξ(p)(Xn)⊕ ξ(n−p−1)(Y ),

converges to some hyperplane H. By hyperconvexity, we choose w1 in U such
that

H ⊕ ξ(w1) = E.

By hyperconvexity again, we choose (w2, . . . , wn) in U such that

ξ(w1)⊕ . . . ξ(wn) = E.
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Let Wi = (w1, wi). We then observe that

H =
⊕

i

(H ∩ ξ(2)(Wi)).

Since
H ∩ ξ(2)(Wi) = F+

p,Wi,Y
(x).

It follows that H ⊂ H±
Y , hence dim(H±

Y ) ≥ n−1. Combining this with Inequal-
ity (21), we obtain that H = H±

Y , and Assertion (22) now follows.
Our next step uses a similar approach. We consider an interval U not con-

taining x, and we define

ξp
±(x) =

⋂
Y ∈U(n−p−1)

H±
p,Y (x).

Since
ξ(p)(X) ⊂

⋂
Y ∈U(n−p−1)

(ξ(p)(X)⊕ ξ(n−p−1)(Y )),

we obtain

dim ξp
±(x) ≥ p. (23)

We now prove Assertion (11) and that dim ξp
±(x) ≤ p. As before, let again

{Xn}n∈N be a subsequence converging to (say) x+, such that ξ(p)(Xn)⊕ξ(n−p−1)(Y )
converges to some p-plane P . By hyperconvexity, we may now choose (y1, . . . , yn−p)
in U such that

P ⊕ ξ(y1)⊕ . . .⊕ ξ(yn−p) = E.

We denote Yi = (. . . , yj , . . .)j 6=i, and we observe that

P =
⋂
i

(P ⊕ ξ(n−p−1)(Yi)).

In particular, since
P ⊕ ξ(n−p−1)(Yi) = Hp,Yi

(x),

we obtain that ξp
±(x) ⊂ P . Consequently by Inequality (23) ξp

±(x) = P and
Assertion (11) now follows. Q.e.d.

5.5.2 Second step: completion of the proof of Lemma 5.1

Proof: Assume that {Xm}m∈N (resp. {Ym}m∈N) converges to (x1, . . . , xp)
(resp. (y1, . . . , yn−p)) with

x1 ≤ . . . ≤ xp < y1 ≤ y2 . . . ≤ yn−p.

Assume that {ξ(p)(Xm)}m∈N (resp. {ξ(n−p)(Ym)}m∈N) converges to F (resp.
G). We aim to show that

F ⊕G = E. (24)
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We assume the contrary. We thus consider the smallest integerm for which there
exist integers p and q, such that p + q = m, satisfying the following property:
there exist sequences {Xm}m∈N (resp. {Ym}m∈N ) converging to (x1, . . . , xp)
(resp. (y1, . . . , yn−p)) with

x1 ≤ . . . ≤ xp < y1 ≤ y2 . . . ≤ yn−p.

such that

• {ξ(p)(Xm)}m∈N (resp. {ξ(q)(Ym)}m∈N) converges to P (resp. Q), and

• P ∩Q 6= {0}.

Let H = P + Q. For m large enough, we denote Xm = (xm
1 , . . . , x

m
p ) and

Ym = (ym
1 , . . . , y

m
q ), with xm

i < xm
i+1 < ym

j < ym
j+1. We introduce

X−
m = (xm

1 , . . . , x
m
p−1), Y −m = (ym

2 , . . . , y
m
q ).

After extracting a subsequence, we may assume that {ξ(p−1)(X−
m)}m∈N and

{ξ(q−1)(Y −m )}m∈N converge respectively to P− and Q−. By the minimality of
m = p+ q, we obtain

P− ⊕Q = P ⊕Q− = P +Q = H. (25)

By hyperconvexity, we may choose a collection Z = (z1, . . . , zn−p−q) of points
in U , and pair of points W = (w1, w2) not in U such that the following sums
are direct

H + ξ(n−p−q)(Z) + ξ(w1) = E, (26)
P− +Q− + ξ(n−p−q)(Z) + ξ(2)(W ) = E. (27)

Using the notations of Paragraph 5.4, we now consider the family of maps gm

defined by
gm(t) = fW (X−

m, t, Y
−
m , Z).

By Proposition 5.3, all these maps are increasing. Using (25) and (26), we
obtain that

lim
m→∞

(gm(xm
p )) = lim

m→∞
(gm(ym

1 )) = (H ⊕ ξ(n−p−q)(Z)) ∩ ξ(2)(W ) := D.

We recall that
lim

m→∞
xm

p = xp, lim
m→∞

ym
1 = y1.

Since all the maps gm are increasing, it follows that for all t in the interval I
joining xp and y1, we have

lim
m→∞

(gm(t)) = D.
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On the other hand by (27), for all t in I, we have

Wm(t) := ξ(p−1)(X−
m)⊕ ξ(q−1)(Y −m )⊕ ξ(t)⊕ ξ(n−p−q)(Z)

= ξ(p−1)(X−
m)⊕ ξ(q−1)(Y −m )⊕ ξ(n−p−q)(Z)⊕ gm(t).

It thus follows that for all t in I,

ξ(t) ⊂ lim
n→∞

Wm(t) = P− ⊕Q− ⊕ ξ(m−n−2)(Z)⊕D ( E.

This last assertion contradicts the hypothesis of hyperconvexity, hence concludes
the proof of Assertion (10).

Assertions (10) and (11) imply trivially Assertion (13). Finally we observe
that the final assertion concerning the case where ξp

+ = ξp
− is a consequence of

the last statement of Proposition and the result now follows. 5.2.Q.e.d.

6 Preserving hyperconvex curves

We prove the following converse of Proposition 3.3.

Theorem 6.1 Let ρ be a representation of π1(S) in SL(E). Let ξ1 be a ρ-
equivariant ∗-hyperconvex map from ∂∞π1(S) to P(E). Suppose that for all in-
tegers p less than n there exist ρ-equivariant maps ξp

± from ∂∞π1(S) to Gr(p,E)
such that

lim
y→x±

(ξ1(y)⊕ ξp
±(x)) = ξp+1

± (x). (28)

Suppose moreover that if

• {xm}m∈N (resp. {ym}m∈N) converges to x, (resp. to y), with x 6= y,

• p+ q ≤ n and Z = (z1, . . . , zn−p+q) are n− p− q points pairwise distinct
and different from x and y,

• {ξp
+(xm)}m∈N (resp. {ξp

−(xm)}m∈N, {ξq
+(ym)}m∈N) converges to P+ (resp.

to P−, Q),

then

P± ⊕Q⊕ ξ1(z1)⊕ . . .⊕ ξ1(zn−p−q) = E, (29)

As a conclusion, then

• ρ is n-Anosov,

• ξp
+ = ξp

−,

• (ξ1, ξ2−, . . . , ξ
n−1
− ) is the limit curve of ρ.

The following corollary is immediate

26



Corollary 6.2 Let ρ be a representation of π1(S) in SL(E). Let

ξ = (ξ1, . . . , ξn−1)

be a ρ-equivariant continuous map from ∂∞π1(S) to Flag(E). Assume that ξ1

is hyperconvex and that

∀x, y ∈ ∂∞π1(S),∀p, x 6= y =⇒ ξp(x)⊕ ξn−p(y) = E,

lim
y→x

(ξ1(y)⊕ ξp(x)) = ξp+1(x).

Then ρ is n-Anosov and ξ is the limit curve of ρ.

In Paragraph 6.2, we obtain Theorem 4.2 as a corollary to these results.

6.1 Proof of Theorem 6.1

Proof: Let us choose an orientation on ∂∞π1(S). Let

M = {(x, y, w) ∈ ∂∞π1(S)3, distinct and cyclically ordered }.

Note that π1(S) acts properly on M , in such a way that the quotient is compact
and homeomorphic to the unit tangent bundle of the surface S. We write the
generic element x of M as x = (x+, x0, x−). Consider on M the lamination
whose leaves are

Lx+,x− = {(x+, w, x−) ∈M/w ∈ ∂∞π1(S)}.

This lamination is π1(S) equivariant and its quotient is identified with the lam-
ination by leaves of the geodesic flow. Consider also the following 2-dimensional
laminations whose leaves are:

F+
x+

= {(x+, w, y) ∈M/w, y ∈ ∂∞π1(S)}
F−x− = {(y, w, x−) ∈M/w, y ∈ ∂∞π1(S)}.

Now consider the E-associated bundle on M/π1(S) to ρ, also denoted abusively
by E. Consider the subbundles E+

i and E−i of E given by

E+
i (x+,x0,x−) = ξi

+(x+)

E−i (x+,x0,x−) = ξi
−(x−).

Note these bundles are not a priori continuous. The bundle E+
i (resp. E−i )

is parallel along the leaves of F+ (resp. F−). Let V i = E+
i ∩ E−n−i+1. This

1-dimensional subbundle of E is well defined (by Hypothesis (29)), which is
parallel along the leaves of L. We observe that E+

i−1 ⊕ E−n−i is a subspace
supplementary to V i is . We denote by αi a 1-form whose kernel is this supple-
mentary subspace.
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We first define a metric on ((V i)∗ ⊗ V i+1)w. Write w = (x+, x0, x−). Let u
be a nonzero element of V i, z(w) a nonzero element of ξ1(x0). The metric on
((V i)∗ ⊗ V i+1)w is given by

‖φ‖w =
∣∣∣ 〈αi+1|φ(u)〉〈αi|z(w)〉
〈αi+1|z(w)〉〈αi|u〉

∣∣∣.
This metric is well defined since by Hypothesis (29) the following sum is direct

ξj−1
+ (x+) + ξn−j

− (x−) + ξ1(x0),

and in particular for all j,
〈αj |z(w)〉 6= 0.

This metric is obviously independent of the choice of u and z(w). However, for
the moment it is not obvious that this metric is continuous (although, one may
easily show that it is bounded).

We introduce a definition. We say a (Vi)∗ ⊗ Vi+1 is a weakly contracting
bundle for a metric if whenvever σ is a parallel section of (Vi)∗ ⊗ Vi+1 along a
leaf of L, then

lim
x0→x+

‖σ‖(x+,x0,x−) = 0

lim
x0→x−

‖σ‖(x+,x0,x−) = ∞.

We will now prove that (Vi)∗ ⊗ Vi+1 are weakly contracting bundles for this
metric. We observe that a parallel section σ of (Vi)∗ ⊗ Vi+1 along a leaf of L
corresponds to a fixed element φ in (Vi)∗ ⊗ Vi+1. We have

‖φ‖w

‖φ‖t
=

∣∣∣ 〈αi+1|z(t)〉〈αi|z(w)〉
〈αi+1|z(w)〉〈αi|z(t)〉

∣∣∣.
Let w = (x+, x0, x−) and imagine that x0 converges to x+. By Hypothesis (28),
we now may choose z′(w) = α+ β in

ξ1(x0)⊕ E+
i−1 = ξ1(x0)⊕ ξi−1

+ (x+),

with 0 6= α ∈ ξ1(x0) and β ∈ ξi−1
+ (x+) such that z′(w) converges to a nonzero

vector u ∈ ξi
+(x+) ∩ ξn−i+1

− (x−) when x0 converges to x+. We observe that

〈αi+1|z(t)〉〈αi|z(w)〉
〈αi|z(t)〉〈αi+1|z(w)〉

=
〈αi+1|z(t)〉〈αi|z′(w)〉
〈αi|z(t)〉〈αi+1|z′(w)〉

.

To conclude, we remark that

lim
x0→x+

〈αi|z′(w)〉
〈αi+1|z′(w)〉

=
〈αi|u〉
〈αi+1|u〉

= ∞. (30)

A similar reasoning when x0 tends to x−, implies that the bundles are weakly
contracting.
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We may now show that ξp
+ = ξp

−. First, by Hypothesis (29), ξp
−(x+) is the

graph of a homomorphism ψ in Hom(Ep
+, E

p
−) = (Ep

+)∗⊗Ep
−. Since (Ep

+)∗⊗Ep
−

is a weakly contracting bundle and ψ is parallel, in order to prove that ξp
+ = ξp

−,
it suffices to show ‖ψ‖ is uniformly bounded. Let {xm}m∈N be a sequence of
points in M such that {‖ψ‖xm

}m∈N tends to +∞. Since π1(S) acts cocompactly
on M and everything is invariant under π1(S), we can as well assume that
{xm}m∈N converges to y in M . We may extract a subsequence such that

• for all i, {(Vi)xm
}m∈N converges to Wi in Ey.

• {(Ei
±)xm

}m∈N converges to F i
±,

• {ξp
−(xm)}m∈N converges to Q .

By Hypothesis (29), Q is the graph of a map φ from F p
+ to F p

−. In particular,
‖φ‖ is bounded. The contradiction now follows, since

lim
m→∞

(‖ψ‖xm
) = ‖φ‖ 6= ∞.

Now that we know that ξp
+ = ξp

−, we may conclude by Proposition 5.1 that
both maps are continuous. The metric we have defined previously is therefore
continuous. Repeating the argument above for the weakly contracting property,
the limits that we obtain are now uniform. Given that, we obtain that the
bundles are contracting. We perform now this step in more details. To prove
that the bundles (Vi)∗⊗Vi+1 are contracting, we need to show that there exists
a constant t0 > 0, such that if Ψt is the lift of the geodesic flow ψt on M , then
for every vector σ in (Vi)∗ ⊗ Vi+1, we have

∀t > t0, ‖Ψt(σ)‖ ≤ 1
2
‖σ|.

We shall prove this by contradiction. Suppose the contrary. There exists thus
a sequence of points {wn}n∈N of M/π1(S) and a sequence {tn}n∈N converging
to +∞, a sequence {σn}n∈N in ((Vi)∗ ⊗ Vi+1)wn

such that, for all n

‖Ψtn(σn)‖
‖σn‖

≥ 1
2
. (31)

We may now lift the sequence wn to M . Since the action of π1(S) is cocompact,
we may assume the sequence converges to w0 = (x0

+, x
0
0, x

0
−). We define

wn = (xn
+, x

n
0 , x

n
−),

φtn(wn) = (xn
+, y

n
0 , x

n
−).

By assumption

lim
n→∞

(xn
+) = lim

n→∞
(yn

0 ) = x0
+,

lim
n→∞

(xn
0 ) = x0

0,

lim
n→∞

(xn
−) = x0

−
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For all t, let z(t) be a nonzero element in ξ1(t). We have∣∣∣ 〈αi+1|z(xn
0 )〉〈αi|z(yn

0 )〉
〈αi+1|z(yn

0 )〉〈αi|z(xn
0 )〉

∣∣∣ =
‖Ψtn

(σn)‖
‖σn‖

≥ 1
2
. (32)

Given that
lim

n→∞
(ξ1(yn

0 )⊕ ξi(xn
+)) = ξi+1(x0

+),

we obtain as above

lim
n→∞

(
〈αi+1|z(xn

0 )〉〈αi|z(yn
0 )〉

〈αi+1|z(yn
0 )〉〈αi|z(xn

0 )〉
) = 0.

We thus obtain a contradiction. It follows that the bundles are indeed contract-
ing. The conclusion now follows by Proposition 3.3. Q.e.d.

6.2 Proof of Theorem 4.2

Before proceeding to the proof, we shall prove a lemma of independent interest
that will be used in the sequel.

6.2.1 Direct sums and limits

Our first lemma is the following:

Lemma 6.3 Let ξ be the limit curve of an Anosov representation. Suppose
that for all distinct points (x1, . . . , xq) in ∂∞π1(S), and integers (n1, . . . , nq)
with k =

∑
ni ≤ n, the following sum is direct

ξn1(x1) + . . . . . . ξnq (xq).

Suppose moreover that

lim
(x0,x1,...,xl)→x

(
ξn1(x1)⊕ . . . . . . ξnq (xq)

)
= ξk(x). (33)

Then, for all y distinct from (x1, . . . , xq), the following sum is direct

ξn−k(y) + ξn1(x1) + . . . . . .+ ξnq (xq).

Proof: If (y, x1, . . . , xq) is a collection of q + 1 distinct points of ∂∞π1(S), it
is a classical result that there exist two distinct points, t and z, and a sequence
{γn}n∈N of elements of π1(S), such that

∀i ≤ q, lim
n

(γn(xi)) = t,

lim
n

(γn(y)) = z.

Now by 2-hyperconvexity,

ξk(z)⊕ ξn−k(t) = E.
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By Hypothesis (33), for m sufficiently large, we have

ξn−k(γm(y))⊕ ξn1(γm(x1))⊕ . . .⊕ ξnq (γm(xq)) = E.

Since
ξs(γ(w)) = ρ(γ)ξs(w),

The result now follows. Q.e.d.

6.2.2 Proof of Theorem 4.2

From Lemma 5.1 and Theorem 6.1, we deduce immediately that ρ is n-Anosov.
Furthermore, ξ1 is the projection in P(E) of the limit curve ξ of ρ, and we have,
for every x ∈ ∂∞π1(S),

lim
(y1,...,yl)→x,yiall distinct

(
i=l⊕
i=1

ξ1(yi)) = ξl(x). (34)

To conclude the proof of Theorem 4.2, it suffices to verify Assertions (1) and
(2) of the definition of Frenet hyperconvex curve.

We first prove Assertion (1). Let (x1, . . . , xp) be pairwise distinct points of
∂∞π1(S). Let p be an integer. Let (n1, . . . , np) be positive integers such that

k =
i=p∑
i=1

ni ≤ n.

We want to prove that the following sum is direct

ξni(xi) + . . .+ ξnp(xp). (35)

We prove this result by induction on p. By 2-hyperconvexity, it is true for p = 2.
Suppose that it is true for p = q − 1. By Assertion (34), we obtain that

lim
(x1,...,xq−1)→x

(ξn1(x1)⊕ . . .⊕ ξnq−1(xq−1)) = ξk−nq (x). (36)

The induction follows from Lemma 6.3. Finally, Assertion (2) is an immediate
consequence of Assertions (34) and (1). Q.e.d.

7 Curves and Anosov representations.

7.1 Definitions

We introduce some definitions.
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7.1.1 (p, l)-direct.

Let (p, l) be integers such that p + l ≤ n. We say the limit curve ξ (or the
corresponding representation ρ) is (p, l)-direct if for all distinct (y, x0, . . . , xl)
the following sum is direct

ξn−p−l(y) + ξp(x0) + ξ1(x1) + . . .+ ξ1(xl).

Note that to say that the representation is (1, n−1)-direct is equivalent to saying
that ξ1 is hyperconvex.

7.1.2 (p, l)-convergent.

Let (p, l) be integers such that p + l ≤ n. We say that the limit curve ξ (or
the corresponding representation ρ) is (p, l)-convergent if firstly for all distinct
points (x0, . . . , xl) in ∂∞π1(S) the following sum is direct

ξp(x0) + ξ1(x1) + . . .+ ξ1(xl),

and, secondly

lim
(x0,x1,...,xl)→x

(
ξp(x0)⊕ ξ1(x1)⊕ . . .⊕ ξ1(xl)

)
= ξp+l(x).

7.1.3 3-hyperconvexity

We say that the limit curve (or the corresponding representation) is 3-hyperconvex,
if, for k + p+ l ≤ n and distinct (x, y, z), the following sum is direct

ξk(x) + ξp(y) + ξl(z).

7.1.4 Property (H)

We say that the limit curve ξ (or the corresponding representation) satisfies
Property (H), if for every triple of distinct points x, y and z and integer k, we
have

ξk+1(y)⊕ (ξk+1(z) ∩ ξn−k(x))⊕ ξn−k−2(x) = E.

7.2 Main Lemma

As a main step in the proof of Theorem 4.1, we shall prove the following lemma.

Lemma 7.1 Let ξ be the limit curve of an Anosov representation. Suppose that

• ξ is 3-hyperconvex,

• ξ satisfies Property (H).
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Then, ξ is (k, l)-convergent for all integers with k + l ≤ n. In particular, ξ1 is
hyperconvex.

We state a corollary that follows at once from Theorem 4.2 and gives the form
in which this lemma will be used in the sequel. Lemma 7.1

Corollary 7.2 Let ξ be the limit curve of an Anosov representation. Assume

• it is 3-hyperconvex,

• and satisfies Property (H).

Then ξ1 is a hyperconvex Frenet curve, and ξ is its osculating flag.

We begin with an observation that is a consequence of Lemma 6.3:

Lemma 7.3 Let ξ be the limit curve of an Anosov representation. If the rep-
resentation is (p, l)-convergent, then it is (p, l)-direct

7.3 Bundles

In order to prove Lemma 7.1, we will require the vector bundle description of
Proposition 3.3 along with some general preliminary results.

7.3.1 Hyperconvex rank 2 vector bundle

Here we describe the framework in which we will work. We begin by defining
various conventions. Let M be a manifold. For any vector bundle F over M ,
we denote by Fx the fibre at a point x of a vector bundle F , for any foliation L
we denote by Lx the leaf passing through x.

We are first interested in actions on compact manifolds of flows which pre-
serve one dimensional foliations. Namely

• let φt be a flow of homeomorphisms of a compact topological manifold M .

• let F be a 1-dimensional foliation of M with no compact leaves. We
suppose that this foliation is invariant under the flow of φt.

This is for instance satisfied when φt is an Anosov flow and F+ is the stable
(or unstable) foliation of φt.

We are interested in bundles over M and lifting of such actions to actions
on these bundles. We shall say a vector bundle E over M admits a flag action
if it satisfies the following conditions:

• E is a vector bundle of rank 2 equipped with a parallel transport along
the leaves of F ;

• the action of φt lifts to an action ψt by bundle automorphisms on E which
preserves the parallel transport;
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• E admits a direct sum decomposition into continuous oriented subbundles
of rank 1

E = W 1 ⊕W 2.

Moreover this decomposition is invariant under ψt.

• W 2 is parallel along leaves of F .

• Contraction assumption. We assume that (W 1)∗ ⊗W 2 is a contracting
vector bundle for ψt. It follows that if we take a 1-dimensional vector
space L in W 2

x ⊕W 1
x different to W 2

x , then

lim
t→∞

d(ψt(L),W 1
φt(x)) = 0.

We now introduce some notations. Suppose that x and y are on the same
leaf of F . We denote by W 1

x,y the vector subspace of F i
x which is the parallel

transport of W 1
y along the leaf containing x and y. We say that the bundle E

is hyperconvex if and only if, for all distinct z and y in the leaf Fx

W 1
x,z ⊕W 1

x,y = Ex. (37)

Our main lemma is the following

Lemma 7.4 Suppose that the rank 2 vector bundle E equipped with a flag action
is hyperconvex. Then the map Jx{

Fx → P(Ex) \ {W 2
x}

y 7→ W 1
x,y

is a homeomorphism. Moreover, for every x in M

lim
y→∞, y∈Fx

(W 1
xy) = W 2

x .

We begin by describing how this result fits with our framework. Then we
prove a preliminary lemma which permits us to conclude.

7.3.2 Hyperconvex bundles and Anosov representations

Rank 2 vector bundles with a flag action arise naturally from Anosov represen-
tations. Indeed using the notations of Proposition 3.3, we will show that the
bundles E+

k /E
+
k−2 are of this type. More precisely, let E be the vector bundle

associated to an n-Anosov representation with its flat connection as in Propo-
sition 3.3. Let Fk = E+

k /E
+
k−2. We observe that F is equipped with a flat

connection along F+. It is trivial that W 2 = E+
k−1/E

+
k−2 is parallel for this

connection. We may thus identify Fk with E−n−k+2∩E
+
k . In this interpretation,

we have
W 2 = E−n−k+2 ∩ E

+
k−1 = V k−1.

Let
W 1 = E−n−k+1 ∩ E

+
k = V k.

We then have the following
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Proposition 7.5 Let E be the vector bundle associated to an n-Anosov repre-
sentation by Proposition 3.3. Then Fk with the structure described above is a
rank 2 vector bundle equipped with a flag action. Furthermore, using Identifica-
tion (4) of Proposition 3.3, we have

W 1
(x,x0,w),(x,x0,y) = (ξn−k+1(y)⊕ ξk−2(x)) ∩ ξn−k+2(w) ∩ ξk(x). (38)

Finally, the representation satisfies Property (H) if and only if the bundles Fk

are hyperconvex.

Proof: By definition, the bundle Fk (with its flat connection) along the leaf of
F+ passing through (x, x0, w) is identified with the trivial bundle whose fibre is

ξk(x)/ξk−2(x).

We identify ξk(x)∩ξn−k+2(w) with this fibre using the projection along ξk−2(x).
We then get

W 1
(x,x0,w),(x,x0,y) = ((ξn−k+1(y) ∩ ξk(x))⊕ ξk−2(x)) ∩ ξn−k+2(w).

This in turn implies Identification (38). Therefore hyperconvexity is equivalent
to having that for y 6= t

((ξn−k+1(y) ∩ ξk(x))⊕ ξk−2(x)) ∩ ξn−k+2(w)
⊕((ξn−k+1(t) ∩ ξk(x))⊕ ξk−2(x)) ∩ ξn−k+2(w)

= ξk(x) ∩ ξn−k+2(w). (39)

If we add ξk−2(x) to both sides of Equality (39), since ξk−2(x)⊕ξn−k+2(w) = E
by 2-hyperconvexity, we obtain

(ξn−k+1(y) ∩ ξk(x)) + ξk−2(x) + (ξn−k+1(t) ∩ ξk(x)) = ξk(x). (40)

Adding ξn−k(y) to both sides of Equality (40) yields

ξn−k+1(y) + ξk−2(x) + (ξn−k+1(t) ∩ ξk(x)) = E. (41)

For dimensional reasons, the above sum is direct. We thus obtain the following
equality which is nothing else than Property (H),

ξn−k+1(y)⊕ ξk−2(x)⊕ (ξn−k+1(t) ∩ ξk(x)) = E.

Conversely, suppose that Property (H) is satisfied. This implies that taking the
intersection with ξk(x) yields

(ξn−k+1(y) ∩ ξk(x))⊕ ξk−2(x)⊕ (ξn−k+1(t) ∩ ξk(x)) = ξk(x).

Let us denote by π the projection on B = ξn−k−2(w) along A = ξk−2(x). Let
L(m) be the line ξn−k+1(m) ∩ ξk(x). The last assertion can be restated as

L(y)⊕ L(t)⊕A = ξk(x).

Applying π yields

π(L(t))⊕ π(L(y)) = π(ξk(x)) = ξk(x) ∩ ξn−k+2(w).

This is precisely Assertion (39), and the result follows. Q.e.d.
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7.3.3 Invariant subbundle

We begin by making a definition which will be used in the following proof. A
subbundle L of E is said to be invariant if

ψt(Lx) = Lφt(x).

Note that no regularity is assumed on L.

Lemma 7.6 Let L be an invariant subbundle of rank 1 of E = W 1 ⊕ W 2

equipped with a flag action. Suppose that, for some auxiliary (continuous) metric
d on the bundle P(E), we have

∃ε, ∀x ∈M, d(Lx,W
1
x ) > ε > 0.

Then
∀x ∈M, Lx = W 2

x .

We stress again that no regularity is assumed on L.
Proof: This is an immediate consequence of our contraction Assumption

(7). Indeed, if the lemma is not true, for some x, Lx 6= W 2
x . Consequently, our

contraction Assumption (7) implies that for some large positive s

d(Lφs(x),W
1
x ) = d(ψs(Lx),W 1

x ) <
ε

2
.

Q.e.d.

7.3.4 Proof of Lemma 7.4

Proof: By assumption, we know that for y 6= z, we have W 1
x,y ⊕W 1

x,z = Ex.
Therefore the continuous maps Jx are injective. Since P(Ex) is of dimension 1,
the following limits exist (after a choice of orientation on F)

lim
y→+∞

Jx(y) = J+
x

lim
y→−∞

Jx(y) = J−x

We observe moreover that the bundles J± are flow invariant, although not a
priori continuous. In order to conclude, we merely have to show that

J+
x = J−x = W 2

x .

We may assume that F is the orbit lamination of a flow θt. Let us introduce
the continuous bundles L±x = W 1

x,θ±1(x). We observe that for all x, Assumption
(37) implies that L±x 6= W 1

x . Moreover, since all the maps Jx are monotone, J+
x

and W 1
x are not in the same connected component of P(Ex) \ {L−x , L+

x } (and
the same holds for J−x ). It follows that there exists ε > 0 for which

d(J±x ,W
1
x ) ≥ d(L±x ,W

1
x ) ≥ ε.

Finally, Lemma 7.6 implies that for all x, J±x = W 2
x . Q.e.d.
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7.4 Property (H) and hyperconvex bundles

We recall that an n-Anosov representation, with limit curve ξ, satisfies Property
(H), if, for every triple of distinct points x, y and z, and every integer k, we
have

ξk+1(y)⊕ (ξk+1(z) ∩ ξn−k(x))⊕ ξn−k−2(x) = E.

We explain now various ways to verify this property, and use its relation with
hyperconvex bundles to obtain Proposition 7.7 which is the main result of this
section.

7.4.1 The main property

Let x and z be two distinct points of ∂∞π1(S). Let

Gp,x,z = ξn−p+2(z) ∩ ξp(x).

We consider the map Yp,x,z defined by{
∂∞π1(S) \ {x} → P(Gp,x,z) \ {ξp−1(x) ∩ ξn−p+2(z)}

y 7→ (ξn−p+1(y)⊕ ξp−2(x)) ∩Gp,x,z.

Proposition 7.8 explains that this application is well defined. Our main result
in this paragraph is the following Proposition

Proposition 7.7 Suppose that the representation satisfies Property (H). Then,
the map Yp,x,z from ∂∞π1(S) \ {x} to P(Gp,x,z) \ {ξp−1(x) ∩ ξn−p+2(z)} is
surjective.

7.4.2 Construction of the map Y

We use the notation of the previous paragraph

Proposition 7.8 We have

dim(Yp,x,z(y)) = 1, (42)
Yp,x,z(y)⊕

(
ξp−1(x) ∩ ξn−p+2(z)

)
= Gp,x,z. (43)

Furthermore, Property (H) is equivalent to the following assertion

Yp,x,z(t) 6= Yp,x,z(y), . (44)

Proof: From Identification (38), we obtain that

W 1
(x,x0,w),(x,x0,y) = Yk,x,w(y).

All the above results follow from Paragraph 7.3.2. Q.e.d.
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7.4.3 Proof of Proposition 7.7

Proof: From Proposition 7.5, we know that, if the representation satisfies
Property (H), the bundles Fk = Ek/Ek−2 are hyperconvex. Moreover by Iden-
tification (38), we get that

W 1
(x,x0,w),(x,x0,y) = Yk,x,w(y).

Proposition now 7.7 follows from Lemma 7.4. Q.e.d.

7.5 Proof of Lemma 7.1

7.5.1 Preliminary facts: case l = 1.

Let ξ be the limit curve of the Anosov representation ρ. Let (z, x, x0, x1, y) be
distinct points of ∂∞π1(S). Write X = (z, x, x0, x1). We introduce

Uy,x0 = (ξn−k(y)⊕ ξk−1(x0) ∩ ξn−k+1(z)),
Zx0,x1 = (ξk−1(x0)⊕ ξ1(x1)) ∩ ξn−k+1(z).

We first observe that due to 2-hyperconvexity (cf. Assertion (5)) the sums in
the definition of Zx0,x1 and Uy,x0 are indeed direct. We now prove

Lemma 7.9 If ξ is a limit curve of a 3-hyperconvex quasi-Fuchsian represen-
tation, then

dim(Zx0,x1) = 1
dim(Uy,x0) = n− k.

Moreover,

Zx0,x1 ⊕ Uy,x0 = ξn−k+1(z).

Proof: Let
Cy = ξn−k(y)⊕ ξk−1(x0).

Let π be the projection along B = ξk−1(x0) onto A = ξn−k+1(z). We observe
that 2-hyperconvexity implies that A⊕B = E. We recall that

π(W ) = (W +B) ∩A.

In particular

π(Cy) = Cy ∩A = Uy,x0

π(ξ1(x1)) = Zx0,x1 .

We begin by computing the dimensions of Zx0,x1 and Uy,x0 . We first observe
that

dimZx0,x1 = dim(π(ξ1(x1)) ≤ 1.
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By 2-hyperconvexity, the following sum is direct

ξ1(x1) + ξk−1(x0)︸ ︷︷ ︸
B

.

Hence
ξ1(x1) 6⊂ B,

and
dim(Zx0,x1) = 1.

We now consider Uy,x0 . We know that

dim(Cy) = n− 1.

Next, since the curve is assumed to be 3-hyperconvex, we have

ξn−k(z)︸ ︷︷ ︸
⊂A

⊕ ξk−1(x0)⊕ ξ1(y)︸ ︷︷ ︸
⊂Cy

= E.

Hence
A+ Cy = E,

and
A 6⊂ Cy.

Hence,

dim(Uy,x0) = dim(π(Cy)) = dim(Cy ∩A) = dim(A)− 1 = n− k.

Finally, since the curve is 3-hyperconvex,(
ξn−k(y)⊕ ξk−1(x0)

)︸ ︷︷ ︸
Cy

⊕ ξ1(x1) = E. (45)

Applying π to both sides of Formula (45) yields

Zx0,x1 + Uy,x0 = ξn−k+1(z).

The result now follows. Q.e.d.

7.5.2 Proof of Lemma 7.1: case l = 1

We concentrate on the case l = 1 of Lemma 7.1. We prove

Lemma 7.10 Suppose that the limit curve ξ of the Anosov representation ρ is

• 3-hyperconvex, and

• satisfies Property (H).

Then it is (k, 1)-convergent for all k.
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Proof: We prove this Lemma by induction on n − k and use the following
induction hypothesis

lim
(x0,x1)→x

(
ξk(x0)⊕ ξ1(x1)

)
= ξk+1(x). (46)

Due to 2-hyperconvexity, this result is true for k = n− 1. We aim to prove

lim
(x0,x1)→x

(
ξk−1(x0)⊕ ξ1(x1)

)
= ξk(x). (47)

We recall that, by 2-hyperconvexity, for z 6= x,

ξk−1(x)⊕ ξn−k+1(z) = E. (48)

As in the previous paragraph, we introduce

Zx0,x1 = (ξk−1(x0)⊕ ξ1(x1)) ∩ ξn−k+1(z),
Uy,x0 = (ξn−k(y)⊕ ξk−1(x0)) ∩ ξn−k+1(z),

B = ξn−k+1(z),
Gx,z = B ∩ ξk+1(x).

Using the notations of the previous paragraph, since ξk−1(x0) converges to
ξk−1(x), by Assertion (48) we first observe Assertion (47) follows from

lim
(x0,x1)→x

Zx0,x1 = ξn−k+1(z) ∩ ξk(x).

We thus aim now to prove this last assertion. We shall do this by “trapping”
Zx0,x1 using Uy,x0 .

Let V be a connected neighbourhood of x homeomorphic to the interval.
We choose an orientation on V . We say that (x0, x1) tends to x+, (resp. x−) if
x0 > x1 (resp. x0 < x1). Let α ∈ {+,−}. Let Λα

x be the set of accumulation
points of Zx0,x1 when (x0, x1) tends to xα. We note that Λα

x is a connected
subset of P(B). Note that,

Zx0,x1 ⊂ (ξk(x0)⊕ ξ1(x1)) ∩ ξn−k+1(z).

By Hypothesis (46), it follows that the set Λα
x is actually a subset of the pro-

jective space P(Gx,z). Therefore Λα
x is a closed interval of the 1-dimensional

manifold P(Gx,z).
We now choose an auxiliary metric 〈, 〉 on B, a unit vector zx0,x1 depending

continuously on (x0, x1) in Zx0,x1 , a normal vector uy,x0 to Uy,x0 , also depending
continuously on (x0, x1). By Lemma 7.9, we have, after possibly replacing u by
−u), for all y, for X = (x0, x1) close to x,

〈zx0,x1 , uy,x0〉 > 0.

We now consider Λ̂α
x the set of accumulation points of zx0,x1 as (x0, x1) goes to

α.
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We now observe , that for all y, for all w in Λ̂α
x , we have

〈w, uy,x〉 ≥ 0.

Hence, for all y, t, Λ̂α
x is contained in the closure of one of the connected com-

ponents of
Gx,z \

(
(Uy,x ∩Gx,z) ∪ (Ut,x ∩Gx,z)

)
.

However, by Definition 7.4.1

Uy,x ∩Gx,z = Yk+1,x,z(y),

It thus follows that Λα
x is contained in the closure of one of the connected

components of
P(Gx) \ {Yk+1,x,z(y),Yk+1,x,z(t)}.

By Proposition 7.7, we know that the map Yk+1,x,z from ∂∞π1(S) \ {x} to
P(Gk,x,z) \ {ξk(x) ∩ ξn−k+1(z)} is surjective. We thus obtain

Λα
x = {ξk(x) ∩ ξn−k+1(z)}.

Since this is true for every end α, we the result now follows. Q.e.d.

7.5.3 Main Lemma: case l > 1.

The main Lemma 7.1 will follow by an induction process proved in Paragraph
7.5.6 from a combination of Lemma 7.10 and the following statement

Lemma 7.11 Let ξ be the limit curve of a quasi-Fuchsian representation. Let
k and l be integers such that k + l ≤ n and l > 2. We suppose moreover that
the curve is

1. (k, l − 1)-convergent,

2. (k, l)-convergent, and

3. (k − 1, l − 1)-convergent,

Then the curve is (k − 1, l)-convergent.

7.5.4 Preliminary facts: case l > 1

We now suppose that the limit curve ξ satisfies the hypothesis of Lemma 7.11.
That is we suppose that the curve is

1. (k, l − 1)-convergent,

2. (k, l)-convergent,

3. (k − 1, l − 1)-convergent,
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Note that since the curve is (k, l)-direct by Hypothesis (2) and Lemma 7.3, the
following sum is direct for all m with m ≤ k,

ξm(x0) + ξ1(x1) + . . .+ ξ1(xl)). (49)

Let z be a point of ∂∞π1(S). Let Y = (y0, y1, . . . , yl−1 be a l-tuple of cyclically
ordered points of ∂∞π1(S) \ {z}. We define

C(z, Y ) = ξn−k−l(z)⊕ ξk(y0)⊕
i=l−1⊕
i=1

ξ1(xi).

The sum in the definition of C(z, Y ) is direct due to Hypothesis 7.11.(1) and
Lemma 7.3. We also require various some choices of orientation. Let I =
∂∞π1(S) \ {z}. For all p, for all w in I, we choose an orientation on ξp(w)
depending continuously on w. For all k, we choose an arbitrary orientation
on ξk(z). It follows that there exists a family of 1-forms α(z, Y ), depending
continuously on Y , such that

C(z, Y ) = ker(α(z, Y )).

Now, let X = (z, x0, x1, . . . , xl) be a cyclically oriented l+2-tuple of distinct
points of ∂∞π1(S). Let

X+ = (x0, . . . , xl−1)
X− = (x0, . . . , xl−2, xl).

We introduce

U+
X = C(z,X+) ∩ ξn−k−l+2(z),

U−X = C(z,X−) ∩ ξn−k−l+2(z),
ZX = (ξk−1(x0)⊕ ξ1(x1)⊕ . . .⊕ ξ1(xl)) ∩ ξn−k−l+2(z).

By Assertion (49), the sum in the definition of ZX is indeed direct.
We prove

Proposition 7.12 If ξ is the limit curve of a quasi-Fuchsian representation
which satisfies the hypothesis of Lemma 7.11, then

dim(ZX) = 1
dim(U±X ) = n− k − l + 1.

Moreover,

ZX ⊕ U+
X = ZX ⊕ U−X = ξn−k−l+2(z), (50)

and considering orientations, we obtain

[α(z,X+)]|ZX
= −[α(z,X−)]|ZX

. (51)
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Proof: Let

C+ = C(z,X+) = ξn−k−l(z)⊕ ξk(x0)⊕ ξ1(x1)⊕ . . .⊕ ξ1(xl−2)⊕ ξ1(xl−1),
B+ = ξk−1(x0)⊕ ξ1(x1)⊕ . . .⊕ ξ1(xl−2)⊕ ξ1(xl−1),
B− = ξk−1(x0)⊕ ξ1(x1)⊕ . . .⊕ ξ1(xl−2)⊕ ξ1(xl),
C− = C(z,X−) = ξn−k−l(z)⊕ ξk(x0)⊕ ξ1(x1)⊕ . . .⊕ ξ1(xl−2)⊕ ξ1(xl).

Let π± be the projection along B± onto A = ξn−k−l+2(z). By Lemma 7.3 and
Hypothesis 7.11.(3), we obtain that A⊕B± = E. We recall that

π±(W ) = (W +B±) ∩A.

In particular

π±(C±) = C± ∩A = U±X
π+(ξ1(xl)) = ZX ,

π−(ξ1(xl−1)) = ZX .

We first compute the dimensions of ZX and U+
X . We observe that

dimZX = dim(π+(ξ1(xl)) ≤ 1.

However, the following sum is direct (cf Hypothesis 7.11.(2))

ξk(x0) + ξ1(x1) + . . .+ ξ1(xl−1) + ξ1(xl).

It thus follows that the following sum is also direct

ξ1(xl) + ξk−1(x0) + ξ1(x1) + . . .+ ξ1(xl−1)︸ ︷︷ ︸
B+

.

Hence
ξ1(xl) 6⊂ B+,

and
dim(ZX) = 1.

We now consider U+
X , the proof for U−X being similar by symmetry. First, we

know that
dim(C+) = n− 1.

Hypothesis 7.11.(3) and Lemma 7.3 yield

ξn−k−l+2(z)︸ ︷︷ ︸
A

⊕ ξk−1(x0)⊕ ξ1(x1)⊕ . . .⊕ ξ1(xl−1)︸ ︷︷ ︸
⊂C+

= E.

Hence
A+ C+ = E,
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and
A 6⊂ C+.

It thus follows that

dim(U+
X ) = dim(π+(C+)) = dim(C+ ∩A) = dim(A)− 1 = n− k − l + 1.

Finally, by Hypothesis 7.11.(2) and Lemma 7.3, we have(
ξn−k−l(z)⊕ ξk(x0)⊕ ξ1(x1)⊕ . . .⊕ ξ1(xl−1

)︸ ︷︷ ︸
C+

⊕ ξ1(xl) = E. (52)

Applying π+ to both sides of Formula (52) yields

ZX + U+
X = ξn−k−l+2(z).

The same holds for U−X . It finally remains to verify that the orientations on
ZX ⊕ U+

X and ZX ⊕ U−X are opposite. We denote by V the opposite of the
oriented vector space V .

Since (z, x0, . . . , xl) are distinct and cyclically oriented, there exists an arc
t 7→ wt joining xl to xl−1 such that

∀t, wt 6∈ {z, x0, . . . , xl−2}.

Let
Bt = ξk−1(x0)⊕ ξ1(x1)⊕ . . .⊕ ξ1(xl−2)⊕ ξ1(wt).

We observe that, as before, Bt satisfies

Bt ⊕ ξn−k−l+2(z) = E. (53)

We choose an orientation on E such that with respect to this orientation

E = C+ ⊕ ξ1(xl) = . . .⊕ ξ1(xl−1)⊕ ξ1(xl).

We recall that Bt is oriented. We now choose an orientation on ξn−k−l+2(z)
which is compatible with Equation (53). It follows that, considering ξn−k−l+2(z)
as an oriented space, we have

U+
X ⊕ ZX = ξn−k−l+2(z).

Conversely, since

E = C− ⊕ ξ1(xl−1)) = . . .⊕ ξ1(xl)⊕ ξ1(xl−1).

We obtain
U+

X ⊕ ZX = ξn−k−l+2(z).

Q.e.d.
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7.5.5 Proof of Lemma 7.11

We first state the following elementary lemma.

Lemma 7.13 Let E be a vector space, Let {Ln}n∈N be a sequence of oriented
lines converging to an oriented line L∞. Let {Pn}n∈N be a sequence of ori-
ented hyperplanes converging to an oriented hyperplane P∞. Suppose that the
following sums are direct with opposite orientations

Ln ⊕ P2n = Ln ⊕ P2n+1.

Then L∞ ⊂ P∞.

Proof: We choose an auxiliary metric g on E. Let un be the positive unit
vector in Ln. Let vn be the normal unit vector to Pn. By the hypothesis, we
obtain

g(un, v2n).g(un, v2n+1) < 0.

Therefore, by passing to the limit, we find that g(u∞, v∞) = 0. Q.e.d.

We now proceed to the main proof. We shall always assume that

(z, x0, x1, . . . , xl)

are distinct and positively cyclically ordered. As before, we choose an orientation
on ξp(w) depending continuously on w in ∂∞π1(S) \ {z}. We suppose the
following hypotheses

lim
(x0,...,xl)→x

(
ξk(x0)⊕ ξ1(x1)⊕ . . .⊕ ξ1(xl)

)
= ξk+l(x), (54)

lim
(x0,...,xl)→x

(
ξk(x0)⊕ ξ1(x1)⊕ . . .⊕ ξ1(xl−1)

)
= ξk+l−1(x), (55)

lim
(x0,...,xl−2)→x

(
ξk−1(x0)⊕ ξ1(x1)⊕ . . .⊕ ξ1(xl−1)

)
= ξk+l−2(x). (56)

We may actually assume that the limit in Assertion (55) is a limit as oriented
vector spaces. We aim to prove that

lim
(x0,...,xl)→x

(
ξk−1(x0)⊕ ξ1(x1)⊕ . . .⊕ ξ1(xl)

)
= ξk+l−1(x). (57)

We use the notations and results of the preceding paragraph.
By Hypothesis (56), Assertion (57) reduces to

lim
(x0,...,xl)→x

ZX = ξn−k−l+2(z) ∩ ξk+l−1(x).

Our aim is to now prove this last assertion. We shall do this by “trapping” ZX

using U±X .
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Let Λx be the set of accumulation points of ZX when (x0, . . . , xl) tends to
x. We note that Λx is a subset of P(ξn−k−l+2(z)). We recall that

ZX ⊂ ξk(x0)⊕ ξ1(x1)⊕ . . .⊕ ξ1(xl).

By Hypothesis (54), the set Λx is actually a subset of the projective space P(W ),
where W = ξn−k−l+2(z) ∩ ξk+l(x).

Finally, by Hypothesis (54)

lim
X→x

(U±X ) = (ξn−k−l(z)⊕ ξk+l−1(x)) ∩ ξn−k−l+2(z)︸ ︷︷ ︸
D

.

We observe that by 2-hyperconvexity ξn−k−l+2(z) + ξk+1(x) = E. It follows
that D is indeed a hyperplane of ξn−k−l+2(z). We may choose the orientation
on D such the limit is to be considered as a limit oriented vector spaces. By
Equation (51) and Lemma 7.13, we obtain

Λx ⊂ P(D).

The result now follows since

D ∩W =
(
ξn−k−l(z)⊕ ξk+l−1(x)

)
∩ ξn−k−l+2(z) ∩ ξk+l(x)

= ξk+l−1(x) ∩ ξn−k−l+2(z).

Q.e.d.

7.5.6 Final induction

Proof: It remains to prove our main Lemma 7.1, using Lemma 7.10 and
Lemma 7.11. We do this by induction. We say that the limit curve is l-
superconvergent, if it is (k, l)-convergent for all k.

By Lemma 7.10, the limit curve if 1-superconvergent. We assume by in-
duction that the curve is l − 1-superconvergent. By Lemma 7.11 and an easy
induction, in order to prove that the curve is l-superconvergent, it suffices to
show that it is (n − l, l)-convergent. However the curve is (n − l, l)-convergent
precisely when the following sum is direct

ξn−l(x0) + ξ1(x1) + . . .+ ξ1(xl) = E.

Finally the fact that this sum is direct follows from the fact that the curve is
(1, l − 1)-convergent, and (1, l − 1)-direct by Lemma 7.3. All these conditions
are guaranteed by the induction hypothesis. Q.e.d.

8 Anosov representations, Property (H) and 3-
hyperconvexity

We now clarify some relations between Property (H), 3-hyperconvexity, and
Anosov representations. We first say that a representation is S-irreducible if its
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restriction to all finite index subgroups is irreducible. By Lemma 10.1, every
representation in a Hitchin component is S-irreducible. We denote

• A (resp. QF) the space of n-Anosov S-irreducible (resp. quasi-Fuchsian
representation) representations,

• AH (resp. QFH) the space of S-irreducible Anosov (resp. quasi-Fuchsian)
representations satisfying Property (H)

• A3 (resp. QF3) the set of S-irreducible Anosov (resp. quasi-Fuchsian)
representations which are 3-hyperconvex.

The results of this section are summarised in the following proposition.

Proposition 8.1 A3 is open in A. AH is a connected subset of A. Furthermore
QFH = QF , and every Fuchsian representation is 3-hyperconvex.

The proof of Proposition 8.1 proceeds as follows: we prove in the following
paragraph that AH and A3 are open in A, and in the subsequent one we prove
that AH is closed in A; finally we prove that every Fuchsian representation
is 3-hyperconvex and satisfies Property (H). This will conclude the proof of
Proposition 8.1.

8.1 Open

We first make the following obervation.

Proposition 8.2 The sets AH and A3 are open in A.

Proof: This follows at once from the fact that (∂∞π1(S)3\∆)/π1(S) is compact
and that the conditions defining 3-hyperconvexity and Property (H) are open
in the corresponding product of flag manifolds. Q.e.d.

8.2 Closed

The aim of this paragraph is to prove the following assertion.

Proposition 8.3 The set AH is closed in A.

Proof: We consider ρ an S-irreducible Anosov representation limit of repre-
sentations in AH . Let ξ be the associated curve, and Y = Yk,x,z the associated
map defined as in Paragraph 7.4.1. By Proposition 7.8, it suffices to prove that
Y is injective. Since Y is a limit of continuous injective maps of a 1-dimensional
manifold into another, Y is monotone.

Therefore, if Y fails to be injective, there is an open set U in ∂∞π1(S) on
which it is constant. We will prove that this would lead to a contradiction.
Indeed we obtain the following property which contradicts Lemma 10.2.

Assertion. There exists some (n− k − 1)-plane A, such that

∀y ∈ U, dim ξk+1(y) ∩A ≥ 1. (58)
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We first observe that

Y(y) = (ξk+1(y)⊕ ξn−k−2(z)) ∩Gk,x,z

= (ξk+1(y)⊕ ξn−k−2(z)) ∩ ξn−k(z) ∩ ξk+2(x)
= ((ξk+1(y) ∩ ξn−k(z))⊕ ξn−k−2(z)) ∩ ξk+2(x).

Since ξk+2(x) is supplementary to ξn−k−2(z), we have

Y(y) = Y(t) =⇒ P (y) = P (t),

where
P (y) = (ξk+1(y) ∩ ξn−k(z))⊕ ξn−k−2(z).

Note that P (y) has dimension n−k−1. We thus obtain Assertion (58). Q.e.d.

8.3 Back to Fuchsian representations

We now prove that QFH is not empty. To be precise

Lemma 8.4 Every Fuchsian representation satisfies Property (H).

Proof: We first observe that for every pair of distinct points x and z the
following sum is direct

ξk+1(z) + ξn−k−2(x).

Consequently, the following is also direct,

(ξk+1(z) ∩ ξn−k(x)) + ξn−k−2(x) = P (z, x).

It follows that if a Fuchsian representation does not satisfy Property (H), then
there exists a triple of distinct points (x, y, z) such that

dim(ξk+1(y) ∩ P (z, x)) > 0.

In the case of a Fuchsian representation, the limit curve is the Veronese embed-
ding and is equivariant under the whole action of SL(2,R). Since SL(2,R) acts
transitively on the set of triples of distinct points, we find that there exists an
n− k − 1- plane P (namely P (z, x) for some x and z) a such that for every y,

dim(ξk+1(y) ∩ P ) > 0.

It follows that there exist a k + 1-plane Q such that for every A in SL(2,R),

dim(ρ(A)Q ∩ P ) > 0.

This last assertion contradicts Proposition 10.3. Q.e.d.

Actually, one could prove the previous proposition by an explicit compu-
tation. Indeed, we may identify ∂∞π1(S) \ {x} with RP1 \ {∞} = R, The
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irreducible representation of SL(2,R) of dimension n is then the representation
on homogeneous polynomials of degree n− 1 in variables t and s. We find that

ξk(x) = {P (s, t)/∃Q such that = (s+ tx)n−kQ(s, t)}.

It is an exercise (left to the reader) to prove the previous proposition using this
construction.

A similar reasoning permits us to obtain

Proposition 8.5 Every Fuchsian representation is 3-hyperconvex.

9 Closedness

In this section, we aim to prove the following result

Lemma 9.1 The set
Ã = A3 ∩ AH

of 3-hyperconvex Anosov representations satisfying Property (H) is closed in the
space of S-irreducible representations.

This lemma will be deduced from Lemma 9.2. We first show that we may obtain
Theorem 4.1 as a corollary to this result.

9.1 Proof of Theorems 4.1

9.1.1 Theorem 4.1

Proof: We merely have to place the previous statements in the correct order.
First, we know by Lemma 10.1 that every representation in a Hitchin component
is S-irreducible. By Proposition 8.1, QFH∩QF3 is open in QF , and thus in the
Hitchin component by Lemma 2.1. Using Proposition 8.1 a second time, we find
that QFH ∩ QF3 is non empty since it contains all Fuchsian representations.
By Lemma 9.1 it is closed. Hence QFH ∩ QF3 coincides with the Hitchin
component. Let ρ be a representation in this component. Let

ξ = (ξ1, ξ2, . . . , ξn−1)

be its limit curve. By Corollary 7.2, we know that if ρ ∈ QFH ∩ QF3 =
RepH(π1(S), PSL(n,R)), ξ1 is a hyperconvex Frenet curve and ξ is its osculating
flag. The result now follows Q.e.d.

9.2 Convergence of limit curves

We aim to prove the following lemma,

Lemma 9.2 Let {ρm}m∈N be a sequence of Anosov representations satisfy-
ing Property (H) converging to an S-irreducible representation ρ. Let ξm =
(ξ1m, . . . , ξ

n−1
m ) be the limit curve of ρm. Then there exists
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• a sequence of homeomorphisms φm of S1 with ∂∞π1(S),

• a monotone map π from S1 to itself,

• an injective map ξ̂1 from S1 to P(E), and

• an injective left continuous orientation preserving map φ0 from ∂∞π1(S)
to S1

such that

• after extracting a subsequence, the sequence of mappings {ξ1m ◦ φm}m∈N
converges to ξ̂1 ◦ π, and

• the map ξ̂1 ◦ φ0 is ρ-equivariant and ∗-hyperconvex.

We first show how this Lemma implies Lemma 9.1. Indeed, by Theorem 4.2
the limit representation is Anosov. Moreover by Proposition 8.1, it satisfies
Property (H). The proof of the lemma itself requires several steps which we now
briefly describe using the notations and the hypothesis of this Lemma.

1. Convergence of the images (Proposition 9.3): there exists a sequence of
homeomorphisms φm of S1 with ∂∞π1(S) such that {ξ1m ◦ φm}m∈N con-
verges to a rectifiable curve ξ1

2. Preliminary facts: we prove various lemmas of independent interest con-
cerning rectifiable curves invariant under group actions.

3. The limit and the boundary at infinity: this is the core of the proof. In
particular Lemma 9.2 is a consequence of Proposition 9.6. We essentially
prove that ξ1 = ξ̂1 ◦ π where ξ̂1 is ∗-hyperconvex and ρ-equivariant, and
π is monotone from S1 to ∂∞π1(S).

From now on, we use the notation of the Lemma. That is, we consider

• a sequence {ρm}m∈N of 3-hyperconvex Anosov representations satisfying
Property (H) converging to a S-irreducible representation ρ, and

• ξm = (ξ1m, . . . , ξ
n−1
m ), the limit curve of ρm.

9.3 Convergence of the images

Proposition 9.3 After passing to a subsequence, there exists a sequence of
homeomorphisms φm of S1 with ∂∞π1(S) such that {ξ1m ◦φm}m∈N converges to
a rectifiable curve ξ1.

Proof: We recall, if c is a curve in P(E), then

length(c) ≤
∫

P (E∗)

](c ∩ P )dµ(P ).
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In our case, by Lemma 7.1, ξ1m is hyperconvex, and we thus obtain

Bm = length(ξ1m) ≤ (dim(E)− 1)µ(P (E∗)) = B.

For every m, let φn be the map from S1 to ∂∞π1(S), such that ξ1m ◦ φm is
the parametrisation with constant arc length equal to Bm. Then the family
{ξ1m ◦ φm}m∈N is a family of B-Lipschitz maps. By Arzela-Ascoli theorem, the
result follows. Q.e.d.

9.4 Preliminary facts

9.4.1 Wormlike

Let Z be a subset of P(E). We define 〈Z〉 to be the vector subspace generated
by all the elements of Z:

〈Z〉 =
∑
u∈Z

u.

Finally, suppose that Γ acts on S1. Let ρ be a faithful representation of Γ in
SL(E). Let ξ be a ρ-equivariant injective map from S1 to P(E). Let

ΓR = {γ ∈ Γ, γ 6= id, ρ(γ) is diagonalisable over R}.

For every γ in ΓR, let Fix(γ) (resp. Fix+(γ)) be the set of (resp. attractive)
fixed points of ρ(γ) in P(E). We define

Λξ,ρ,Γ = {a ∈ S1/∃γ ∈ ΓR, ξ(a) ∈ Fix+(γ)}.

We prove the following lemma.

Lemma 9.4 . Let Γ be a group acting on S1 by orientation preserving home-
omorphisms. Let ρ be an S-irreducible representation of π1(S) in SL(E). Sup-
pose that ξ is a ρ-equivariant rectifiable injective map of finite length from S1

to P(E). Then

(i) ξ(S1) is not included in a finite union of proper vector subspaces of E,

(ii) For every γ in ΓR, S1 \ Fix(γ), has finitely many connected components.

(iii) For every γ in ΓR, there exists a unique γ+ in S1 such that ξ(γ+) ∈
Fix+(γ). In particular, Λξ,ρ,Γ is not empty if ΓR is not empty, and

(iv) if U is a neighbourhood of a point c+ in Λξ,ρ,Γ, then

ξ(U) 6⊂ P0 ∪ P1,

for any proper vector subspaces P0 and P1 of E. In particular, 〈ξ(U)〉 = E.
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Proof: Statement (i) is a consequence of the fact that the connected com-
ponent of the identity of the Zariski closure of ρ(Γ) is irreducible. Indeed, let
E1, . . . , Ep be proper vector subspaces such that

ξ(S1) ⊂ E1 ∪ . . . ∪ Ep.

We may assume that < ξ(S1) ∩ Ei >= Ei. It follows that for every γ in Γ, we
have

γ(Ei) ⊂ E1 ∪ . . . ∪ Ep.

The same property holds for γ in the Zariski closure H of ρ(γ). Let Ek be such
that dim(Ek) = supi(dim(Ei)). Then, for every element g in H close to the
identity, g(Ek) = Ek. It follows that the identity component of H preserves Ek,
and is thus not irreducible. We thus obtain the contradiction.

Let us now describe the action on P(E) of an element f of SL(E) diagonal-
isable over R. We state the following elementary facts leaving the proofs to the
reader.

(a) The stable manifold W of a fixed point z of f in P(E) is described in the
following way. There exists a vector subspace W̃ of E such that W is an
open set in P(W̃ ). Furthermore W is open in P(E), if and only if z is an
attractive fixed point.

(b) Every closed invariant set of f contains a fixed point.

(c) If x is such that fn(x) converges to a and f−n(x) converges to b with
a 6= b, when n goes to infinity, then a and b belong to different connected
components of the space of fixed points of f .

(d) f has at most one attractive fixed point.

We now prove (ii). Let I =]α, β[ be a connected component of S1 \ Fix(γ).
Since γ is orientation preserving I is fixed by γ. Furthermore, by (c), ξ(α) and
ξ(β) belong to different connected components of the space of fixed points of
ρ(γ). Let W be the set of connected components of Fix(ρ(γ)). We find that

length(ξ(I)) ≥ ε0 = inf
A,B∈W,A 6=B

d(A,B).

Since by hypothesis, ξ(S1) has finite length, we obtain (ii).
We now proceed to (iii). Suppose that Fix+(γ) is empty. Note that every

connected component ]α, β[ of S1 \ Fix(γ) is mapped to the stable manifold of
ξ(α) and the unstable manifold of ξ(β) (after a suitable choice of orientation).
Therefore by (a), if Fix+(γ) is empty, then ξ(I) lies in a proper subspace of
E. Since ρ(γ) 6= id, ξ(Fix(γ)) lies in a finite union of proper vector subspaces.
By (ii), it follows that ξ(S1) lies in a finite union of proper vector subspaces of
E. We thus obtain a contradiction to (i). Uniqueness follows from (d) and the
injectivity of ξ.
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We shall now prove (iv) by similar arguments. Let c+ be the point which
is mapped to the attractive fixed point of ρ(γ), with γ ∈ ΓR. Write the finite
decomposition into connected components as follows

S1 \ Fix(γ) =
⊔
i

Vi.

By convention, we assume that V1 and V2 have c+ in their closure. Let i ≥ 3.
The closure of Vi contains an element which is mapped by ξ to a fixed point
c which is neither attractive nor repulsive. The sets Vi lie in the stable (or
unstable) manifold of c. The same holds for ξ(Vi). By (a), it follows that ξ(Vi)
lies in a proper subspace Ei of E, for i ≥ 3.

We now assume that there exists a neighbourhood U of c+, and two proper
vector subspaces P0 and P1 of E, such that

ξ(U) ⊂ P0 ∪ P1.

We choose U small enough so that U ⊂ γ−1(U). Then, for each i, if Qi is a
limit of ρ(γnq )(Pi) for some subsequence nq, we obtain⋃

n∈N
ξ(γ−n(U)) ⊂ Q0 ∪Q1.

However, ⋃
n∈N

γ−n(U) = V1 ∪ V2.

It follows that ξ(S1) lies in the union of Ei for i ≥ 3, Fix(ρ(γ)) and Q0 ∪ Q1,
and we thus obtain a contradiction by (i). Q.e.d.

9.4.2 Weak worm

We now prove a weak version of the preceding Lemma

Lemma 9.5 Let ξ be a rectifiable map from S1 to P(E) parametrised by arc
length. Let ρ be a representation of π1(S) in SL(E). Suppose that ρ is S-
irreducible. Suppose also that ξ(S1) is ρ(π1(S))-invariant. Let x, y be two dis-
tinct points of S1, then one of the connected components I of S1\{x, y} satisfies
〈ξ(I)〉 = E.

The main point here is that ξ is not assumed to be injective. If it were, it would
be a homeomorphism, and we would be able to deduce an action of π1(S) on
S1 such that ξ is ρ-equivariant. The result would then follow by Lemma 9.4.

Proof: We suppose the contrary, in which case both connected components
I0 and I1 of S1 \ {x, y} satisfy

〈ξ(Ii)〉 = Pi ( E.

Consequently ξ(S1) ⊂ P0 ∪ P1. It thus follows by a reasoning similar to that
used in (i) of the previous lemma, which equally well applies in this more general
situation, that ρ is not S-irreducible. We thus obtain a contradiction and the
result follows. Q.e.d.
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9.5 The limit and the boundary at infinity

By Proposition 9.3, we may assume that the sequence of curves {ξ1m}m∈N,
parametrised by the arc-length, converges. In particular, let ξ1 be the limit.
A priori, by using the arc-length parametrisation, we have lost control over the
action of π1(S). We merely know that ξ1(S1) is globally invariant by ρ(π1(S)).
Our aim is now to show that this action is semi-conjugate to the action of π1(S)
on ∂∞π1(S).

We begin by replacing ξ1 by its arc-length parametrisation ξ̂1 so that we
have ξ1 = ξ̂1 ◦ π with π monotone.

We aim to prove

Proposition 9.6 There is an injective left continuous map preserving the ori-
entation ϕ0 from ∂∞π1(S) to S1, such that ξ̂1 ◦ ϕ0 is ρ equivariant and ∗-
hyperconvex.

Note that Proposition 9.6 implies Lemma 9.2. The proof may be divided in the
following steps.

1. We first prove that ξ̂1, when restricted to a certain (non empty) subset Λ,
is “hyperconvex”. This is Proposition 9.5.1;

2. Second, we prove Lemma 9.9 which, combined with the propositions of
the previous section, implies Proposition 9.6.

9.5.1 Λ-Hyperconvexity

We prove the following related two propositions

Proposition 9.7 The map ξ̂1 is injective.

As a consequence, it is a homeomorphism onto its image, and we deduce that
there exists an action of π1(S) on S1 by homeomorphisms such that ξ̂1 is ρ-
equivariant. Let Γ0 the normal subgroup of index 2 of orientation preserving
elements of π1(S). Let

Λ = Λξ,ρ,Γ0 .

We observe that Λ is π1(S) invariant. We shall also prove:

Proposition 9.8 For any n-tuple (x1, . . . , xn) of distinct points of the closed
set Λ, the following sum is direct

i=n∑
i=1

ξ̂1(xi).
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Proof: We write ξ̃1m = ξ1m ◦ φm, so that

lim
m→∞

ξ̃1m = ξ1 = ξ̂1 ◦ π.

We now prove the propositions. We split the proof in two parts, which use very
similar ideas.

Injectivity: proof of Proposition 9.5.1. First we aim to prove that the map
is injective. We suppose the contrary? Let y 6= z be such that ξ̂1(y) = ξ̂1(z).
By Lemma 9.5, since ρ is S-irreducible, one of the connected component J of
∂∞π1(S) \ {y, z} is such that 〈ξ(J)〉 = E.

We may therefore find n points (x1, . . . , xn) in J such that the following
sums are direct

ξ̂1(x1) + . . .+ ξ̂1(xn) = E,

∀i,
∑
i 6=j

ξ̂1(xj) + ξ̂1(y) = E (59)

Let I be an interval containing y and z and none of the xi. For any point
t ∈ {y, z, x1, . . . , xn}, we denote by ṫ a point such that π(ṫ) = t. For any
distinct integers i, j, we write

Wij = (ẋi, ẋj), Yij = (. . . , ẋl, . . .)l 6∈{i,j}.

As in Section 5.4, we may study the maps Fm
ij defined by{

I → P
(
ξ̃
(2)
m (Wij)

)
\ {ξ̃1m(ẋi)}

t 7→
(
ξ̃
(n−2)
m (Yij)⊕ ξ̃1m(t)

)
∩ ξ̃(2)m (Wij).

.

By Assertion (59), we obtain

lim
m→∞

(Fm
ij (ẏ)) =

( ⊕
k 6=i,j

ξ̂1(xk)⊕ ξ̂1(y)
)
∩

(
ξ̂1(xi)⊕ ξ̂1(xj)

)
= lim

m→∞
(Fm

ij (ż)).

By Proposition 5.3, all the maps Fm
ij are monotone. It follows that for all t in

[ẏ, ż], we have
lim

m→∞
(Fm

ij (ẏ)) = lim
m→∞

(Fm
ij (t)).

However, for t in a neighbourhood of y, the following sums are direct

∀i,
∑
i 6=j

ξ̂1(xj) + ξ1(t) = E,

This implies that

lim
m→∞

(Fm
ij (t)) =

( ⊕
k 6=i,j

ξ̂1(xk)⊕ ξ̂1(π(t))
)
∩

(
ξ̂1(xi)⊕ ξ̂1(xj)

)
Hence, for all t in a non empty open set, we have

ξ̂1(t) = ξ̂1(y).
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However, since ξ̂1 is parametrised by arc length and, hence, not locally constant,
this is impossible.

Λ-Hyperconvexity: proof of Proposition 9.8. In this proof, we only use the
following property of the elements of Λ: If U is a neighbourhood of an element of
Λ, ξ(U) is not included in a union of two proper subspaces (cf. Lemma 9.4(iv)).
This property is then true for any element in the closure Λ of Λ.

Let p be the smallest integer less than n (when it exists) such that there
exist p cyclically ordered points (x1, . . . , xp−2, y, z) with xi, y, z,∈ Λ such that
the following sum is not direct

H =
i=p−2∑

i=1

ξ̂1(xi) + ξ̂1(y) + ξ̂1(z).

By Proposition , p ≥ 3. We observe that, by minimality of p, the following sums
are direct and equal

i=p−2∑
i=1

ξ̂1(xi) + ξ̂1(y) =
i=p−2∑

i=1

ξ̂1(xi) + ξ̂1(z) = H. (60)

By our initial observation, we may choose (xp−1, . . . , xn) in an arbitrarily small
neighbourhood J of x1 in Λ such that the following sums are direct

ξ̂1(x1) + . . .+ ξ̂1(xn) = E,

∀i ≥ p− 1,
∑
j 6=i

ξ̂1(xj) + ξ̂1(y) = E

∀i ≥ p− 1,
∑
j 6=i

ξ̂1(xj) + ξ̂1(z) = E. (61)

Let I be an interval containing y and z and none of the xi. As in the previous
proof, for any point t ∈ {x1, . . . , xn, y, z}, we denote by ṫ a point such that
π(ṫ) = t. For any distinct integers i, j, let uslet us write

Wij = (ẋi, ẋj), Yij = (. . . , ẋl, . . .)l 6∈{i,j}.

As in Section 5.4, we study the maps Fm
ij defined for i, j ≥ p− 1, by{

I → P
(
ξ̃
(2)
m (Wij)

)
\ {ξ̃1m(ẋi)}

t 7→
(
ξ̃
(n−2)
m (Yij)⊕ ξ̃1m(t)

)
∩ ξ̃(2)m (Wij).

.

By Assertions (61) and (60), for all i, j ≥ p− 1, we obtain

lim
m→∞

(Fm
ij (ẏ)) =

( ⊕
k 6=i,j

ξ̂1(xk)⊕ ξ̂1(y)
)
∩

(
ξ̂1(xi)⊕ ξ̂1(xj)

)
= lim

m→∞
(Fm

ij (ż)).

By Proposition 5.3, all the maps Fm
ij are monotone. It follows that for all t in

[ẏ, ż], we have
lim

m→∞
(Fm

ij (ẏ)) = lim
m→∞

(Fm
ij (t)).
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Moreover for t in a neighbourhood of y, the following sums are all direct

∀i,
∑
i 6=j

ξ̂1(xj) + ξ1(t) = E,

This implies that

lim
m→∞

(Fm
ij (t)) =

( ⊕
k 6=i,j

ξ̂1(xk)⊕ ξ̂1(π(t))
)
∩

(
ξ̂1(xi)⊕ ξ̂1(xj)

)
.

Hence, for all t in a right neighbourhood U+ of y, we have

i=p−2⊕
i=1

ξ̂1(xi)⊕ ξ̂1(t) =
i=p−2⊕

i=1

ξ̂1(xi)⊕ ξ̂1(y).

Consequently, there exists a proper subspace H+ of E, such that

∀t ∈ U+, ξ̂1(t) ⊂ H+.

By symmetry (using cyclic permutation of (x1, . . . , y, z)), we find that there
exist a left neighbourhood U− of y, and a proper subspace H− of E such that

∀t ∈ U−, ξ̂1(t) ⊂ H−.

We thus obtain a neighbourhood U of y and two proper subspaces H+ and H−

of E such that
∀t ∈ U, ξ̂1(t) ⊂ H− ∪H+.

This contradicts our initial observation, and the result follows. Q.e.d.

9.5.2 Conjugating to the action on the boundary at infinity

We use the framework described in Proposition 9.3. That is we consider

1. a sequence {ρm}m∈M of representations of π1(S) in PSL(E), converging
to ρ, such that for all non trivial γ in π1(S), ρm(γ) is purely loxodromic

2. a sequence of maps {ξ1m}m∈N from ∂∞π1(S) to P(E), such that each ξ1m
is ρm-equivariant,

3. a sequence of homeomorphisms φm of S1 into ∂∞π1(S) such that {ξ1m ◦
φm}m∈N converges to ξ̂1◦π where ξ̂1 is an embedding and π is a monotone
map from S1 to ∂∞π1(S).

We say in this situation that (ξ̂1, ρ) is a good limit. We observe that in this
case, there exists an action ρ of π1(S) on S1 such that ξ̂1 is ρ-equivariant.

The following lemma completes the proof of Proposition 9.6.

Lemma 9.9 Let π1(S) be a surface group. Let ρ be a representation of π1(S)
in SL(E). Suppose that
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• the restriction of ρ to every finite index subgroup is irreducible, and

• there exists a map ξ̂1 from S1 to P(E) such that (ξ̂1, ρ) is a good limit (in
particular every element of ρ(π1(S)) has real eigenvalues).

Then the induced action of π1(S) on S1 for which ξ̂1 is ρ-equivariant is topolog-
ically semi-conjugate to the action of π1(S) on ∂∞π1(S) in the following sense:
there exists an orientation preserving, left continuous, π1(S)-equivariant map
ϕ0 from ∂∞π1(S) to S1.

Finally, ξ̂1 ◦ ϕ0 is ∗-hyperconvex.

Proof: We first observe that ΓR is not empty. Indeed, the connected
component of the Zariski closure of ρ(π1(S)) is irreducible. It therefore contains
a non trivial diagonalisable element. Hence so does ρ(π1(S)). However, since
this element only has real eigenvalues, it follows that ΓR is not empty. Let now
Γ0 be the subgroup of finite index of orientation preserving elements of π1(S)
acting on S1. As before Γ0

R is not empty and invariant by conjugation. As in
Paragraph 9.4.1, let.

Λ = Λξ,ρ,Γ0 ⊂ S1.

By Lemma 9.4(iii) , the set Λ is not empty and is invariant under the action of
π1(S).

Let γ be an element of Γ0
R, we define

• γ+ to be such that ξ(γ+) is the attractive fixed point of ρ(γ). The point
γ+ is well defined by Lemma 9.4.(iii). Let

Λ = {γ+, γ ∈ Γ0
R},

• γ+
0 to be the attractive fixed point of ρ0(γ), and

Λ0 = {γ+
0 , γ ∈ Γ0

R},

We know that

γ+
0 = λ+

0 =⇒ ∃p, q 6= 0, λp = γq =⇒ γ+ = λ+.

We therefore have a well defined map ϕ0, possibly not injective, defined from
Λ0 to Λ. We observe that by the minimality of the action of ρ0(Γ), Λ0 is dense

We now prove that ϕ0 preserves the cyclic ordering. We use our hypothesis
concerning the construction of ξ̂1, in particular that ξ̂1 is a good limit. We
begin with the following observations. By construction, ξ1m(γ+

0 ) is an attractive
fixed point of ρm(γ) (cf Hypotheses (1) and (2)), hence

lim
m→∞

(ξ1m(γ+
0 )) = ξ̂1(γ+) (62)

We now extract a subsequence such that {γ̃+
m}m∈N = {φ−1

m (γ+
0 )}m∈N converges

to a point γ̃+. By Hypothesis (3),

lim
m→∞

(ξ1m(φm(γ̃+
m))) = ξ̂1 ◦ π(γ̃+) (63)
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Combining Assertions (63) and (62), and using the injectivity of ξ̂1 we find
that π(γ̃+) = γ+. It follows that ϕ0 preserves the orientation. Indeed, let
γ, λ and δ be three elements of Γ such that (γ+

0 , λ
+
0 , δ

+
0 ) are cyclically or-

dered. Then so are (φn(γ+
0 ), φn(λ+

0 ), φn(δ+0 )), hence (γ̃+
0 , λ̃

+
0 , δ̃

+
0 ) and finally

(π(γ̃+
0 ), π(λ̃+

0 ), π(δ̃+0 )) = (γ+, λ+, δ+). Since, by minimality, Λ0 is dense and
since ϕ0 preserves the orientation, we may extend it by left continuity to a Γ
equivariant orientation preserving map from ∂∞π1(S) to S1. We finally prove
that ϕ0 is injective. Let

U = {x ∈ S1/ϕ0 is constant on a neighbourhood of x}.

We show that U = ∅. We can observe that U is an open ρ0(π1(S))-invariant
strict subset of ∂∞π1(S). By minimality of the action of π1(S) on ∂∞π1(S)
we conclude that U = ∅. This implies that ϕ0 is strictly monotone, and thus
injective.

It now remains to prove that ξ̂1 ◦ϕ0 is ∗-hyperconvex. First, we observe that
ϕ0(∂∞π1(S)) = Λ. By Proposition 9.5.1, for n distinct points (x1, . . . , xn) of Λ,
the following sum is direct ∑

i

ξ̂1(xi).

This implies the first condition of ∗-hyperconvexity. The second condition on
∗-hyperconvexity is a closed condition and thus follows from the fact that ξ1π
is the limit of {ξ1m ◦ φm} which is a sequence of hyperconvex maps. Q.e.d.

10 Appendix: some lemmas

We prove various lemmas that are used several times throughout this paper.
This appendix is entirely self contained. The following lemma is trivial for
experts in the theory of Higgs field experts and is certainly well known.

Lemma 10.1 If ρ belongs to a Hitchin component, then the connected compo-
nent of the Zariski closure of ρ(π1(S)) is irreducible, or equivalently the restric-
tion of ρ to every finite index subgroup is irreducible.

Proof: We recall the relevant part of Hitchin construction. We consider a
surface S, its canonical bundle K and the holomorphic vector bundle

E = K−n⊗ ⊕K(2−n)⊗ ⊕ . . . . . .Kn⊗.

We consider the Higgs field φ which is a section of End(E) associated to a
companion matrix.

Every representation in a Hitchin component arises from such a Higgs field.
By Lemma 1.2 in [31], the parallel sections of the endomorphism bundle are
exactly those holomorphic sections which commute with the Higgs field. Let
A be such a section. Since A is holomorphic, the first row of its matrix in the
decomposition of E vanishes. It is now easy to verify that a matrix whose first
row vanishes and that commutes with a companion matrix is zero.
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We have thus proved that the endomorphism bundle has no parallel sections,
and hence that the representation is irreducible.

Since the restriction to a finite index subgroup comes from a representation
in a Hitchin component on the corresponding finite cover, the second part of
the lemma follows. Q.e.d.

The following result is used several times.

Lemma 10.2 Let Γ be a surface group. Let ρ be a representation of π1(S) in
SL(n,R). Suppose that there exists a continuous ρ-equivariant map ξk+1 from
∂∞π1(S) to the Grassmannian of k + 1-planes in Rn. Suppose also that there
exists a (n− k)-plane A, and a non empty open set U in ∂∞π1(S) such that

∀y ∈ U, dim(ξk+1(y) ∩A) ≥ 1. (64)

Then the restriction of ρ to a finite index subgroup is not irreducible, or, equiva-
lently, the connected component of the identity of the Zariski closure of ρ(π1(S))
is not irreducible.

Proof: First step. We begin by showing that there exists some (n−k)-plane
B, such that

∀y ∈ ∂∞π1(S), dim(ξk(y) ∩B) ≥ 1. (65)

First, there exists a smaller open subset O of U and an element γ ∈ π1(S) such
that

γi(O) ⊂ γi+1(O)

O∞ =
⋃
i∈N

γi(O) is dense in ∂∞π1(S).

Next, we observe that, for Bi = ρ(γ)−i(A), we have

∀y ∈ γi(O), dim(ξk(y) ∩Bi) ≥ 1.

We now extract from {Bi}i∈N a subsequence which converges to a (n−k)-plane
B. It follows that

∀y ∈ O∞, dim(ξk(y) ∩B) ≥ 1.

Hence, since O∞ is dense, we obtain Assertion (65). The result now follows from
the following proposition applied to G the Zariski closure of ρ(π1(S)). Q.e.d.

Proposition 10.3 Let G be an algebraic subgroup of SL(n,R). If there exist a
k-plane C, and an (n− k)-plane B such that

∀g ∈ G, dim(g(C) ∩B) ≥ 1. (66)

Then the connected component of the identity of G is not irreducible.
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Proof: Let G, C, B be as above. We observe that B+C is a proper subspace,
and B ∩ C is not reduced to {0}. Let g0 be an element of G such that

∀g ∈ G, p := dim(g0(C) ∩B) ≤ dim(g(C) ∩B).

Now, let D = g0(C), and let F be a codimension p − 1 vector subspace of B
such that,

dim(D ∩ F ) = 1.

Note that
∀g ∈ G, dim(g(D) ∩ F ) ≥ 1. (67)

Let G be the Lie algebra of G.
We prove the following assertion which contradicts the irreducibility of the

connected component of the identity of G,

∀α ∈ G, α(D ∩ F ) ⊂ D + F. (68)

Indeed, let (e0, . . . , ek) be a basis of D, and let (u1, . . . , ul) be a basis of F such
that (ul) is a basis of D ∩ F . We observe that

e0 ∧ . . . ∧ ek ∧ u1 ∧ . . . ∧ ul−1 6= 0.

Let h be an element of G. By Assertion (67), we obtain

e0 ∧ . . . ∧ ek ∧ etα(u1 ∧ . . . ∧ ul) = 0.

We now take the first order term in t of the above series. Since

e0 ∧ . . . ∧ ek ∧ ul = 0,

we have,
e0 ∧ . . . ∧ ek ∧ u1 ∧ . . . ∧ ul−1 ∧ α(ul) = 0.

This implies Assertion (68), and the result now follows.Q.e.d.
Finally, the following lemma is of independent interest

Lemma 10.4 Let Γ be a subgroup of SL(n,R) whose elements are all real split.
Suppose that every finite index subgroup of Γ is irreducible. Then Γ is discrete.

Proof: Let G be the Zariski closure of Γ. From the irreducibility hypothesis, it
follows G is semi-simple. Suppose that Γ is not discrete. Since Γ is Zariski dense,
it is a classical result that its closure (for the usual topology) contains one of the
non trivial factors H of G. However the closure of Γ consists of elements whose
elements have only real eigenvalues. This implies that the maximal compact
subgroup of H is reduced to the identity which never happens for a simple Lie
group. we thus obtain a contradiction and the result follows. Q.e.d.
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[15] U. Hamenstädt Cocycles, Hausdorff measures and cross ratios Ergodic
Theory and Dynamical Systems (1997), 17 pp 1061-1081

62



[16] B. Hasselblatt, A.Katok Introduction to the modern theory of dynamical
systems. With a supplementary chapter by Katok and Leonardo Mendoza.
Encyclopedia of Mathematics and its Applications, 54. Cambridge Univer-
sity Press, Cambridge, 1995.

[17] N. Hitchin Lie Groups and Teichmüller spaces. Topology 31 (1992), no. 3,
449–473.

[18] M. Kontsevich The Virasoro algebra and Teichmüller spaces. (Russian)
Funktsional. Anal. i Prilozhen. 21 (1987), no. 2, 78–79

[19] F. Labourie Existence d’applications harmoniques tordues à valeurs dans
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Sémin. Théor. Spectr. Géom., 13, Univ. Grenoble I, Saint-Martin-d’Hères,
1995.

[24] J. Loftin Affine spheres and convex RPn-manifolds. Amer. J. Math. 123
(2001), no. 2, 255–274.

[25] W. L. Lok, Deformation of locally homogeneous spaces and Kleinian groups
Doctoral Thesis, Columbia University 1984

[26] J.-P. Otal Le spectre marqué des longueurs des surfaces à courbure
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