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Abstract

This article relates representations of surface groups to cross ratios.
We first identify a connected component of the space of representations
into PSL(n, R) – known as the n-Hitchin component – to a subset of the
set of cross ratios on the boundary at infinity of the group. Similarly,
we study some representations into C1,h(T) o Diffh(T) associated to cross
ratios and exhibit a ”character variety” of these representations. We show
that this character variety contains all n-Hitchin components as well as
the set of negatively curved metrics on the surface.

1 Introduction

Let Σ be a closed surface of genus at least 2. The boundary at infinity ∂∞π1(Σ)
of the fundamental group π1(Σ) is a one dimensional compact connected Hölder
manifold – hence Hölder homeomorphic to the circle T – equipped with an action
of π1(Σ) by Hölder homeomorphisms.

A cross ratio on ∂∞π1(Σ) is a Hölder function B defined on

∂∞π1(Σ)4∗ = {(x, y, z, t) ∈ ∂∞π1(Σ)4 | x 6= t and y 6= z},

invariant under the diagonal action of π1(Σ) and which satisfies some algebraic
rules. Roughly speaking, these rules encode some symmetry and normalisation
properties as well as multiplicative cocycle identities in some of the variables:

Symmetry: B(x, y, z, t) = B(z, t, x, y),
Normalisation: B(x, y, z, t) = 0 ⇔ x = y or z = t,

Normalisation: B(x, y, z, t) = 1 ⇔ x = z or y = t,

Cocycle identity: B(x, y, z, t) = B(x, y, z, w)B(x,w, z, t),
Cocycle identity: B(x, y, z, t) = B(x, y, w, t)B(w, y, z, t).
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The period of a non trivial element γ of π1(Σ) with respect to B is the following
real number

log |B(γ−, γy, γ+, y)| := `B(γ),

where γ+ (respectively γ−) is the attracting (respectively repelling) fixed point
of γ on ∂∞π1(Σ) and y is any element of ∂∞π1(Σ); as the notation suggests,
the period is independent of y – see Paragraph 3.3.

These definitions are closely related to those given by Otal in [27, 28] and
discussed by Ledrappier in [25] from various viewpoints and by Bourdon in [4]
in the context of CAT(−1)-spaces.

Whenever Σ is equipped with a hyperbolic metric, ∂∞π1(Σ) is identified with
RP1 and inherits a cross ratio from this identification. Thus, every discrete
faithful homomorphism from π1(Σ) to PSL(2,R) gives rise to a cross ratio –
called hyperbolic – on ∂∞π1(Σ). The period of an element for a hyperbolic cross
ratio is the length of the associated closed geodesic. These hyperbolic cross
ratios satisfy the following further relation

1−B(x, y, z, t) = B(t, y, z, x). (1)

Conversely, every cross ratio satisfying Relation (1) is hyperbolic.
The purpose of this paper is to

• generalise the above construction to PSL(n,R)

• give an n-asymptotic infinite dimensional version

A correspondence between cross ratios and Hitchin representations

Throughout this paper, a representation from a group to another group is a
class of homomorphisms up to conjugation1. We denote by

Rep(H,G) = Hom(H,G)/G,

the space of representations from H to G, that is the space of homomorphisms
from H to G identified up to conjugation by an element of G. When G is
a Lie group, Rep(π1(Σ), G) has been studied from many viewpoints; classical
references are [2, 14, 15, 20, 29].

In [23], we define an n-Fuchsian homomorphism to be a homomorphism
ρ from π1(Σ) to PSL(n,R) which may be written as ρ = ι ◦ ρ0, where ρ0 is a
discrete faithful homomorphism from π1(Σ) to PSL(2,R) and ι is the irreducible
homomorphism from PSL(2,R) to PSL(n,R).

In [21], Hitchin proves the following remarkable result: every connected
component of the space of completely reducible representations from π1(Σ) to
PSL(n,R) which contains an n-Fuchsian representation is diffeomorphic to a
ball. Such a connected component is called a Hitchin component and denoted
by

RepH(π1(Σ),PSL(n,R)).
1We emphasise that this terminology is slightly non standard.
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A representation which belongs to a Hitchin component is called an n-Hitchin
representation. In other words, an n-Hitchin representation is a representation
that may be deformed into an n-Fuchsian representation.

In [23], we give a geometric description of Hitchin representations, which is
completed by Guichard [18] (cf. Section 2). In particular, we show in [23] that
if ρ is a Hitchin representation and γ a nontrivial element of π1(Σ), then ρ(γ)
is real split (Theorem 1.5 of [23]). This allows us to define the width of a non
trivial element γ of π1(Σ) with respect to a Hitchin representation ρ as

wρ(γ) = log
(∣∣∣∣λmax(ρ(γ))
λmin(ρ(γ))

∣∣∣∣) ,
where λmax(ρ(γ)) and λmin(ρ(γ)) are the eigenvalues of respectively maximum
and minimum absolute values of the element ρ(γ).

Generalising the situation for n = 2, briefly described in the previous para-
graph, we identify n-Hitchin representations with certain types of cross ratios.
More precisely, for every integer p, let ∂∞π1(Σ)p∗ be the set of pairs

(e, u) = ((e0, e1, . . . , ep), (u0, u1, . . . , up)) ,

of (p+ 1)-tuples of points in ∂∞π1(Σ) such that ej 6= ei 6= u0 and uj 6= ui 6= e0,
whenever j > i > 0.

Let B be a cross ratio and let χpB be the map from ∂∞π1(Σ)p∗ to R defined
by

χpB(e, u) = det
i,j>0

((B(ei, uj , e0, u0)).

A cross ratio B has rank n if

• χnB(e, u) 6= 0, for all (e, u) in ∂∞π1(Σ)n∗ ,

• χn+1
B (e, u) = 0, for all (e, u) in ∂∞π1(Σ)n+1

∗ .

Rank 2 cross ratios are precisely cross ratios satisfying Relation (1) (see Propo-
sition 4.1). Our main result is the following.

Theorem 1.1 There exists a bijection from the set of n-Hitchin representations
to the set of rank n cross ratios. This bijection φ is such that for any nontrivial
element γ of π1(Σ)

`B(γ) = wρ(γ),

where `B(γ) is the period of γ is given with respect to B = φ(ρ), and wρ(γ) is
the width of γ with respect to ρ.

Cross ratios and representations are related through the limit curve in P(Rn)
– see Paragraph 2.3. In [22], we use the relation between cross ratios and Hitchin
representations to study the energy functional. In collaboration with McShane
in [24], we use these relations to generalise McShane’s identities [26]. In [22],
cross ratios also appear in relation with maximal representations, as discussed
in the work of Burger, Iozzi and Wienhard [8, 9] and Bradlow, Garćıa-Prada,
Gothen, Mundet i Riera [6, ?, 7, 12, 17]. In [11], Fock and Goncharov give a
combinatorial description of Hitchin representations.
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A ”character variety” containing all Hitchin representations

Since Hitchin representations are irreducible – cf Lemma 10.1 in [23] – the natu-
ral embedding of PSL(n,R) in PSL(n+1,R) does not give rise to an embedding
of the corresponding Hitchin component. Therefore, there is no natural alge-
braic way – by an injective limit procedure say – to build a limit when n goes
to infinity of Hitchin components. However, it follows from Theorem 1.1 that
Hitchin components sit in the space of cross ratios.

The second construction of this article refines this observation and shows
that all Hitchin components lie in a ”character variety” of π1(Σ) into an infinite
dimensional group H(T).

The group H(T) is defined as follows. Let C1,h(T) be the vector space of
C1-functions with Hölder derivatives on the circle T, and let Diffh(T) be the
group of C1-diffeomorphisms with Hölder derivatives of T. We observe that
Diffh(T) acts naturally on C1,h(T) and set

H(T) = C1,h(T) o Diffh(T).

In Paragraph 6.1.2, we give an interpretation of H(T) as a group of Hölder
homeomorphisms of the 3-dimensional space J1(T,R) of 1-jets of real valued
functions on the circle.

Our first result singles out a certain class of homomorphisms from π1(Σ) to
H(T) with interesting topological properties. Namely, we define in Paragraph
7.2,∞-Hitchin homomorphisms from π1(Σ) to H(T). As part of the definition,
the quotient J1(T)/ρ(π1(Σ)) is compact for an∞-Hitchin homomorphism ρ. In
Paragraph 9.2.2, we associate a real number `ρ(γ) – called the ρ-length of γ –
to every nontrivial element γ of π1(Σ) and every ∞-Hitchin representation ρ.
The ρ-length – considered as a map from π1(Σ) \ {id} to R – is the spectrum of
ρ. In Paragraph 9.2.1, we also associate to every ∞-Hitchin homomorphism a
cross ratio and we relate the spectrum with the periods of this cross ratio.

We denote by HomH the set of all∞-Hitchin homomorphisms. Let Z(H(T))
be the centre of H(T) – isomorphic to R. Our first result describes the action
on H(T) on HomH .

Theorem 1.2 The set HomH is open in Hom(π1(Σ), H(T)). The group

H(T)/Z(H(T)),

acts properly on HomH and the quotient

RepH = Hom(π1(Σ), H(T))/H(T),

is Hausdorff. Moreover, two∞-Hitchin homomorphisms with the same spectrum
and the same cross ratio are conjugated.

Our next result exhibits an embedding of Hitchin components into this char-
acter variety RepH .
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Theorem 1.3 There exists a continuous injective map ψ from every Hitchin
component into RepH such that if ρ is an n-Hitchin representation, then for
any γ in π1(Σ)

`ψ(ρ)(γ) = wρ(γ), (2)

where `ψ(ρ) is the ψ(ρ)-length and wρ is the width with respect to ρ. Moreover,
the cross ratios associated to ρ and ψ(ρ) coincide.

This suggests that the group C1,h(T) o Diffh(T) contains an n-asymptotic ver-
sion of PSL(n,R).

This character variety contains yet another interesting space. Let M be
the space of negatively curved metrics on the surface Σ, up to diffeomorphisms
isotopic to the identity. For every negatively curved metric g and every non
trivial element γ of π1(Σ), we denote by `g(γ) the length of the closed geodesic
freely homotopic to γ.

Theorem 1.4 There exists a continuous injective map ψ from M to RepH ,
such that for any γ in π1(Σ)

`g(γ) = `ψ(g)(γ),

where `ψ(g) is the ψ(g)-length of γ.

The injectivity in this theorem uses a result by Otal [27]. Theorems 1.3 and 1.4
are both consequences of Theorem 11.3, a general conjugation result.

We finish this introduction with a question about our construction. Let H∞
be the closure of the union of images of Hitchin components

H∞ =
⋃
n

RepH(π1(Σ),PSL(n,R)).

Does H∞ contain the space of negatively curved metrics M? How is it charac-
terised?

I thank the referee for a careful reading and very helpful comments concern-
ing the structure of this article.
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2 Curves and hyperconvex representations

We recall results and definitions from [23].

2.1 Hyperconvex and Hitchin representations

Definition 2.1 [Fuchsian and Hitchin homomorphisms] An n-Fuchsian
homomorphism from π1(Σ) to PSL(n,R) is a homomorphism ρ which may be
written as ρ = ι◦ρ0, where ρ0 is a discrete faithful homomorphism with values in
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PSL(2,R) and ι is the irreducible homomorphism from PSL(2,R) to PSL(n,R).
A homomorphism is Hitchin if it may be deformed into an n-Fuchsian homo-
morphism.

Definition 2.2 [Hyperconvex map] A continuous map ξ from a set S to
P(Rn) is hyperconvex if, for any pairwise distinct points (x1, . . . , xp) with p ≤ n,
the following sum is direct

ξ(x1) + . . .+ ξ(xp).

In the applications, S will be a subset of T.

Definition 2.3 [Hyperconvex representation and limit curve] A ho-
momorphism ρ from π1(Σ) to PSL(n,R) is n-hyperconvex, if there exists a
ρ-equivariant hyperconvex map from ∂∞π1(Σ) in P(Rn). Such a map is actually
unique and is called the limit curve of the homomorphism.

A representation is n-Fuchsian (respectively Hitchin, hyperconvex) if, as a
class, it contains an n-Fuchsian (respectively Hitchin, hyperconvex) homomor-
phism.

As an example, we observe that the Veronese embedding is a hyperconvex
curve equivariant under all Fuchsian homomorphisms. Therefore, a Fuchsian
representation is hyperconvex. More generally, we prove in [23]

Theorem. Every Hitchin homomorphism is discrete, faithful and hyperconvex.
If ρ is a Hitchin homomorphism and if γ in π1(Σ) different from the identity,
then ρ(γ) is real split with distinct eigenvalues.

We explain later a refinement of this result (Theorem 2.6). Conversely,
completing our work, O. Guichard [18] has shown the following result

Theorem 2.4 [Guichard] Every hyperconvex representation is Hitchin.

2.2 Hyperconvex representations and Frenet curves

Definition 2.5 [Frenet curve and osculating flag] A hyperconvex curve
ξ defined from T to RPn−1 is a Frenet curve if there exists a family of maps
(ξ1, ξ2, . . . , ξn−1) defined on T, called the osculating flag curve, such that

• for each p, the curve ξp takes values in the Grassmannian of p-planes of
Rn,

• for every x in T, ξp(x) ⊂ ξp+1(x),

• for every x in T, ξ(x) = ξ1(x),

• for every pairwise distinct points (x1, . . . , xl) in T and positive integers
(n1, . . . , nl) such that

∑i=l
i=1 ni ≤ n, then the following sum is direct

ξni(xi) + . . .+ ξnl(xl), (3)
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• finally, for every x in T and positive integers (n1, . . . , nl) such that p =∑i=l
i=1 ni ≤ n, then

lim
(y1,...,yl)→x,yialldistinct

(
i=l⊕
i=1

ξni(yi)) = ξp(x). (4)

We call ξn−1 the osculating hyperplane.

Remarks:

1. By Condition (4), the osculating flag of a Frenet hyperconvex curve is
continuous and the curve ξ1 completely determines ξp.

2. Furthermore, if ξ1 is C∞, then ξp(x) is completely generated by the deriva-
tives of ξ1 at x up to order p− 1.

3. In general a Frenet hyperconvex curve is not C∞.

4. However by Condition (4), its image is a C1-submanifold and the tangent
line to ξ1(x) is ξ2(x).

We list several properties of hyperconvex representations proved in [23].

Theorem 2.6 Let ρ be an hyperconvex homomorphism from π1(Σ) to PSL(E)
with limit curve ξ. Then:

1. The limit curve ξ is a hyperconvex Frenet curve.

2. The osculating hyperplane curve ξ∗ is hyperconvex.

3. The osculating flag curve of ξ is Hölder.

4. Finally, if γ+ is the attracting fixed point of γ in ∂∞π1(Σ), then ξ(γ+),
(respectively ξ∗(γ+)) is the unique attracting fixed point of ρ(γ) in P(E)
(respectively P(E∗)).

2.2.1 A smooth map

As a consequence of Theorem 2.6, we obtain the following

Proposition 2.7 Let ρ be a hyperconvex representation. Let

ξ = (ξ1, . . . , ξn−1),

be the limit curve of ρ. Then, there exist

• A C1 embedding with Hölder derivatives η = (η1, η2) from T2 to P(Rn)×
P(R∗n),
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• two representations ρ1 and ρ2 from π1(Σ) in Diffh(T), the group of C1-
diffeomorphisms of T with Hölder derivatives,

• a Hölder homeomorphism κ of T,

such that

1. η1(T) = ξ1(∂∞π1(Σ)) and η2(T) = ξn−1(∂∞π1(Σ)),

2. each map ηi is ρi equivariant,

3. the sum η1(s) + η2(t) is direct when κ(s) 6= t,

4. κ intertwines ρ1 and ρ2.

Proof: By the Frenet property, ξ1(∂∞π1(Σ)) and ξn−1(∂∞π1(Σ)) are a C1

one-dimensional manifold. Let η1 (respectively η2) be the arc-length parametri-
sation of ξ1(∂∞π1(Σ)) (respectively ξn−1(∂∞π1(Σ))). Let

κ = (η2)−1 ◦ ξ1 ◦ (ξn−1)−1 ◦ η1.

The result follows. Q.e.d.

3 Cross ratio, definitions and first properties

3.1 Cross ratios and weak cross ratios

Let S be a metric space equipped with an action of a group Γ by Hölder home-
omorphisms and

S4∗ = {(x, y, z, t) ∈ S4 | x 6= t and y 6= z}.

Definition 3.1 [Cross ratio] A cross ratio on S is a Hölder R-valued function
B on S4∗, invariant under the diagonal action of Γ and which satisfies the
following rules

B(x, y, z, t) = B(z, t, x, y), (5)
B(x, y, z, t) = 0 ⇔ x = y or z = t, (6)
B(x, y, z, t) = 1 ⇔ x = z or y = t, (7)
B(x, y, z, t) = B(x, y, z, w)B(x,w, z, t), (8)
B(x, y, z, t) = B(x, y, w, t)B(w, y, z, t). (9)

Definition 3.2 [Weak cross ratio] If B – non necessarily Hölder – satisfies
all relations except (7), we say that B is a weak cross ratio. If a weak cross
ratio satisfies Relation (7), we say that the weak cross ratio is strict. A weak
cross ratio that is strict and Hölder is a genuine cross ratio.
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In this article, we shall only consider the case where S = T, or S = ∂∞π1(Σ)
equipped with the action of π1(Σ). In [24], we extend and specialise this defini-
tion to subsets of T.

We give examples and constructions in Section 4.

Definition 3.3 [Period] Let B be a weak cross ratio on ∂∞π1(Σ) and γ be a
nontrivial element in π1(Σ). The period `B(γ) is defined as follows. Let γ+

(respectively γ−) be the attracting (respectively repelling) fixed point of γ on
∂∞π1(Σ). Let y be an element of ∂∞π1(Σ). Let

`B(γ, y) = log |B(γ−, γy, γ+, y)|. (10)

Relation (8) and the invariance under the action of γ imply that `B(γ) = `B(γ, y)
does not depend on y. Moreover, by Equation (5), `B(γ) = `B(γ−1).

Remarks:

1. The definition given above does not coincide with the definition given
by Otal in [28] and studied by Ledrappier, Bourdon and Hamenstädt in
[25, 4, 19]. We in particular warn the reader that our cross ratios are
not determined by their periods contrarily to Otal’s [28]. Apart from
the choice of multiplicative cocycle identities rather than additive and the
requirement of the symmetry B(z, t, x, y) = B(x, y, z, t) which both have
mild consequences, we more crucially do not require that B(x, y, z, t) =
B(y, x, t, z). This allows more flexibility as we shall see in Definition 9.9
and breaks the period rigidity.

2. However, if B(x, y, z, t) is a cross ratio according to our definition, so is
B∗(x, y, z, t) = B(y, x, t, z), and finally log |BB∗| is a cross ratio according
to Otal’s definition. We explain the relation with negatively curved metrics
discovered by Otal in Section 4.3.

3. Ledrappier’s article [25] contains many viewpoints on the subject, in par-
ticular the link with Bonahon’s geodesic currents [3] as well as an accurate
bibliography.

4. Triple ratios. The remark made in this paragraph is not used in the
article Let B be a cross ratio. For every quadruple of pairwise distinct
points (x, y, z, t), the expression

B(x, y, z, t)B(z, x, y, t)B(y, z, x, t),

is independent of the choice of t. We call such a function of (x, y, z) a triple
ratio. Indeed, in some cases, it is related to the triple ratios introduced by
A. Goncharov in [16]. A triple ratio satisfies the (multiplicative) cocycle
identity and hence defines a bounded cohomology class in H2

b (π1(Σ)).
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4 Examples of cross ratio

In this section, we recall the construction of the classical cross ratio on the
projective line and explain that various structures such as curves in projective
spaces and negatively curved metrics on surfaces give rise to cross ratios. In
some cases, the periods are computed explicitly. We also explain a general
symplectic construction.

4.1 Cross ratio on the projective line

Let E be a vector space with dim(E) = 2. The classical cross ratio on P(E),
identified with R ∪ {∞} using projective coordinates, is defined by

b(x, y, z, t) =
(x− y)(z − t)
(x− t)(z − y)

.

The classical cross ratio is a cross ratio according to Definition (3.1). It also
satisfies the following rule

1− b(x, y, z, t) = b(t, y, z, x). (11)

This extra relation completely characterises the classical cross ratio. Moreover,
this (simple) relation is equivalent to a more sophisticated one which we may
generalise to higher dimensions

Proposition 4.1 For a cross ratio B, Relation (11) is equivalent to

(B(f, v, e, u)− 1)(B(g, w, e, u)− 1) = (B(f, w, e, u)− 1)(B(g, v, e, u)− 1). (12)

Furthermore, if a cross ratio B on S satisfies Relation (12), then there exists
an injective Hölder map ϕ of S in RP1, such that

B(x, y, z, t) = b(ϕ(x), ϕ(y), ϕ(z), ϕ(t)).

Proof: Suppose first that B satisfies Relation (11). By Relation (8), it also
satisfies (12):

(B(f, v, e, u)− 1)(B(g, w, e, u)− 1)
= B(u, v, e, f)B(u,w, e, g) by (11)
=
(
B(u, v, e, w)B(u,w, e, f)

)(
B(u, v, e, g)B(u,w, e, v)

)
by (8)

=
(
B(u, v, e, w)B(u,w, e, v)

)(
B(u, v, e, g)B(u,w, e, f)

)
= B(u,w, e, f)B(u, v, e, g) by (8)
= (B(f, w, e, u)− 1)(B(g, v, e, u)− 1) by (11).

Conversely, suppose that a cross ratio B satisfies Relation (12). We first prove
that

B(f, v, k, z) =
(B(v, w, e, u)−B(f, w, e, u))(B(z, w, e, u)−B(k,w, e, u))
(B(v, w, e, u)−B(k,w, e, u))(B(z, w, e, u)−B(f, w, e, u))

. (13)

12



Indeed, we first have

B(f, v, e, u) =
(B(f, w, e, u)− 1)(B(g, v, e, u)− 1)

B(g, w, e, u)− 1
+ 1.

Setting g = v, we obtain

B(f, v, e, u) =
1−B(f, w, e, u)
B(v, w, e, u)− 1

+ 1

=
B(v, w, e, u)−B(f, w, e, u)

B(v, w, e, u)− 1
. (14)

We have

B(f, v, k, z) =
B(f, v, e, z)
B(k, v, e, z)

by (9)

=
(
B(f, v, e, u)
B(f, z, e, u)

)(
B(k, z, e, u)
B(k, v, e, u)

)
by (8)

=
B(f, v, e, u)B(k, z, e, u)
B(k, v, e, u)B(f, z, e, u)

. (15)

Applying Relation (14) to the four right terms of Equation (15), we obtain
Equation (13).

Let (w, e, u) be a triple of pairwise distinct points in S, and let ϕ be the map
from S to RP1 – identified with R ∪ {∞} – defined by

ϕ = ϕ(w,e,u)

{
S → R ∪ {∞},
x 7→ B(x,w, e, u),

where by convention B(w,w, e, u) =∞.
We now observe that ϕ has the same regularity as B. This is obvious in

S \ {w}, and for x in the neighbourhood of w we use that

B(x, u, e, w) =
1

B(x,w, e, u)
.

The normalisation Relation (7) implies that ϕ is injective. Indeed

B(x,w, e, u) = B(y, w, e, u) =⇒ B(x,w, y, u) = 1 =⇒ x = y.

By construction and Equation (13), we have

B(x, y, z, t) = b(ϕ(x), ϕ(y), ϕ(z), ϕ(t)).

This in turn implies that B satisfies Relation (11) and completes the proof of
the proposition Q.e.d.
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4.2 Weak cross ratios and curves in projective spaces

We now extend the previous discussion to higher dimension. Let E be an n-
dimensional vector space. Let ξ and ξ∗ be two curves from a set S to P(E) and
P(E∗) respectively, such that

ξ(y) ∈ ker ξ∗(z)⇔ z = y. (16)

We observe that a hyperconvex Frenet curve ξ and its osculating hyperplane ξ∗

satisfy Condition 16. In the applications, S will be a subset of T.

Definition 4.2 [Weak cross ratio associated to curves] For every x in
S, we choose a nonzero vector ξ̂(x) (respectively ξ̂∗(x)) in the line ξ(x) (respec-
tively ξ∗(x)). The weak cross ratio associated to (ξ, ξ∗) is the function Bξ,ξ∗ on
S4∗ defined by

Bξ,ξ∗(x, y, z, t) =
〈ξ̂(x), ξ̂∗(y)〉〈〈ξ̂(z), ξ̂∗(t)〉
〈ξ̂(z), ξ̂∗(y)〉〈ξ̂(x), ξ̂∗(t)〉

.

Remarks:

• The definition of Bξ,ξ∗ does not depend on the choice of ξ̂ and ξ̂∗.

• Bξ,ξ∗ is a weak cross ratio.

• Let x, z be distinct points S and V = ξ(x) ⊕ ξ(z). For any m in S, let
ζ(m) = ker ξ∗(m) ∩ V . Let bV be the classical cross ratio on P(V ), then

Bξ,ξ∗(x, y, z, t) = bV (ξ(x), ζ(y), ξ(z), ζ(t)).

• As a consequence, Bξ,ξ∗ is strict if for all quadruple of pairwise distinct
points (x, y, z, t),

ker(ξ∗(z)) ∩
(
ξ(x)⊕ ξ(y)

)
6= ker(ξ∗(t)) ∩

(
ξ(x)⊕ ξ(y)

)
.

Finally, we have

Lemma 4.3 Let (ξ, ξ∗) and (η, η∗) be two pairs of maps from S to P(Rn) ×
P(R∗n), satisfying Condition (16), such that ξ∗ and η∗ are hyperconvex. Assume
that

Bη,η∗ = Bξ,ξ∗ .

Then there exists a linear map A such that ξ = A ◦ η.

Proof: We assume the hypotheses of the lemma. Let (x0, x1, . . . , xn) be a
tuple of n + 1 pairwise distinct points of S. Let u0 be a nonzero vector in
ξ∗(x0) and let U = (û1, . . . , ûn) be the basis of E∗ such that ûi ∈ ξ∗(xi) and
〈u0, ûi〉 = 1. The hyperconvexity of ξ∗ guaranty the existence of U .
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The projective coordinates of ξ(y) in the dual basis of U are

[. . . : 〈ξ(y), ûi〉 : . . .] = [. . . :
〈ξ(y), ûi〉
〈ξ(y), û1〉

: . . .]

= [. . . :
〈ξ(y), ûi〉
〈ξ(y), û1〉

〈u0, û1〉
〈u0, ûi〉

: . . .]

= [. . . : Bξ,ξ∗(y, xi, x0, x1) : . . .]. (17)

Symmetrically, let v0 be a non zero vector in η∗(x0) and let V = (v̂1, . . . , v̂n) be
the basis of E∗ such that v̂i ∈ η∗(xi) and 〈v0, v̂i〉 = 1.

Let A be the linear map that sends the dual basis of V to the dual basis of
U . By Equation 17, for all y ∈ S, we have that ξ(y) = A(η(y)). The result now
follows Q.e.d.

4.3 Negatively curved metrics and comparisons

We now explain Otal’s construction of cross ratios associated to negatively
curved metrics on surfaces [27, 28]. Let g be a negatively curved metric on
Σ which we lift to the universal cover Σ̃ of Σ. Let (a1, a2, a3, a4) be a quadruple
of pairwise distinct points of ∂∞π1(Σ) = ∂∞Σ̃. Let cij be the unique geodesic
from ai to aj . We choose nonintersecting horoballs Hi centred at each point ai
and set

Oij = Σ̃ \ (Hi ∪Hj).

Let `ij be the length of the geodesic arc cij ∩ Oij . Otal’s cross ratio of the
quadruple (a1, a2, a3, a4) is

Og(a1, a2, a3, a4) = `12 − `23 + `34 − `41.

This number is independent on the choice of the horoballs Hi and is a cross
ratio according to Otal’s definition.

Definition 4.4 [Cross ratio associated to negatively curved metric]
The cross ratio associated to g according to definition is defined as follows. For
a cyclically ordered 4-tuple of distinct, we take the exponential of Otal’s cross
ratio

Bg(a1, a2, a3, a4) = eOg(a1,a2,a3,a4).

For noncyclically ordered 4-tuple, we introduce a sign compatible with the sign
of the classical cross ratio.

Remarks:

1. The function Bg satisfies the rules 3.1 and the period of an element γ is
the length of the closed geodesic of Σ in the free homotopy class of γ.

15



2. The cross ratio of a negatively curved metric satisfies the extra symmetry

B(x, y, z, t) = B(y, x, t, z).

3. If the metric g is hyperbolic, ∂∞π1(Σ) is identified with RP1 and the cross
ratio Bg coincides with the classical cross ratio.

4. This construction is yet another instance of the ”symplectic construction”
explained in Section 4.4. Indeed, the metric identifies the tangent space
of the universal cover of a negatively curved manifold with the cotangent
space. Therefore, this tangent space inherits a symplectic structure and
its symplectic reduction with respect to the multiplicative R-action is the
space of geodesics which thus admits a symplectic structure. Identified
with the space of pairs of distinct points of the boundary at infinity, the
space of geodesics also admits a product structure. The cross ratio defined
according to Section 4.4 coincides with the cross ratio described above.

5. More generally, Otal’s construction can be extended to Anosov flows on
unit tangent bundle of surfaces of whom geodesic flows of a negatively
curved metrics are special cases [1]. For a cross associated to an Anosov
flow, the period of an element γ is the length of the closed orbit in the
free homotopy class of γ.

6. Conversely a cross ratio gives rise to a flow as it is explained in Section
3.4.1 of [22]. The flow identity is equivalent to the Cocycle Identity (8)
in the definition of cross ratios. More precisely, given a cross ratio B
on ∂∞π1(Σ)4∗ and any real number t, we define in [22] a map ϕt from
∂∞π1(Σ)3+ – see Definition (12.3) – to itself by

ϕt(x−, x0, x+) = (x−, xt, x+),

where
B(x+, x0, x−, xt) = et.

Equation (8) implies that t 7→ ϕt is a one parameter group, that is

ϕt+s = ϕt ◦ ϕs.

In [25], François Ledrappier gives an excellent overview of the various as-
pects of Otal’s cross ratios and in particular their enlightening interpretation as
Bonahon’s geodesic currents [3].

4.4 A symplectic construction

All the examples of cross ratio that we have defined may be interpreted from the
following ”symplectic” construction. Let V and W be two manifolds of the same
dimension and O be an open set of V ×W equipped with an exact symplectic
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structure, or more generally an exact two-form ω. We assume furthermore that
the two foliations coming from the product structure

F+
w = O ∩ (V × {w}),
F−v = O ∩ ({v} ×W ),

satisfy the following properties:

1. Leaves are connected.

2. The first cohomology groups of the leaves are reduced to zero.

3. ω restricted to the leaves is zero.

4. Squares are homotopic to zero, where squares are closed curves c = c+1 ∪
c−1 ∪ c

+
2 ∪ c

−
2 with c±i along F±.

Remark: When ω is symplectic, every leaf F± is Lagrangian by definition, and
a standard observation shows that they carries a flat affine structure. If every
leaf is simply connected and complete from the affine viewpoint, condition (4)
above is satisfied: one may ”straighten”the edges of the square, that is deforming
them into geodesics of the affine structure, then use these straightening to define
a homotopy.

4.4.1 Polarised cross ratio

Let

U = {(e, u, f, v) ∈ V ×W × V ×W |(e, u), (f, u), (e, v), (f, v) ∈ O},

Definition 4.5 [Polarised cross ratio] The polarised cross ratio is the
function defined B defined on U by

B(e, u, f, v) = e
1
2

R
G∗ω.

where G is a map from the square [0, 1]2 to O such that

• the image of the vertexes (0, 0), (0, 1), (1, 1), (1, 0) are respectively (e, u),
(f, u), (e, v), (f, v),

• the image of every edge on the boundary of the square lies in a leaf of F+

or F−.

The definition of B does not depend on the choice of the specific map G. Let
ψ be an diffeomorphism of O preserving ω and isotopic to the identity. Let α
and ζ be two fixed points of ψ and c a curve joining α and ζ. Since ψ is isotopic
to the identity, it follows that c ∪ ψ(c) bounds a disc D.
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4.4.2 Curves

Let φ = (ρ, ρ̄) be a representation from π1(Σ) in the group of diffeomorphisms
of O which preserve ω and are restrictions of elements of Diff(V ) × Diff(W ).
Let (ξ, ξ∗) be a φ-equivariant map of ∂∞π1(Σ) to O.

Then, we have the following immediate

Proposition 4.6 The function B̂ξ,ξ∗ defined by

Bξ,ξ∗(x, y, z, t) = B(ξ(x)), ξ∗(y), ξ(z), ξ∗(t)),

satisfies

Bξ,ξ∗(x, y, z, t) = B(z, t, x, y),
Bξ,ξ∗(x, y, z, t) = B(x, y, z, w)B(x,w, z, t),
Bξ,ξ∗(x, y, z, t) = B(x, y, w, t)B(w, y, z, t).

This function Bξ,ξ∗ may be undefined for x = y and z = t. By the above
proposition, it extends to a weak cross ratio provided that

lim
y→x

Bξ,ξ∗(x, y, z, t) = 0.

4.4.3 Projective spaces

We concentrate on the case of projective spaces, although the construction can
be extended to flag manifolds to produce a whole family of cross ratios asso-
ciated to a hyperconvex curve. However in this case, we do not know how to
characterise these cross ratios using functional relations, as we did in the case
of curves in the projective space.

As a specific example of the previous situation, we relate the polarised cross
ratio to the weak cross ratio associated to curves. Let E be a vector space. Let

P2∗ = P(E)× P(E∗) \ {(D,P ) | D ⊂ P⊥}.

Using the identification of T(D,P )P2∗ with Hom(D,P⊥)⊕Hom(P⊥, D), let

Ω((f, g), (h, j)) = tr(f ◦ j)− tr(h ◦ g).

Let L be bundle over P(n)2∗, whose fibre at (D,P ) is

L(D,P ) = {u ∈ D, f ∈ P | 〈f, u〉 = 1}/{+1,−1}.

Note that L is a principal R-bundle whose R-action is given by λ(u, f) =
(e−λu, eλf), equipped with an action of PSL(n,R).

The following proposition summarise properties of this construction

Proposition 4.7 The form Ω is symplectic and the polarised cross ratio asso-
ciated to 2Ω is

B(u, f, v, g) =
〈f̂ , v̂〉〈ĝ, û〉
〈f̂ , û〉〈ĝ, û〉

, (18)
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where, in general, ĥ is a nonzero vector in h.
Moreover, there exists a connection form β on L whose curvature is sym-

plectic and equal to Ω, and such that, for any u non zero vector in a line D, the
section

ξu : P 7→ (u, f) such that 〈u, f〉 = 1, and f ∈ P,

is parallel for β above {D} × (P(E∗) \ {P | D ⊂ P⊥}).
Finally, let A be an element of PSL(n,R). Let D (resp D̄) be an A-eigenspace

of dimension one for the eigenvalue λ (resp. µ). Then (D, D̄⊥) is a fixed point
of A in P2∗ and he action of A on L(D,D̄⊥) is the translation by

log |λ/µ|.

Proof: We consider the standard symplectic form Ω0 on E × E∗/{+1,−1}.
We observe that Ω0 = dβ0 where β0

(u,f)(v, g) = 〈u, g〉. A symplectic action of R
is given by

λ.(u, f) = (e−λu, eλf),

with moment map
µ
(
(u, f)

)
= 〈f, u〉.

Then L = µ−1(1). Therefore, we obtain that β = β0|L is a connection form for
the R-action, whose curvature Ω is the symplectic form obtained by reduction
of the Hamiltonian action of R.

We now compute Ω explicitly. Let (D,P ) be an element of P2∗. Let π be
the projection onto P parallel to D. We identify T(D,P )P2∗ with Hom(D,P⊥)⊕
Hom(P⊥, D). Let (f, ĝ) be an element of T(D,P )P2∗, Let (u, α) ∈ D × Pbe
an element of L. Now, (f(u), ĝ(α)) is an element of T(u,α)L which projects to
(f, ĝ). By definition of the symplectic reduction, if (f, ĝ) and (h, l̂) are elements
of T(D,P )P2∗, then

Ω((f, ĝ), (h, l̂)) = 〈l̂(α), f(u)〉 − 〈ĝ(α), h(u)〉.

Finally, let π be the projection onto P⊥ in the D direction. We consider the
map {

Hom(P⊥, D) → Hom(P⊥, D)
f 7→ f̂ = (f ◦ π)∗

.

In particular
〈l̂(α), f(u)〉 = tr(l ◦ f)〈α, u〉.

The description of the parallel sections follows from the explicit formula for
β0. This description allows to compute the holonomy of this connection along
squares. This prove Formula (18).

The last point is obvious. Q.e.d.
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4.4.4 Appendix: Periods, action difference and triple ratios

The results of this paragraph are not used in the sequel. We come back to the
general setting of the beginning of the Section and make further definitions and
remarks

Definition 4.8 [Action difference] The action difference is

∆ψ(α, ζ, c) = exp
(∫

D

ω

)
.

We have

Proposition 4.9 The quantity ∆ := ∆ψ(α, ζ, c) just depends on the homotopy
class of c.

Proof: This follows from the invariance of ω under ψ. The reader should
observe the analogy with the action difference for Hamiltonian diffeomorphisms.
Q.e.d.

In our context, we have a preferred class of curves joining two point. Let
α = (a, b) and ζ = (ā, b̄) be two points of O. Since squares are homotopic to
zero, we define the homotopy class ca,b,ā,b̄ of curves from (a, b) to (ā, b̄) to be
curves homotopic to c+ ∪ c− ∪ c̄+, where c+ is a curve along F+ going from
(a, b) to (y, b), c− a curve along F− going from (y, b) to (y, b̄), and c− a curve
along F+ going from (y, b̄) to (ā, b̄). By convention we set

∆γ(α, ζ) = ∆γ(α, ζ, ca,b,ā,b̄).

Periods and action difference Using the notations of the previous para-
graph, we have

Proposition 4.10 Let γ be an element of π1(Σ) then,

Bξ,ξ∗(γ+, y, γ−, γy)2 = ∆φ(γ)

(
(ξ(γ+), ξ∗(γ−)), (ξ(γ−), ξ∗(γ+))

)
.

In particular,

`Bξ,ξ∗ (γ) =
1
2

log |∆ρ(γ)

(
(ξ(γ+), ξ∗(γ−)), (ξ(γ−), ξ∗(γ+))

)
|.

Proof: Let f = (g, ḡ) be a diffeomorphism of O preserving ω, restriction of an
element of Diff(V )×Diff(W ). Let (a, b) and (ā, b̄) be two fixed points of f . Let
as before c = c+ ∪ c− ∪ c̄+ composition of

• c+ a curve along F+ from (a, b) to (y, b),

• c− a curve along F− from (y, b) to (y, b̄),
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• and c+ a curve along F+ from (y, b̄) to (ā, b̄).

Assume (a, b) and (ā, b̄) be fixed points of f . Then c ∪ γ(c) is a square. Let D
be a disk whose boundary is this square. By definition

∆f

(
(a, b), (ā, b̄)

)
=
∫
D

ω.

The proposition follows from the definition of the weak cross ratio associated to
(ξ, ξ∗), when we take f = (ρ(γ), ρ∗(γ)) and

(a, b, ā, b̄) = (ξ(γ+), ξ∗(γ−), ξ(γ+), ξ∗(γ−)).

Q.e.d.

Symplectic interpretation of triple ratio We explain quickly a similar
construction for triple ratio. We consider a sextuplet (e, u, f, v, g, w) in V ×W ×
V ×W ×V ×W . Let now φ be a map from the interior of the regular hexagon H
in V ×W such that the image of the edges lies in F+ or F−, and the (ordered)
image of the vertexes are (e, u), (f, u), (f, v), (g, v), (g, w), (e, w) (Figure 1).
Then, the following quantity does not depend on the choice of φ:

(x, y)

(y, z)

(y, x)

(z, x)(z, y)

(x, z)

Figure 1: Triple ratio

T (e, u, f, v, g, w) = e
1
2

R
H
φ∗ω.

Finally using the same notations as above, we verify that

t(x, y, z) = T (ξ(x), ξ∗(z), ξ(y), ξ∗(x), ξ(z), ξ∗(y)),

is the triple ratio as defined in Paragraph 4.

5 Hitchin representations and cross ratios

We prove in this section Theorem 1.1. This result is as a consequence of Theorem
5.3 that generalises Proposition 4.1 in higher dimensions.
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5.1 Rank-n weak cross ratios

We extend a definition given in the introduction. Let Sp∗ be the set of pairs

(e, u) = ((e0, e1, . . . , ep), (u0, u1, . . . , up)) ,

of p+ 1-tuples of points of a set S such that

ej 6= ei 6= u0, uj 6= ui 6= e0,

whenever j > i > 0. Let B be a weak cross ratio on S and let χpB be the map
from Sp∗ to R defined by

χpB(e, u) = det
i,j>0

((B(ei, uj , e0, u0)).

Definition 5.1 [Rank-n weak cross ratio] A weak cross ratio B has rank
n if

• ∀(e, u) ∈ Sn∗ , χnB(e, u) 6= 0,

• ∀(e, u) ∈ Sn+1
∗ , χn+1

B (e, u) = 0.

When the context makes it obvious, we omit the subscript B.

Remarks:

• We prove in Paragraph 5.1.1 that for all weak cross ratios the nullity of
χp(e, u) for a given e and u does not depend on e0 and u0.

• The function χ2
B never vanishes for a strict weak cross ratio B. Indeed,

we have

χ2((e, e, f), (u, u, v)) =
∣∣∣∣ 1 1

1 B(f, v, e, u)

∣∣∣∣
= B(f, v, e, u)− 1.

The remark now follows from the previous one.

• A cross ratio has rank 2 if if and only if it satisfies Equation (12), or the
equivalent Equation (11). Indeed

χ3((e, e, f, g), (u, u, v, w)) =

∣∣∣∣∣∣
1 1 1
1 B(f, v, e, u) B(g, v, e, u)
1 B(f, w, e, u) B(g, w, e, u)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
1 0 0
1 B(f, v, e, u)− 1 B(g, v, e, u)− 1
1 B(f, w, e, u)− 1 B(g, w, e, u)− 1

∣∣∣∣∣∣
= (B(f, v, e, u)− 1)(B(g, w, e, u)− 1)
−(B(f, w, e, u)− 1)(B(g, v, e, u)− 1).

Therefore by the previous remarks, a cross ratio has rank 2 if and only if
it satisfies Equation (12).
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5.1.1 Nullity of χ.

We first prove the following result of independent interest.

Proposition 5.2 For a weak cross ratio, the nullity of

χn((e0, e1, . . . , en), (u0, u1, . . . , un)),

is independent of the choice of e0 and u0.

Proof: Let f0 and v0 be arbitrary points of T such that

f0 6= v0 6= ei, uj 6= e0 6= f0.

By the Cocycle Identities (8) and (9), we have

B(ei, uj , e0, u0)B(ei, u0, e0, v0) = B(ei, uj , e0, v0)
= B(ei, uj , f0, v0)B(f0, uj , e0, v0).

Therefore

χn((e0, e1, . . . , en), (u0, u1, . . . , un))

=
(∏
i,j

B(f0, uj , e0, v0)
B(ei, v0, e0, u0)

)
χn((f0, e1, . . . , en), (v0, u1, . . . , un)).

The proposition immediately follows. Q.e.d.

5.2 Hyperconvex curves and rank n cross ratios

The main result in this section is

Theorem 5.3 Let ξ and ξ∗ be two hyperconvex curves from T to P(E) and
P(E∗). Assume that ξ(y) ∈ ker ξ∗(x) if and only if x = y. Then the associated
weak cross ratio Bξ,ξ∗ has rank n.

Moreover, if ξ and ξ∗ are Frenet and if ξ∗ is the osculating hyperplane of ξ,
then Bξ,ξ∗ strict.

Conversely, let B be a rank n cross ratio on T. Then, there exist two hyper-
convex curves ξ and ξ∗ with values in P(E) and P(E∗) respectively, unique up
to projective transformations, such that B = Bξ,ξ∗ . Moreover ξ(y) ∈ ker ξ∗(x)
if and only if x = y.

We prove this theorem in Paragraph 5.3.

5.3 Proof of Theorem 5.3

5.3.1 Cross ratio associated to curves

Let ξ and ξ∗ be two hyperconvex curves with values in P(E) and P(E∗) such
that

x = y ⇔ ξ(y) ∈ ker ξ∗(x).
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Let e0 and u0 be two distinct points of T. Let E0 be a nonzero vector in ξ(e0).
Let U0 be a covector in ξ∗(u0) such that 〈U0, E0〉 = 1. We now lift the curves
ξ and ξ∗ with values in P(E) and P(E∗) to continuous curves ξ̂ and ξ̂∗ from
T \ {e0, u0} to E and E∗, such that

〈ξ̂∗(v), E0〉 = 1 = 〈U0, ξ̂(e)〉.

Then the associated cross ratio is

B(f, v, e0, u0) = 〈ξ̂∗(v), ξ̂(f)〉.

From this expression it follows that χn+1 = 0 and that by hyperconvexity χn 6=
0.

5.3.2 Strict cross ratio and Frenet curves

We now prove that Bξ,ξ∗ is strict if ξ and ξ∗ are Frenet and if ξ∗ is the osculating
hyperplane of ξ.

Since ξ(T) and ξ∗(T) are both C1 submanifolds, there exist homeomorphisms
σ and σ∗ of T so that

η = (ξ ◦ σ, ξ ◦ σ∗),
is a C1 map.

The following preliminary result is of independent interest

Proposition 5.4 The two-form ω = η∗Ω is symplectic.

Proof: The regularity of η implies that η∗Ω is continuous. We begin by an
observation. Let D be a line in Rn, P a line in Rn∗, such that D ⊕ P⊥ = Rn.
Let W be a two-plane containing D. Let

Ŵ = TDP(W ) ⊂ TDP(Rn).

Let V an n− 2-plane contained in P⊥. Let

V̂ = TPP(W⊥) ⊂ TPP(R∗n).

By the definition of Ω in Section 4.4.3, if

V ⊕W = Rn,

then
Ω|V̂⊕Ŵ 6= 0.

In the case of hyperconvex curves,

Tξ1(x)

(
ξ1(∂∞π1(Σ))

)
= ξ̂2(x), Tξn−1(x)

(
ξn−1(∂∞π1(Σ))

)
= ̂ξn−2(x).

Since by hyperconvexity ξ2(x)⊕ ξn−2(y) = Rn for x 6= y, we conclude that η∗ω
is symplectic. Q.e.d.

The following regularity result will be used in the sequel
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Proposition 5.5 If moreover the osculating flags of ξ and ξ∗ are Hölder, so is
ω.

Proof: If we furthermore assume that the osculating flags of ξ and ξ∗ are
Hölder, then we can choose the homeomorphisms σ to be Hölder. Indeed, σ and
σ∗ are the inverse of the arc parametrisation of the submanifolds ξ(T) and ξ∗(T).
Therefore, σ and σ∗ are Hölder. Since the tangent spaces to these submanifolds
are Hölder, η is C1 with Hölder derivatives. It follows that ω is Hölder. Q.e.d.

As a corollary, we obtain

Proposition 5.6 Let ξ and ξ∗ be Frenet curves such that ξ∗ is the osculating
hyperplane of ξ. Then Bρ is strict.

Proof: Let (x, y, z, t) be a quadruple of pairwise distinct points. Let η̇ =
η ◦ (σ, σ∗)−1. Let Q be the square in ∂∞π1(Σ)2∗ whose vertexes are

(x, y), (z, y), (x, t), (z, t).

By Formula (18), we know that

|Bρ(x, y, z, t)| = e
1
2

R
η̇(Q) ω.

Since ω is symplectic, and Q has a nonempty interior, we have that
∫
η̇(Q)

ω 6= 0.
Hence Bρ(x, y, z, t) 6= 1. Q.e.d.

5.3.3 Curves associated to cross ratios

We prove in this paragraph

Proposition 5.7 Let B be a rank n cross ratio on T. Then there exists hy-
perconvex curves (ξ, ξ∗) with values in P(Rn)× P(R∗n), unique up to projective
equivalence, so that

B = Bξ,ξ∗

Proof: LetB be a rank n cross ratio. Let us fix (e, u) = ((e0, e1, . . . , en), (u0, u1, . . . , un))
in Tn∗. We consider

ξ̂ :
{

T \ {u0} → Rn,
f 7→ (B(f, u1, e0, u0), . . . ,B(f, un, e0, u0)).

Since

χnB(e, u) 6= 0, (19)

the set (ξ̂(e1), . . . , ξ̂(en)) is a basis of Rn. Let (E∗1 , . . . , E
∗
n) be its dual basis.

We now consider the map

ξ̂∗ :
{

T \ {e0} → R∗n,
v 7→

∑i=n
i=1 B(v, ei, e0, u0)E∗i .
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We now prove that

B(f, v, e0, u0) = 〈ξ̂(f), ξ̂∗(v)〉. (20)

We first observe that

〈ξ̂(ei), ξ̂∗(v)〉 = B(ei, v, e0, u0). (21)

In particular

〈ξ̂(ei), ξ̂∗(uj)〉 = B(ei, uj , e0, u0), (22)

and thus
(ξ̂∗(u1), . . . , ξ̂∗(un)),

is the canonical basis of R∗n. As a consequence

〈ξ̂(f), ξ̂∗(uj)〉 = B(f, uj , e0, u0). (23)

Let Mn be the n× n-matrix whose coefficients are 〈ξ̂(ei), ξ̂∗(uj)〉. For any any
f anf v, let ê = (e0, . . . , en, f) and û = (u0, . . . , un, v). Let also Mn+1 be the
degenerate (n + 1) × (n + 1)-matrix whose coefficients are 〈ξ̂(ei), ξ̂∗(uj)〉 with
the convention that en+1 = f and un+1 = v. By Equation (22),

det(Mn) = χnB(e, u) 6= 0. (24)

The equation
χn+1

B (ê, û) = 0,

yields, after developing the determinant along the last line,

B(f, v, e0, v0)χnB(e, u) = F (. . . ,B(f, ui, e0, u0), . . . ,B(ei, v, e0, u0), . . .),

where the right hand term is polynomial in B(f, ui, e0, u0) and B(ei, vi, e0, u0).
The same argument applied to the determinant of Mn+1 yields

〈ξ̂(f), ξ̂∗(v)〉det(Mn) = F (. . . , 〈ξ̂(f), ξ̂∗(uj)〉, . . . , 〈ξ̂(ei), ξ̂∗(v)〉, . . .).

Therefore, we complete the proof of Equation (20) using Equations (21), (23)
and (24).

Let now ξ̂ and ξ̂∗ be defined from S = T \ {e0, u0} to P(Rn) and P(R∗n) as
the projections of the map ξ and ξ∗.

By the Normalisation Relation (6) and Equation (20)

x = y ⇔ ξ(y) ∈ ker ξ∗(x).

Equation (20) applied four times yields that B = Bξ,ξ∗ . Finally since χn never
vanishes, ξ is hyperconvex as well as ξ∗.

By Lemma 4.3, this shows that the curves ξ and ξ∗ are unique up to pro-
jective transformations, and in particular do not depend on the choice of e and
u. We can therefore extend ξ and ξ∗ to T by a simple gluing argument and the
proposition follows. Q.e.d.
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5.4 Hyperconvex representations and cross ratios

Using Theorem 2.6, the following proposition relates hyperconvex representa-
tions and cross ratios.

Proposition 5.8 Let ρ be a a n-hyperconvex representation with limit curve
ξ and osculating hyperplane ξ∗. Then Bρ = Bξ,ξ∗ is a cross ratio defined on
∂∞π1(Σ) and its periods are

`B(γ) = wρ(γ) := log
(∣∣∣∣λmax(ρ(γ))
λmin(ρ(γ))

∣∣∣∣) ,
where λmax(ρ(γ)) and λmin(ρ(γ)) are the eigenvalues of the real split element
ρ(γ) having maximal and minimal absolute values respectively.

Proof: By Theorem 5.3, Bρ is rank n weak cross ratio. Furthermore, since ξ
and ξ∗ are Hölder, Bρ is Hölder. By Proposition 5.6, Bρ is strict. It remains
to compute the periods. By Theorem 2.6, if γ+ is the attracting fixed point of
γ in ∂∞π1(Σ), then ξ(γ+), (resp. ξ∗(γ−)) is the unique attracting (respectively
repelling) fixed point of ρ(γ) in P(E). In particular

ρ(γ)ξ̂(γ+) = λmaxξ̂(γ+),

ρ(γ)ξ̂(γ−) = λminξ̂(γ−).

Therefore,

`B(γ) = log |B(γ−, y, γ+, γ−1y)|

= log
∣∣ 〈ξ̂(γ−), ξ̂∗(y)〉〈ξ̂(γ+), ξ̂∗(γ−1y)〉
〈ξ̂(γ−), ξ̂∗(γ−1y)〉〈ξ̂(γ+), ξ̂∗(y)〉

∣∣
= log

∣∣ 〈ξ̂(γ−), ξ̂∗(y)〉〈ξ̂(γ+), ρ(γ)∗ξ̂∗(y)〉
〈ξ̂(γ−), ρ(γ)∗ξ̂∗(y)〉〈ξ̂(γ+), ξ̂∗(y)〉

∣∣
= log

∣∣ 〈ξ̂(γ−), ξ̂∗(y)〉〈ρ(γ)ξ̂(γ+), ξ̂∗(y)〉
〈ρ(γ)ξ̂(γ−), ξ̂∗(y)〉〈ξ̂(γ+), ξ̂∗(y)〉

∣∣
= log

∣∣λmax

λmin

∣∣.
Q.e.d.

Remark: Let ρ∗ be the contragredient representation of ρ defined by

ρ∗(γ) = (ρ(γ−1))∗.

Let B be a cross ratio. We define B∗ by B∗(x, y, z, t) = B(y, x, t, z). Then
(Bρ)∗ = Bρ∗ . By the above Proposition, the cross ratios Bρ and Bρ∗ have the
same periods, however Bρ and Bρ∗ are not necessarily conjugated.
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5.5 Proof of the main Theorem 1.1

Theorem 1.1 stated in the introduction is a consequence of Proposition 5.8 for
one side of the equivalence, and of Theorem 5.3, Lemma 4.3 and Guichard’s
Theorem 2.4 [18] for the other side of the equivalence.

6 The jet space J1(T,R)

Let J = J1(T,R) be the space of one-jets of real-valued functions on the circle
T. The structure of this section is as follows:

• In Paragraph 6.1, we describe the action of the group C1,h(T) o Diffh(T)
on J as well as the geometry of this latter space.

• In Paragraph 6.2, we characterise geometrically the action of C∞(T) o
Diff∞(T) on J .

• In Paragraph 6.3, we describe a homomorphism from PSL(2,R) to C∞(T)o
Diff∞(T) whose image acts faithfully and transitively on J .

6.1 Description of the jet space

We describe in this section the geometric features of J that will be useful in the
sequel, namely:

• A structure of a principal R-bundle with connection given by

– a projection δ onto T ∗T,

– an R-action given by a flow {ϕt},
– a connection form β which is a contact form.

• A foliation of J by affine leaves F .

• A projection π onto T.

• An action of C1,h(T) o Diffh(T) on J .

In Lemma 10.1, we shall characterise the action of C1,h(T) o Diffh(T) using the
principal bundle structure and the foliation F . We finally give in Paragraph
6.3.2 two alternate descriptions of J

6.1.1 Projections

We denote by j1
x(f) the one-jet of the function f at the point x of T. We define

the projections

π :
{

J → T,
j1
x(f) 7→ x,
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δ :
{

J → T ∗T,
j1
x(f) 7→ dxf.

We observe that each fibre of π carries an affine structure. In order to help the
readers remember the heavy notation, we remark that δ is the projection that
takes in account the ”derivative” part.

6.1.2 Action of C1,h(T) o Diffh(T)

The group H(T) = C1,h(T) o Diffh(T) acts by Hölder homeomorphisms on J
in the following way. Let (φ, h) be an element of C1,h(T) o Diffh(T), where φ
a C1-diffeomorphism with Hölder derivatives of T and h is a C1-function on T
with Hölder derivatives. Let F = F (h, φ) be the homeomorphism of J given by

F (h, φ) : j1
x(f) 7→ j1

φ(x)((h+ f) ◦ φ−1).

The homeomorphism F = F (h, φ) has the following properties:

• F preserves the fibres of π, that is: π ◦ F = φ ◦ π.

• For every x in T, F restricted to π−1(x) is affine – in particular C∞ – and
the derivatives of F |π−1(x) vary continuously on J .

Finally, the map (h, φ) → F (hφ) defines an action of C1,h(T) o Diffh(T) on J
by Hölder homeomorphisms.

Alternatively, if we choose a coordinate θ on T and consider the identification{
J → T× R× R,

j1
θ (f) 7→ (θ, r, f) = (θ, ∂f∂θ , f(θ)),

then F (h, φ) is given by

(η, r, f) 7→ (φ(η),
∂φ

∂θ

−1

(η)
(∂h
∂θ

(η) + r
)
, f + h(η)). (25)

6.1.3 Foliation

Let F be the 1-dimensional foliation of J given by the fibres of the projection{
J → T× R,

j1
x(f) 7→ (x, f(x)).

Each leaf of F is included in a fibre of π and is an affine line with respect to
the affine structure on the fibres of π. We observe that the leaf through z is
identified (as an affine line) with T ∗xT for x = π(z).

This affine structure is invariant by the action of C1,h(T)oDiffh(T) described
above.
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6.1.4 Canonical flow

We define the canonical flow of J to be the flow

ϕt(j1
x(f)) = j1

x(f + t),

where we identify the real number t with the constant function that takes value
t. The canonical flow commutes with the action of C1,h(T) o Diffh(T) on J .
Notice also that

J/Z(H(T)) = T ∗T,

and that this identification turns δ : J 7→ T ∗T into a principal R-bundle.

6.1.5 Contact form

We finally recall that J admits a contact form β. If we choose a coordinate θ
on T and consider the identification{

J → T× R× R,
j1
θ (f) 7→ (θ, r, f) = (θ, ∂f∂θ , f(θ)),

then
β = df − rdθ.

Remarks:

1. Note that a Legendrian curve for β which is locally a graph above T is the
graph of one-jet of a function.

2. Moreover, the canonical flow ϕt preserves the 1-form β.

3. Observe that β is a connection form for the principal R-bundle defined by
δ, and that its curvature form is the canonical symplectic form of T ∗T.

4. Here is another description of β. Recall that the Liouville form λ on the
cotangent bundle p : T ∗M→M is given by

λq(u) = 〈q|Tqp(u)〉.

In coordinates for T ∗T, we have, λ = rdθ. If f is the function on J given
by f(j1

x(g)) = g(x), then β = df − δ∗λ.

6.2 A Geometric Characterisation of the smooth elements
of H(T)

The following proposition shows that F , β and ϕt characterise the action of
C∞(T) o Diff∞(T) on J . Later, in Lemma 10.1, we characterise C1,h(T) o
Diffh(T).

Proposition 6.1 Let ψ be a C∞-diffeomorphism of J . Assume that
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1. ψ commutes with the flow ϕt,

2. ψ preserves the 1-form β,

3. ψ preserves the foliation F .

Then ψ belongs to C∞(T) o Diff∞(T).

6.2.1 A preliminary proposition

We first prove an elementary remark

Proposition 6.2 Let α be a connection one-form on the R-bundle δ : J → T ∗T.
Assume that the curvature of α is the canonical symplectic form on T ∗T. Then
there exists a diffeomorphism ξ of J which

• commutes with the action of the canonical flow,

• preserves the fibres of π and δ (that is send fibres to fibres),

• is above a symplectic diffeomorphism of T ∗T,

• satisfies ξ∗β = α.

Proof: We choose a coordinate θ of T. Thus, T ∗T is identified with T × R
with coordinates (θ, r), and J with T × R × R with coordinates (θ, r, f). Since
α is a connection form, there exist functions αr and αθ such that

α = df + αr(r, θ)dr + αθ(r, θ)dθ.

Let
γ = α− β = αr(r, θ)dr + (αθ(r, θ) + r)dθ.

Since the curvature of α is dθ∧ dr, γ is closed. Therefore, there exist a function
h on T ∗T and a constant λ such that

γ = dh+ λdθ.

A straightforward check now shows that the diffeomorphism ξ of J given by

ξ(θ, r, f) = (θ, r − λ, f + h(θ, r)).

satisfies the condition of our proposition. Q.e.d.
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6.2.2 Proof of Proposition 6.1

Proof: We use the notations and assumptions of Proposition 6.1. By As-
sumptions (1) and (3), ψ preserves the fibres of π. There exists thus a C∞-
diffeomorphism φ of T ∗T such that

π ◦ ψ = φ ◦ π.

Replacing ψ by ψ◦(0, φ−1), we may as well assume that φ = id. By Assumption
(1), ψ also preserves the fibres of δ.

We choose a coordinate on T and use the identification J = T×R×R given
in Paragraph 6.1.5. The previous discussion shows that

ψ(θ, r, f) = (θ, F (θ, r), H(θ, r, f)).

Since ψ∗β = β, we obtain that

dH − Fdθ = df − rdθ.

Hence
∂H

∂f
= 1, F − ∂H

∂θ
= r,

∂H

∂r
= 0.

Therefore, there exists a C∞-function g such that H = f + g(θ). It follows that

ψ(θ, r, f) = (θ, r +
∂g

∂θ
, f + g(θ)).

This exactly means that

ψ(θ, r, f) = (g, id).j1(f).

In other words, ψ belongs to C∞(T) o Diff∞(T). Q.e.d.

6.3 PSL(2,R) and C∞(T) o Diff∞(T)

We consider the 3-manifold J = PSL(2,R). We denote by g the Killing form,
which we consider as a biinvariant – with respect to both left and right actions
of PSL(2,R) – Lorentz metric on J . Then:

• Let ϕt = ∆ be the one-parameter group of diagonal matrices acting on
the right on J .

• Let F the orbit foliation by the right action of the one-parameter group
of strictly upper triangular matrices.

• Let β = iXg, where X is the vector field generating ϕt.

Alternatively, describing PSL(2,R) as the unit tangent bundle of the hyperbolic
plane, we can identify ϕt with the geodesic flow, F with the horospherical
foliation and β with the Liouville form.

Then
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Proposition 6.3 The one-form β is a contact form. Furthermore, there exists
a C∞-diffeomorphism Ψ from J to J , that sends (ϕt,F , β) to (ϕt,F , β) respec-
tively. Finally, this diffeomorphism Ψ is unique up to left composition by an
element of C∞(T) o Diff∞(T).

As an immediate application, we have

Definition 6.4 [Standard representation] Since the left action of PSL(2,R)
preserves the flow ϕt, the foliation F and the 1-form β, combining Propositions
6.1 and 6.3, we obtain a group homomorphism

ι :
{

PSL(2,R) → C∞(T) o Diff∞(T),
g 7→ Ψ ◦ g ◦Ψ−1,

well defined up to conjugation by an element of C∞(T) o Diff∞(T). The corre-
sponding representation from PSL(2,R) to C∞(T)oDiff∞(T) is called standard.

Remark : The action of PSL(2,R) on RP1 ' T gives rise to an embedding
of PSL(2,R) in Diff∞(T). The above standard representation is a nontrivial
extension of this representation. Indeed, the natural lift of the action of Diff∞(T)
on T ∗T does not act transitively since it preserves the zero section. On the
contrary, PSL(2,R) does act transitively through the standard representation.
In Paragraph 6.3.2, we consider an alternate description of J which make the
action of PSL(2,R) more canonical.

6.3.1 Proof of Proposition 6.3

Proof: It is immediate to check that

PSL(2,R)→ PSL(2,R)/∆ = W,

is a principal R-bundle, whose connexion form is β and whose curvature is
symplectic. It follows that β is a contact form.

Let π be the projection

W → RP1 = PSL(2,R)/B,

where B be the 2-dimensional group of upper triangular matrices.
Let ψ0 be a symplectic diffeomorphism fromW to T ∗T over a diffeomorphism

φ0 from RP1 to T, that is so that π ◦ ψ0 = φ0π. Let Ψ0 : J → J be a principal
R-bundle equivalence over ψ0. Let α = (ψ−1

0 )∗β. Let ξ be the symplectic
diffeomorphism of J obtained by Proposition 6.2 applied to α = (ψ−1

0 )∗β. It
follows Ψ = ξ ◦ Ψ0 has all the properties required. Finally, by Proposition 6.1,
Ψ is well defined up to multiplication by an element of C∞(T) o Diff∞(T).

Since the right action of PSL(2,R) preserves F , β, and ϕt, we obtain a
representation of PSL(2,R) well defined up to conjugation{

PSL(2,R) → C∞(T) o Diff∞(T),
g 7→ Ψ ◦ g ◦Ψ−1.

Q.e.d.
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6.3.2 Alternate description of J

For the sake of completeness, we introduce two alternate descriptions of J . The
second one – which we shall not use – has been suggested by the referee:

• We have just seen that PSL(2,R) is an alternate description of J .

• We also may consider the space E1/2 of half densities on T. Then J will
be the space of 1-jets of sections. The reader can work out the details and
see that the natural action of PSL(2,R) which comes from its injection
into Diff∞(T) coincides with the above action.

7 Anosov and ∞-Hitchin homomorphisms

The purpose of this section is to define various types of homomorphisms from
π1(Σ) to H(T) = C1,h(T) o Diffh(T).

7.1 ∞-Fuchsian homomorphism and H-Fuchsian actions

Definition 7.1 [Fuchsian homomorphism] Let ρ be a Fuchsian homomor-
phism from π1(Σ) to PSL(2,R). We say that the composition of ρ by the stan-
dard representation ι from PSL(2,R) to H(T) (cf Definition 6.4) is∞-Fuchsian,
or in short Fuchsian when there is no ambiguity.

Definition 7.2 [H-Fuchsian action on T] We say an action of π1(Σ) on T
is H-Fuchsian if it is an action by C1-diffeomorphisms with Hölder derivatives,
which is Hölder conjugate to the action of a cocompact group of PSL(2,R) on
RP1.

7.2 Anosov homomorphisms

We begin with a general definition. Let F be a foliation on a compact space,
and dF be a Riemannian distance along the leaves of F which comes from a
leafwise continuous metric. In particular, dF (x, y) < ∞ if and only if x and y
are in the same leaf.

Definition 7.3 [Contracting the leaves] Aflow ϕt contracts uniformly the
leaves of a foliation F , if ϕt preserves F and if moreover

∀ε > 0, ∀α > 0, ∃t0 : t ≥ t0, dF (x, y) ≤ α =⇒ dF (ϕt(x), ϕt(y)) ≤ ε

This definition does not depend on the choice of dF .

We now use the notations of Section 6.1.

Definition 7.4 [Anosov homomorphisms] A homomorphism ρ from π1(Σ)
to H(T) is Anosov if:
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• the group ρ(π1(Σ)) acts with a compact quotient on J = J1(T,R),

• the flow induced by the canonical flow ϕt on ρ(π1(Σ))\J contracts uni-
formly the leaves of F (cf. definition above),

• the induced action on T is H-Fuchsian.

We denote the space of Anosov homomorphisms by Hom∗.

Remarks:

1. If ρ is Anosov, ρ(π1(Σ)) usually only acts by homeomorphisms on J . How-
ever, if we consider J as a C∞-filtered space (See the definitions in Para-
graph 8.1.1), whose nested foliated structures are given by the fibres of
the two projections δ and π, then ρ(π1(Σ)) acts by C∞-filtered maps
(i.e smoothly along the leaves with continuous derivatives). Therefore,
ρ(π1(Σ))\J has the structure of a C∞-lamination such that the flow in-
duced by ϕt is C∞ leafwise.

2. Our first examples of Anosov homomorphisms are ∞-Fuchsian homomor-
phisms from π1(Σ) in H(T). Indeed in this case, the canonical flow on
ρ(π1(Σ))\J is conjugate to the geodesic flow for the corresponding hyper-
bolic surface.

Finally we define

Definition 7.5 [∞-Hitchin homomorphisms] An∞-Hitchin homomorphism
is a homomorphism from π1(Σ) to H(T) which may be deformed into an ∞-
Fuchsian homomorphism, through Anosov homomorphisms. In other words, the
set HomH of Hitchin representations is the connected component of the set Hom∗

of Anosov homomorphisms, containing the Fuchsian homomorphisms.

8 Stability of ∞-Hitchin homomorphisms

The set of homomorphisms from π1(Σ) to a semi-simple Lie group G with Zariski
dense images satisfies the following properties:

• It is open in the set of all homomorphisms.

• The group G/Z(G) acts properly on it, where Z(G) is the centre of G.

We aim to prove that the set HomH of ∞-Hitchin homomorphisms from π1(Σ)
to H(T) enjoys the same properties.

The canonical flow ϕt – considered as a subgroup of H(T) – is in the
centre Z(H((T )) of H(T) and hence acts trivially on HomH . It follows that
H(T)/Z(H(T)) acts on HomH .

The main result of this section is the following:
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Theorem 8.1 [Openness Theorem] The set of Hitchin homomorphisms is
open in the space of all homomorphisms.

We shall also see in the next section that the action by conjugation of
H(T)/Z(H(T)) on HomH is proper and that the quotient is Hausdorff.

In the proof of Theorem 8.1, we use the definitions and results obtained in
the Paragraph (8.1) which is independent of the rest of the article. It can be
skipped at a first reading and is summarised as follows. Roughly speaking, a
filtered space is equipped with a family of nested foliations which are transverse
continuously, but posses a smooth structure along the leaves. A C∞-filtered
function is continuous, smooth along the leaves and with continuous leafwise
derivatives, and a C∞-filtered map between filtered spaces sends leaves to leaves
and C∞-filtered functions to C∞-filtered functions.

The theorem follows from the Stability Lemma 8.10 which has its own in-
terest and applications.

8.1 Filtered Spaces and Holonomy.

In this paragraph, logically independent from the rest of the article, we describe
a notion of a topological space with ”nested” laminations. This requires some
definitions and notations. Let Z1, . . . , Zp be a family of sets. Let

Z = Z1 × . . .× Zp.

For k < p, we note pk the projection

Z → Z1 × . . .× Zk.

Let O be a subset of Z and x a point of O. The kth-leave through x in O is

O(k)
x = O ∩ p−1

k {pk(x)}.

We note that O(k+1)
x ⊂ O(k)

x . The higher dimensional leaf is O(1)
x . If φ is a map

from O to to a set V , we write

φ(k)
x = φ|

O
(k)
x
.

If V ⊂W = W1 × . . .×Wk, we say φ is a filtered map if

∀k, φ(O(k)
x ) ⊂ V (k)

φ(x).

8.1.1 Laminations and Filtered Space

In this section, we define a notion of filtered space for which it does make sense to
say some maps are ”smooth along leaves with derivatives varying continuously”.

Definition 8.2 [C∞-filtered space] A metric space P is C∞-filtered if the
following conditions are satisfied:
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• There exists a covering of P by open sets Ui, called charts.

• There exist Hölder homeomorphisms ϕi, called coordinates, from Ui to
V i1×V i2×. . .×V ip where for k > 1, V ki is an open set in a finite dimensional
affine space.

• Let
ϕij = ϕi ◦ (ϕj)−1,

defined from Wij = ϕ−1
j (Ui ∩Uj) to Wji be the coordinate changes. Then

– the coordinates changes are filtered map,

– the restriction (ϕ(1)
ij )x of the coordinate changes to the maximal leaf

through x is a C∞-map whose derivatives depends continuously on x.

Remarks:

1. Due to the last assumption, for all k, (ϕ(k)
ij )x is a C∞-map whose deriva-

tives depends continuously on x.

2. When p = 2, we speak of a laminated space.

3. We may want to specify the number of nested laminations, in which case
we talk of p-filtered objects.

4. The Hölder hypothesis is somewhat irrelevant and could be replaced by
other regularity assumptions, but it is needed in the applications.

We now extend the definitions of the previous paragraph. Let P be a C∞-p-
filtered space. Let k < p.

Definition 8.3 [Leaves] The kth-leaves of P are the equivalence classes of
the equivalence relation generated by

y R x ⇐⇒ pk(ϕi(y)) = pk(ϕi(x)).

Let P and P be C∞-p-filtered spaces. Let ϕi be coordinates on P and ϕj be
coordinates on P .

Definition 8.4 [Filtered maps and immersions] A map ψ from P to P is
C∞-filtered if

• ψ is Hölder,

• ψ send kth-leaves to kth-leaves,

• (ϕi ◦ ψ ◦ ϕj)
(k)
x are C∞ and their derivatives vary continuously with x.

A filtered immersion is a filtered map ψ whose leafwise tangent map is in-
jective: in other words, (ϕi ◦ ψ ◦ ϕ−1

j )1
x is an immersion.
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Observe that a filtered immersion is only an immersion along the leaves,
there is no requirement about what happens transversely to the leaves.

Definition 8.5 [Convergence of filtered maps] Let {ψn}n∈N be a se-
quence of C∞-filtered maps from P to P . The sequence C∞ converges on every
compact set if

• it converges uniformly on every compact set,

• all the derivatives of (ϕi◦ψn◦ϕj)
(k)
x converges uniformly on every compact

set (as functions of x).

Definition 8.6 [Affine Leaves] A P is C∞-filtered by affine leaves or carries
a leafwise affine structure if furthermore ϕij |Ux is an affine map.

8.1.2 Holonomy Theorem

We now prove the following result which generalises Ehresmann-Thurston Holo-
nomy Theorem [10]. For P a p-filtered space, we denote by Fil(P ) be the group
of all bijections of P to itself which are all C∞-filtered leafwise immersions of
P , equipped with the topology of C∞-convergence on compact sets.

Theorem 8.7 Let P be a p-filtered space. Let Ṽ be a connected p-filtered space.
Let Γ be a discrete subgroup of Fil(Ṽ ), such that Ṽ /Γ is a compact filtered space.

Let U be the set of homomorphisms ρ from Γ to Fil(P ) such that there exists
a ρ-equivariant filtered immersion from Ṽ to P . Then U is open.

Moreover, suppose ρ0 belongs to U . Let f0 be a ρ0-equivariant filtered im-
mersion from Ṽ to P . If ρ is close enough to ρ0, we may choose a ρ-equivariant
filtered immersion f arbitrarily close to f0 on compact sets.

We note again that we could have replaced the word“Hölder”by ”continuous”
from all the definitions and still have a valid theorem.

Proof: Let {U i} be a finite covering of Ṽ /Γ such that:

• The open sets U i are charts on Ṽ /Γ.

• The open sets U i are trivialising open sets for the covering π : Ṽ → Ṽ /Γ.
In other words, π−1(U i) is a disjoint union of open sets which are mapped
homeomorphically to U i by π.

We choose an open set Ũ1 ⊂ Ṽ , such that π is a homeomorphism from Ũ1 to
U1. We make the following temporary definitions.

A loop is a sequence of indexes i1, . . . il such that il = i1 = 1 and

U ij ∩ U ij+1 6= ∅.

A loop defines uniquely a sequence of open sets Ũ ij such that

• π is a homeomorphism from Ũ ij to U ij ,
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• Ũ ij ∩ Ũ ij+1 6= ∅.

A loop i1, . . . il is trivialising if Ũ1 = Ũ il . In general, we associate to a loop
the element γ of Γ such that γ(Ũ1) = Ũ il . The group Γ is the group of loops
(with the product structure given by concatenation) modulo trivialising loops.
This is just a way to choose a presentation of Γ adapted to the charts U i.

A cocycle is a finite sequence of g = {gij} of elements of G such that for
every trivialising loop i1, . . . , ip we have

gi1i2 . . . gip−1ip = 1.

Every cocycle g defines uniquely a homomorphism ρg from Γ to G = Fil(P ),
and furthermore the map g 7→ ρg is open.

Let g be a cocycle. A g-equivariant map f is a finite collection {fi} such
that

• fi is a filtered map from U i to P ,

• fj = gijfi on U i ∩ U j .

It is easy to check that there is a one to one correspondence between ρg-
equivariant filtered maps and g-equivariant maps.

The following fact follows from the existence of partition of unity:

Let W0,W1,W2 be three open set in Ṽ /Γ, such that

W0 ⊂W1 ⊂W1 ⊂W2.

Let h be a filtered map defined on W2. Then there exists ε0 such that for any
positive ε smaller ε0, for any filtered map h1 defined on W1 and ε-close to h on
W1 then there exists h0, 2ε-close to h on W2, which coincides with h1 on W0.

Let us now begin the proof. Let g be a cocycle associated to a covering
U = (U1, . . . , Um). Let f be a g-equivariant immersion. Let now g be a cocycle
arbitrarily close to g.

We proceed by induction to build a g-equivariant map f defined on a smaller
covering V = (V1, . . . , Vm) and close to f . Our induction hypothesis is the
following

• Let Vi be a collection of opens sets : Vi = (V i1 , . . . , V
i
i−1), with V ik ⊂ Uk

and (V i1 , . . . , V
i
i−1, Ui, . . . , Um) is a covering.

• Let
f
i

= {f i1, . . . , f
i

i−1},

be a g-equivariant map defined on Vi = (V i1 , . . . , V
i
i−1).

• Assume that f is close to f on V il , for all l < i.
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Let
Wi = V i1 ∪ . . . ∪ V ii−1.

By the definition of a g-equivariant map, there exists a map hi defined on Wi∩Ui
such that hi restricted to V il ∩ Ui is equal to gilf

i

l. The map hi is close to fi.
Let Zi be a strictly smaller subset of Wi such that (Zi, Ui, . . . , Um) is still a
covering. We use our preliminary observation to build f

i

i close to fi on Ui and
coinciding with hi on Wi+1 ∩ Ui. We finally define

• V i+1
l = V il ∩ Zi,

• V i+1
i = Ui,

• f i+1

l = f il for l < i.

This completes the induction.
In the end, we obtain a g-equivariant map f defined on slightly smaller open

subsets of Ui, and close to f . Therefore, it follows f is an immersion.
The construction above proves also the last part of the statement about

continuity. Q.e.d.

8.1.3 Completeness of affine structure along leaves

Definition 8.8 [Leafwise complete] The space V , C∞-filtered space by affine
leaves, is leafwise complete if the universal cover of every leaf is isomorphic, in
the affine category, to the affine space.

We prove the following

Lemma 8.9 Let V be a compact space C∞-filtered by affine leaves. Let E be
the vector bundle over V whose fibre at x is the tangent space at x of the leaf Lx.
Assume that there exists a one-parameter group {ϕt}t∈R of homeomorphisms of
V such that:

• For every leaf Lx, ϕt preserves the leaf Lx and acts as a one parameter
group of translation on Lx, generated by the vector field X.

• The induced action of ϕt on the vector bundle E/R.X is uniformly con-
tracting.

Then V is leafwise complete.

Proof: For every x in V , let

Ox = {u ∈ Ex | x+ u ∈ Lx},
O = ∪x∈VOx.

We observe that O is an open subset of E invariant by ϕt. By hypothesis, we
have

L ⊂ O.
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Let L be the line bundle R.X. Since ϕt is contracting on F = E/L and V
is compact, L admits a φ = ϕ1 invariant supplementary F0. Let us recall the
classical proof of this fact. We choose a supplementary F1 to L. Then φ∗F1 is
the graph of an element ω in K = F ∗1 ⊗L. We now identify F1 with F using the
projection. Since the action of ϕt is uniformly contracting on F , the action of
ϕ−t is uniformly contracting on K = F ∗1 ⊗ L, hence exponentially contracting
by compactness. It follows that the following element of K = F ∗1 ⊗ L is well
defined:

α =
p=−∞∑
p=−1

(φp)∗ω.

This section α satisfies the cohomological equation

φ∗α− α = ω.

This last equation exactly means that the graph F0 of α is φ invariant.
Let u ∈ E. Write u = v + λX, with v ∈ F0. For n large enough, φn(u)

belongs to O. Since O is invariant by φ, we deduce that u ∈ O. Hence O = E
and V is leafwise complete. Q.e.d.

8.2 A Stability Lemma for Anosov Homomorphisms

Let ρ be a homomorphism from π1(Σ) to H(T) = C1,h(T)oDiffh(T). We denote
by ρ the associated representation (by projection) to Diffh(T).

The openness of the space of Anosov homomorphisms Hom∗ is an immediate
consequence of the following Stability Lemma. Moreover, corollaries of this
Lemma will enable us to associate to every ∞-Hitchin representation a cross
ratio and a spectrum – see Paragraph 9.2.1 and 9.2.2.

Lemma 8.10 [Stability Lemma] Let ρ0 be an Anosov homomorphism from
π1(Σ) to H(T). Then for ρ close enough to ρ0, there exists a Hölder homeo-
morphism Φ of J close to the identity which is a C∞-filtered immersion as well
as its inverse intertwining ρ0 and ρ, that is

∀γ ∈ π1(Σ), ρ0(γ) = Φ−1 ◦ ρ(γ) ◦ Φ.

This Lemma is proved in Paragraph 8.2.2.

8.2.1 Minimal action on the circle

The following Lemma is independent of the rest of the article.

Lemma 8.11 Let ρ0 and ρ1 be two homomorphisms from a group Γ to the group
of homeomorphisms of T. Suppose that every element of ρ0(Γ) different from
the identity has exactly two fixed points in T, one attractive and one repulsive.
Suppose moreover that the fixed points of the nontrivial elements ρ0(Γ) are dense
in T× T.

Let f be a continuous map of nonzero degree from T to T intertwining ρ0

and ρ1.Then f is a homeomorphism.
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Proof: We first prove that f is injective. Let a and b be two distinct points
of T such that f(a) = f(b) = c. Let I and J be the connected components of
T \ {a, b}.

Since f has a nonzero degree, either T\{c} ⊂ f(I) or T\{c} ⊂ f(J). Assume
T \ {c} ⊂ f(I). By the density of fixed point in T× T, we can find an element
γ in Γ such that the attractive fixed point γ+ of ρ0(γ) belongs to I and the
repulsive point γ− belongs to J .

We observe that for all n,

T \ {ρ1(γn)(c)} ⊂ f(ρ0(γ)n(I)).

Therefore, there exist a positive ε and two sequences, {xn}n∈N and{yn}n∈N,
such that

• xn belongs to ρ0(γ)n(I), yn belongs to ρ0(γ)n(I),

• d(f(xn), f(yn)) > ε.

Since γ− belongs to J , the sequence {ρ0(γ)n(I)} converges uniformly to γ+.
Hence,

lim
n→∞

d(xn, yn) = 0.

The contradiction follows. We have proved that f is injective. Since f has
nonzero degree, it is onto. Hence f is a homeomorphism. Q.e.d.

8.2.2 Proof of Lemma 8.10

Proof: Let ρ0 be an ∞-Hitchin homomorphism from π1(Σ) to H(T). By
definition, P = ρ0(π1(Σ))\J is compact. The topological space J is a C0-
manifold which is C∞-filtered by the fibres of the projection π : J → T and
δ : J → T ∗T. Observe that H(T) acts by C∞-filtered maps on J . It follows
that the space P is also C0-manifold which is C∞-filtered by the images of the
leaves of J .

Let now ρ be a homomorphism of π1(Σ) close enough to ρ0. Let Γ =
ρ0(π1(Σ)). According to Theorem 8.7, we obtain a C∞-filtered immersion Φ
from J to J , intertwining ρ and ρ0, and arbitrarily close to the identity on
compact sets provided ρ is close enough to ρ0. It remains to show that Φ is a
homeomorphism.

As a first step, we prove that ρ is H-fuchsian. Since Φ is a filtered map,
there exists a Hölder map f from T to T close to the identity such that

π ◦ Φ = f ◦ π.

In particular, f intertwines ρ0 and ρ. Since ρ0 is Anosov, by definition ρ0 is
an H-Fuchsian representation, and thus satisfies the hypothesis of Lemma 8.11.
The degree of f is nonzero since f is close to the identity. By Lemma 8.11, we
obtain that f is a homeomorphism. Thus, ρ is also H-Fuchsian as we claimed.
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The filtered equivariant immersion Φ induces an affine structure on the leaves
of P , according to the definition of Paragraph 8.1.1. Due to the compactness
of P , we deduce that there exists an action of a one-parameter group ψt on J
such that,

Φ ◦ ψt = ϕt ◦ Φ,

where ϕt is the canonical flow. We observe that ψt preserves any given leaf and
acts as a one-parameter group of translation on it.

We recall that by definition the canonical flow contracts uniformly the leaves
of F on the quotient ρ0(π1(Σ))\J . It follows that the same holds for ψt, for Φ
close enough to the identity.

By Lemma (8.9), the affine structure induced by φ is leafwise complete. In
particular, for every x in T, Φ is an affine bijection from π−1{x} to π−1{f(x)}.
Since f is a homeomorphism, we deduce that Φ itself is a homeomorphism, its
inverse being also a filtered immersion.

The result now follows. Q.e.d.

9 Cross ratios and properness of the action

We prove in this section

Theorem 9.1 The action by conjugation of H(T)/Z(H(T)) on HomH is proper
and the quotient is Hausdorff.

This is a consequence of the more precise Theorem 9.10. In order to state
and prove this last Theorem, we associate to every ∞-Hitchin representation a
cross ratio. This is done in the first two paragraphs of this section.

9.1 Corollaries of the Stability Lemma 8.10

Since the space HomH is connected, we have

Corollary 9.2 Let ρ0 and ρ1 be two ∞-Hitchin homomorphisms. Then, there
exists a Hölder homeomorphism Φ of J which is a filtered immersion as well
as its inverse which intertwines ρ0 and ρ1, that is, for all γ in π1(Σ) ρ0(γ) =
Φ−1 ◦ ρ1(γ) ◦ Φ.

Let ∂∞π1(Σ)2∗ = {(x, y) ∈ ∂∞π1(Σ)2 | x 6= y}. Recall that H(T) acts on
T ∗T = J/Z(H(T)). We also prove

Proposition 9.3 Let ρ be an ∞-Hitchin homomorphism. Then, there exists a
unique Hölder homeomorphism

Θρ : T ∗T→ ∂∞π1(Σ)2∗,

that intertwines

• the action of ρ(π1(Σ)) and the action of π1(Σ),
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(x,y) (z,y)

(z,t)(x,t)

Figure 2: The curve q̂

• the projection from T ∗T onto T and the projection on the first factor from
∂∞π1(Σ)2∗ onto ∂∞π1(Σ).

In other words:

• For all γ in π1(Σ), we have γ ◦Θρ = Θρ ◦ ρ(γ).

• There exists a Hölder map f from T to ∂∞π1(Σ) such that {f(x)} ×
∂∞π1(Σ) contains Θρ(T ∗xT).

Proof: By Corollary 9.2, it suffices to show this result for the action of a
Fuchsian representation. In this case the statement is obvious. Q.e.d.

9.2 Cross ratio, Spectrum and Ghys deformations

In this section, we associate a cross ratio to every ∞-Hitchin representation.
We also define a natural class of deformations of these representations. Similar
deformations were introduced by E. Ghys in the context of the geodesic flow of
hyperbolic surfaces in [13].

9.2.1 Cross ratio associated to ∞-Hitchin representations

Let (a, b, c) be a triple of distinct elements of ∂∞π1(Σ). We define [b, c]a to be
the closure of the connected component of ∂∞π1(Σ) \ {b, c} not containing a.
Let q = (x, y, z, t) be a quadruple of elements of ∂∞π1(Σ). We define q̂ to be
following closed curve, embedded in ∂∞π1(Σ)2∗ (Figure (2))

q̂ = ({x} × [y, t]x) ∪ ([x, z]t × {t}) ∪ ({z} × [y, t]z) ∪ ([x, z]y × {y}).

We choose the orientation on q̂ such that (x, y), (x, t), (z, t), (z, y) are cyclically
ordered.

We finally define εq ∈ {−1, 1} so that{
εq = −1, if (x, y, z, t) are cyclically ordered,

ε(σ(x),σ(y),σ(z),σ(t)) = ε(σ)ε(x,y,z,t).

44



Let ρ be an ∞-Hitchin representation. Let Θρ be the homeomorphism from
T ∗T to ∂∞π1(Σ)2∗ obtained in Proposition 9.3. Let λ = rdθ be the Liouville
form on T ∗T (see Paragraph 6.1.5 .(4) for a definition).

Definition 9.4 [Associated cross ratio] The associated cross ratio to the
Hitchin representation ρ is

Bρ(x, y, z, t) = εq. exp
(1

2

∫
Θ−1
ρ (bq) λ

)
.

Remarks:

1. The cross ratio is well defined and finite. Indeed Θ−1
ρ (q̂) is the union of

four arcs in T ∗T. Two of these arcs project injectively on T, the other two
arcs project to a constant. In both cases, the integral of rdθ = λ is well
defined and finite on such arcs.

2. The cross ratio just depends on the action of π1(Σ) on T ∗T. Here is
another formulation of this observation. Let Ωh(T) be the space of Hölder
one-forms on T. Note that Ωh(T) o Diffh(T) naturally acts on T ∗T. We
also have a natural homomorphism

d :
{
C1,h(T) o Diffh(T) → Ωh(T) o Diffh(T),

(f, φ) 7→ (df, φ),

whose kernel is the canonical flow. Therefore, two homomorphisms ρ1 and
ρ2 such that d ◦ ρ1 = d ◦ ρ2 have the same associated cross ratio. In other
words, the cross ratio only depends on the representation as with values
in Ωh(T) o Diffh(T).

9.2.2 Spectrum

Definition 9.5 [ρ-length] Let ρ be an ∞-Hitchin representation. Let γ be an
element in π1(Σ). The ρ-length of γ – denoted by `ρ(γ) – is the positive number
t such that

∃u ∈ J, ϕt(u) = ρ(γ)u.

Remarks:

1. In other words, `ρ(γ) is the length of the periodic orbit of ϕt in ρ(π1(Σ))\J
freely homotopic to γ. It is clear that `ρ(γ) just depends on the conjugacy
class of γ.

2. The existence and uniqueness of such a positive number t – or of the previ-
ously discussed closed orbit – follow from Corollary 9.2 and the description
of standard representations.
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Definition 9.6 [Spectrum] The marked spectrum of an ∞-Hitchin represen-
tation ρ is the map

`ρ : γ 7→ `ρ(γ).

Definition 9.7 [Symmetric representation] A representation is symmetric
if `ρ(γ) = `ρ(γ−1).

9.2.3 Coherent representations and Ghys deformations

Definition 9.8 [Coherent representation] An ∞-Hitchin representation
ρ is coherent if its marked spectrum coincides with the periods of the associated
cross ratio.

Remarks:

1. Every coherent representation is symmetric.

2. Conversely, we prove in Proposition 10.12 that if `Bρ is the period of the
cross ratio associated to the representation ρ, then

`Bρ(γ) =
1
2

(`ρ(γ) + `ρ(γ−1)).

Consequently, every symmetric representation is coherent.

3. Theorems 13.1 and 12.1 provide numerous examples of coherent represen-
tations.

Definition 9.9 [Ghys deformation] Let ρ be a Hitchin representation. Let
ω be a nontrivial element in H1(Γ,R). We identify the centre of H(T) with the
canonical flow ϕt. Let ρω be defined by

ρω(γ) = ϕω(γ).ρ(γ).

We say that ρω is a Ghys deformation of ρ if the representation ρω is Hitchin.

Remarks:

1. For ω small enough, ρω is a Ghys deformation. Indeed, for ω small enough,
ρω is Hitchin by the Openness Theorem 8.1.

2. We observe that ρω and ρ have the same associated cross ratio since they
have the same action on T ∗T. However, one immediately checks that

`ρω (γ) = `ρ(γ) + ω(γ). (26)

3. The previous remarks provide many examples of representations with the
same cross ratio but different marked spectra.
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9.3 Action of H(T) on HomH

We prove in this section that H(T)/Z(H(T)) acts properly on HomH . This is
a consequence of the following result.

Theorem 9.10 The group H(T)/Z(H(T)) acts properly with a Hausdorff quo-
tient on the set of ∞-Hitchin homomorphisms.

Moreover, if two ∞-Hitchin homomorphisms ρ0 and ρ1 have the same as-
sociated cross ratio, then there exists ω ∈ H1(π1(Σ)) such that ρ0 and ρω1 are
conjugated by some element in H(T).

Consequently two representations with the same cross ratio and the same
spectrum are equal.

Remark: Two representations with the same spectrum are not necessarily
identical (see remark after Theorem 13.1).

9.3.1 Characterisation of Ωh(T) o Diffh(T)

Let Ωh(T) be the space of Hölder one-form on T. We observe first that Ωh(T)o
Diffh(T) acts naturally on T ∗T and preserves the area. Conversely

Lemma 9.11 Let G be an area preserving Hölder homeomorphism of T ∗T. As-
sume G is above a homeomorphism f of T. Then G belongs to Ωh(T)oDiffh(T).

Proof: This Lemma is classical for all cotangent spaces. We give the proof for
completeness. We use the coordinates (r, θ) on T ∗T. By hypothesis,

G(r, θ) = (g(r, θ), f(θ)).

Since G preserves the area, we obtain

(r0 − r1)(θ0 − θ1) =
∫ f(θ1)

f(θ0)

(
∫ g(r1,θ)

g(r0,θ)

dr)dθ

=
∫ f(θ1)

f(θ0)

(g(r0, θ)− g(r1, θ))dθ. (27)

Hence g(r, θ) is affine in r:

g(r, θ) = ω(θ) + rβ(θ),

where ω(θ) and β are Hölder. Since G is a homeomorphism, we observe that for
all θ, β(θ) 6= 0 and f is an homeomorphism. By Equation 27, we obtain that

f−1(θ0)− f−1(θ) =
∫ θ1

θ0

β(θ)dθ.

It follows that f−1 is in C1,h(T) with df−1 = β. Since β never vanishes, f is
actually is a diffeomorphism, and G belongs to Ωh(T) o Diffh(T). Q.e.d.
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9.3.2 First step: Conjugation in Ωh(T) o Diffh(T)

We recall that H(T) acts on T ∗T. We denote by α → α̇ the projection from
H(T) to Ωh(T) o Diffh(T). We first prove

Proposition 9.12 Let ρ0 and ρ1 be two ∞-Hitchin representations with the
same associated cross ratio. Then there exists a unique element H = Hρ0,ρ1 in
Ωh(T) o Diffh(T) which intertwines ρ̇0 and ρ̇1, that is

∀γ ∈ π1(Σ),∀y ∈ T ∗T, H(ρ̇0(γ) · y) = ρ̇1(γ) ·H(y).

Moreover, for any representation ρ, for any neighbourhood V of the identity
in Ωh(T) o Diffh(T), there exists a neighbourhood U of ρ, such that if two rep-
resentations ρ1 and ρ0 in U have the same cross ratio, then Hρ0,ρ1 belongs to
V .

Proof: Applying Proposition 9.3 twice, we obtain a unique Hölder homeomor-
phism H of T ∗T and a homeomorphism f of T such that H is above f and
intertwines ρ̇0 and ρ̇1.

If ρ0 and ρ1 have the same associated cross ratio, then H preserves the
area. By Lemma 9.11, H belongs to Ωh(T) o Diffh(T). The first part of the
proposition now follows. The second part follows from Lemma 8.10. Q.e.d.

9.3.3 Second step: from Ωh(T) o Diffh(T) to H(T)

We prove the following Lemma

Lemma 9.13 Let φ : γ → φγ be a representation from π1(Σ) to Diffh(T) with
nonzero Euler class. Let α be a continuous one-form. Let f : γ → fγ be a map
from π1(Σ) to the space C1(T) of C1-functions on T. Assume that

φ∗γ(fη) + fγ = fηγ ,

φ∗γ(α)− α = dfγ .

Then α is exact.

Proof: Let κ :=
∫

T α. We aim to prove that κ = 0. We write T = R/Z. We
choose a lift all our data to R, and use ũ to describe a lift of u. In particular,
there exists an element c in H2(π1(Σ),Z) such that

∀x ∈ R, c(γ, η) = φ̃γη(x)− φ̃γ ◦ φ̃η(x) ∈ Z.

By definition, c is a representative of the Euler class of the representation φ.
Let h ∈ C1(R) such that

α̃ = dh.

By definition
∀m ∈ Z, h(x+m) = h(x) +mκ.
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Observe now that for all γ

d(φ̃∗γ(h)− h− f̃γ) = φ̃∗γα̃− α̃− df̃γ = 0.

Therefore, there exists
η : π1(Σ)→ R,

such that
φ̃∗γ(h)− h = f̃γ + η(γ).

Finally

c(γ, η)κ
= h ◦ φ̃γη − h ◦ φ̃γ ◦ φη
= φ̃∗γη(h)− φ̃∗ηφ̃∗γ(h)

= (φ̃∗γη(h)− h)− (φ̃∗ηφ̃
∗
γ(h)− φ̃∗η(h))− (φ̃∗η(h)− h)

= f̃γη − φ̃∗η f̃γ − f̃η + η(γη)− η(γ)− η(η)
= η(γη)− η(γ)− η(η).

Hence κc is the coboundary of η. Since the Euler class is nonzero in cohomology
by hypothesis, we obtain that κ = 0, hence α is exact. Q.e.d.

9.3.4 Proof of Theorem 9.10

We first prove

Proposition 9.14 If two representations have the same cross ratio then, after
a Ghys deformation, they are conjugated by an element of H(T).

Proof: Let ρ0 and ρ1 be two Hitchin representations with the same cross ratio.
Write

ρi(γ) = (f iγ , φ
i(γ)),

with f iγ ∈ C1,h(T) and φi(γ) ∈ Diffh(T). By Proposition 9.12, the repre-
sentations ρ̇0 and ρ̇1 – with values in Ωh(T) o Diffh(T) – are conjugated in
Ωh(T) o Diffh(T) by some element H = (α, F ), where F ∈ Diffh(T).

In particular, after conjugating by (0, F ) ∈ C1,h(T) o Diffh(T) = H(T), we
may assume that F is the identity and thus

φ0
γ = φ1

γ := φγ .

Since ρi is a representation, we have for i = 0, 1

φ∗η(f iη) + f iγ = f iηγ .

Since H = (α, id) intertwines ρ̇0 and ρ̇1, we also have

φ∗γα− α = df1
γ − df0

γ .
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Lemma 9.13 applied to fγ = f1
γ − f0

γ yields that α = dg for some function g in
C1,h(T).

Conjugating by (g, id), we may now as well assume that α = 0. It follows
that there exists a homomorphism

ω : π1(Σ)→ R,

such that
f1
γ − f0

γ = ω(γ).

This exactly means that ρ0 = ρω1 . Q.e.d.

This proves that two representations with the same cross ratio are conjugated
after a Ghys deformation. Consequently two representations with the same cross
ratio and spectrum are conjugated. Indeed if ρ and ρω have the same spectrum
and cross ratio, then by Formula (26), for all γ ∈ π1(Σ), ω(γ) = 0. Hence
ρ = ρω.

Finally, the proof of properness goes as follows. Suppose that we have a
sequence of representations {ρn}n∈N converging to ρ0, a sequence of elements
{ψn}n∈N in H(T) such that {ψ−1

n ◦ ρn ◦ ψn}n∈N converges to ρ1. Let d be the
homomorphism H(T) → Ωh(T) o Diffh(T). We aim to prove that {dψn}n∈N
converges.

Since ρn and ψ−1
n ◦ρn ◦ψn have the same spectrum and cross ratio, it follows

that ρ1 and ρ0 have the same spectrum and cross ratio. It follows from the first
part of the proof that there exists F such that

ρ0 = F−1 ◦ ρ1 ◦ F.

We may therefore assume that ρ0 = ρ1.
By the second part of Proposition 9.12, {d(ψn)}n∈N converges to the identity.

The properness is now proved.

10 A characterisation of C1,h(T) o Diffh(T)

We aim to characterise in a geometric way the action of group H(T) = C1,h(T)o
Diffh(T) generalising Proposition 6.3. Roughly speaking, we will describe it as
a subgroup of the central extension of ”exact symplectic homeomorphisms” of
the Annulus (i.e. T ∗T). The notion of exact symplectic homeomorphism does
not make sense in an obvious way, but some homeomorphisms may be coined
as ”exact symplectic” as we shall see.

We shall define in this section π-exact symplectomorphism of T ∗T which are
characterised by several equivalent properties (see Proposition 10.9).

Using this notion, we can state our main result

Lemma 10.1 A Hölder homeomorphism of J belongs to H(T) if and only if

50



1. it preserves the foliation F ,

2. it commutes with the canonical flow,

3. it is above a π-exact symplectic homeomorphism of T ∗T.

The aim of the following sections is

• to recall basic facts about symplectic and Hamiltonian actions on the
Annulus,

• to extend this construction to a situation with less regularity, and in par-
ticular to give a ”symplectic” interpretation of the action of H(T) on T ∗T.

10.1 C∞-exact symplectomorphisms

Let L be an orientable real line bundle over a manifold M , equipped with a
connection ∇ whose curvature form ω is symplectic.

• For any curve γ joining x and y, let

Hol(γ) : Lx → Ly,

be the holonomy of ∇ along γ. If γ is a closed curve – that is x equals y
– we identify GL(Lx) with the multiplicative group R \ {0} and consider
Hol(γ) as a real number.

• Let ν be a nonzero section of L. Let λν be the primitive of ω defined by

∇Xν = λν(X)ν.

If γ is a smooth closed curve, then

Hol(γ) = e
R
γ
λν .

Definition 10.2 [Exact symplectomorphisms] A symplectic diffeomorphism
of M is ∇-exact2 if for any closed curve

Hol(σ) = Hol(φ(σ)). (28)

When the action of φ on H1(M) is non trivial the notion actually depends on
the choice of ∇. We shall however usually say exact instead of ∇-exact in order
to simplify our exposition.

The following proposition clarifies this last condition

Proposition 10.3 Let φ be a symplectic diffeomorphism. The following condi-
tions are equivalent:

• For any curve σ, Hol(σ) = Hol(φ(σ)).
2This definition is ad hoc: exact symplectomorphisms exist in a greater generality.
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• For any non zero section ν of L, φ∗λν − λν is exact.

• The action of φ lifts to a connection preserving action on L.

Let now M = T ∗T. Let σ0 : T→ T ∗T be the zero section considered as a curve
in M . Then the map

φ 7→ Hol(φ(σ0)),

is a group homomorphism from the group of symplectomorphisms to the multi-
plicative real numbers whose kernel is the group of exact symplectomorphism.

Proof: We prove for an exact symplectic diffeomorphism φ, the action lift to
an action on the line bundle L. We choose – on purpose – a more complicated
proof. This proof however has the advantage of using very little regularity of φ,
so that we can reproduce it later in another context.

We define a lift φ̂ in the following way. We first choose a base point x0 in
T ∗T and η a curve joining x0 to φ(x0). For any point x in T ∗T, we choose a
curve γ joining x0 to x, then we define

Ψ̂x = Hol(φ(γ)) Hol(η) Hol(γ)−1 : Lx → Lφ(x).

Since for every closed curve σ, by definition of exactness

Hol(σ) = Hol(φ(σ)),

the linear map Ψ̂x is independent of the choice of γ. Finally we define

φ̂(x, u) = (φ(x), Ψ̂x(u)).

By construction, φ̂ preserve the parallel transport along any curve γ, that is

φ̂(Hol(γ)u) = Hol(φ(γ)).φ̂(u).

This is what we wanted to prove. The other assertions of the proposition are
obvious. Q.e.d.

10.2 π-Symplectic Homeomorphisms and π-curves

The group Diff(T) of C1-diffeomorphisms of the circle acts by area preserving
homeomorphisms on T ∗T. Let Ω1(T) be the vector space of continuous one-
forms on T. This group also acts on T ∗T by area preserving homeomorphisms
in the following way

fdθ.(θ, t) = (θ, t+ f(θ)).

We observe that Diff(T) normalises this action.

Definition 10.4 [π-symplectic homeomorphism] The group of π-symplectic
homeomorphisms is

Sympπ = Ω1(T) o Diff(T).
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Here is an immediate characterisation of π-symplectic homeomorphisms. The
proof is identical to that of Lemma 9.11

Proposition 10.5 An area preserving homeomorphism of T ∗T is π-symplectic
if and only if it is above a diffeomorphism of T.

In order to extend the notion of exact diffeomorphisms, using Proposition
10.3 as a definition, we need to have a class a less regular curves for which we
can compute a holonomy.

Definition 10.6 [π-curves and their holonomies] A π-curve is a contin-
uous curve c = (cθ, cr) with values in T ∗T such that cθ is C1. We define∫

c

λ =
∫
crdcθ.

The holonomy of a closed π-curve is

Hol(c) = e
R
c
λ.

We collect in the following proposition a few elementary facts.

Proposition 10.7 1. The image of a π-curve by a π-symplectic homeomor-
phism is a π-curve,

2. Let φ = (α,ψ) be a π-symplectic homeomorphism. Let c be a closed π-
curve which projects isomorphically on T, then

Hol(φ(c)) = Hol(c)e
R

T α.

Definition 10.8 [π-exact symplectic homeomorphism] The group of π-
exact symplectomorphisms is

Exactπ = (C1(T)/R) o Diff(T),

where C1(T)/R is identified with the space of exact continuous one-forms on T.

By the above remarks, we deduce immediately, reproducing the proof of
Proposition 10.3

Proposition 10.9 1. The group of π-exact symplectomorphisms is the group
of π-symplectic homomorphisms φ such that for any closed π-curve c,

Hol(c) = Hol(φ(c)).

2. Let x0 ∈ T ∗T. The action of any π-exact symplectomorphism φ lifts to an
action of a homeomorphism φ̂ on L such that for any π-curve c starting
from x0, for any u ∈ Lx0

φ̂(Hol(c)u) = Hol(φ(c)).φ̂(u). (29)
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3. Furthermore, φ̂ is determined by Equation (29) up to a multiplicative con-
stant. As a consequence, there exists an element (α,ψ) of C1(T)oDiff(T)
such that the induced action of φ̂ on J , identified with the frame bundle
of L is (α,ψ). We observe that α is defined uniquely up to an additive
constant.

4. Finally, if φ is Hölder, so is φ̂.

From this we obtain immediately Lemma 10.1.

10.3 Width

We generalise the notion of width for a π-exact symplectomorphism φ in the
following obvious way.

Definition 10.10 [Action difference] Let x and y two fixed points of φ.
Let c be a π-curve joining x to y. If q is a curve, we denote by q the curve with
the opposite orientation. The action difference of x and y is

∆(φ;x, y) = Hol(c ∪ φ(c)) = e
R
c
λ−

R
φ(c) λ.

By Proposition 10.9, this quantity does not depend on c. Moreover, let φ̂ be a
lift of the action of φ on L. Then, for any fixed point z of φ, φ̂(z) is an element
of GL(Lz) – identified with R \ {0} – and for any two fixed points x and y of φ

∆(φ;x, y) = φ̂(x)/φ̂(y).

Definition 10.11 [Action difference] The width of φ is

w(φ) = sup
x,y fixed points

∆(φ;x, y).

This quantity is invariant by conjugation under π-symplectic homeomorphisms.
We now relate it to the period of some cross ratio.

Proposition 10.12 Let ρ be an∞-Hitchin homomorphism from π1(Σ) to H(T).
Let P be the projection

P : H(T)→ Exactπ.

Let ρ̇ = P ◦ ρ. Let `ρ be the spectrum of ρ (cf Paragraph 9.2.1) and Bρ be its
associated cross ratio (cf Paragraph 9.2.2) with periods `Bρ . Then

log(w(ρ̇(γ)) = `ρ(γ) + `ρ(γ−1) = 2`Bρ(γ).

Proof: Let γ be a non trivial element of π1(Σ). Let w be a point in J such
that

ϕlρ(γ)(w) = ρ(γ)(w).
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The projection v = δ(w) is a fixed point of ρ̇(γ).
Since L is a bundle associated to J , it follows that the associated action of

ρ(γ) on L is a lift ̂̇ρ(γ) of ρ̇(γ). Then

̂̇ρ(γ)(v) = e`ρ(γ).

Since ρ̇(γ) has precisely two fixed points v and u, we obtain that

log(w(ρ̇(γ)) = `ρ(γ) + `ρ(γ−1).

We still have to identify the width with the period of the associated cross
ratio. This requires some construction. Let q be the quadruple (γ+, y, γ−, γ(y))
of points of ∂∞π1(Σ), where γ+ and γ− are respectively the attractive and
repulsive fixed points of γ and y is any point different to γ+ and γ−.

According to Proposition 9.3, there exists a π1(Σ)-equivariant map Θ from
T ∗T to ∂∞π1(Σ)2∗ which identifies the fibres of T ∗T → T to the first factor.
Then, there exists a π-curve C such that Θ(C) = q̂ and by definition of the
associated cross ratio Bρ, we have

2`Bρ(γ) = 2 log(|Bρ(γ+, y, γ−, γ(y))|) =
∫
C

rdθ. (30)

Let us describe C. Let t and s be the points in T ∗T such that Θρ(t) = (γ+, y)
and Θ(s) = (γ−, y) respectively. We denote by [a, b] the arc joining a and b
along that fibre, whenever a and b belong to the same fibre of T ∗T. Using this
notation, we can write

C = c ∪ [t, ρ̇(γ)(t)] ∪ ρ̇(γ)(c) ∪ [ρ(γ)(s), s]),

where c is a π-curve. Finally let

c̃ = [v, t] ∪ c ∪ [s, u],

where v = Θ(γ+, γ−) and u = Θ(γ−, γ+) are the two fixed points of ρ̇(γ) – See
Figure (3).

ρ(γ)(s)

ρ(γ)(t)

s

t

u

v

Figure 3: The π-curves C and c̃
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We have

log(w(ρ̇(γ))) = log(Hol(c̃ ∪ ρ̇(γ)(c̃))
= log(Hol(c ∪ [t, ρ̇(γ)(t)] ∪ ρ̇(γ)(c) ∪ [ρ(γ)(s), s]))

=
∫
C

rdθ

= 2`Bρ(γ).

The Assertion follows. Q.e.d.

11 A Conjugation Theorem

We use in this section the following setting and notations.

1. Let κ be a Hölder homeomorphism of T. Let

Dκ = {(s, t) ∈ T× T | κ(s) 6= t}.

2. Let p = (p1, p2) : M → Dκ be a principal R-bundle over Dκ equipped
with a connection ∇. Let ω be the curvature of ∇. Let f be such that
ω = f(s, t)ds ∧ dt. We suppose that f is positive and Hölder.

3. For all s ∈ T, we denote by cs : t 7→ (s, t) the curve in Dκ whose first
factor is constant.

4. Let L be the one-dimensional foliation of M by the ∇-horizontal sections
of M along the curves cs.

Definition 11.1 [Anosov Homomorphism] A homomorphism ρ0 from π1(Σ)
to the group Diff1,h(M) of C1-diffeomorphisms of M with Hölder derivatives is
Anosov if

1. the action of ρ0(π1(Σ)) preserves ∇,

2. the quotient ρ0(π1(Σ))\M is compact,

3. the R-action on ρ0(π1(Σ))\M contracts uniformly the leaves of L (cf Def-
inition 7.3),

4. there exist two H-Fuchsian homomorphisms ρ1 and ρ2 from π1(Σ) to
C1,h(T), such that

• ρ2 = κ−1ρ1κ,

• ∀γ ∈ π1(Σ), u ∈M, p(ρ0(γ)u) = (ρ1(γ)(p1(u)), ρ2(γ)(p2(u))).

Our main result is that every Anosov representation on M is conjugated to
an Anosov representation on J . We define more precisely what we mean by
conjugation
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Definition 11.2 [Anosov conjugated] An Anosov homomorphism ρ0 from
π1(Σ) to Diff1,h(M) is Anosov conjugated to a homomorphism ρ from π1(Σ) to
H(T) by an homeomorphism ψ̂ from M to J , if:

• The homeomorphism ψ̂ intertwines the homomorphisms ρ and ρ0, the fo-
liations L and F as well as the R-actions on M and J .

• There exists an area preserving homeomorphism ψ from Dκ to T ∗T such
that δ ◦ ψ̂ = ψ ◦ p.

Remarks:

1. The representation ρ with values in H(T) is Anosov in the sense of Defi-
nition 7.4.

2. As a consequence of the next result, ψ̂ is unique up to conjugation by
elements of H(T).

3. If ρ0 is Anosov conjugated to ρa and ρb, then ρa and ρb are conjugated by
a π-symplectic homeomorphism.

Theorem 11.3 [Conjugation Theorem] Every Anosov homomorphism ρ0

from π1(Σ) to Diff1,h(M) is Anosov conjugated to an Anosov homomorphism ρ

from π1(Σ) to H(T) by a homeomorphism ψ̂.
Moreover, ψ̂ and ρ are unique up to conjugation by an element of H(T).
Finally, if κ, ∇ depends continuously on a parameter, then we can choose ψ̂

to depend continuously on this parameter.

To simplify the notations, we fix a trivialisation of M = R×Dκ so that the
sections U(s,u) : t 7→ (u, s, t) are horizontal along cs. Let

π :
{

M → T,
(u, s, t) 7→ t,

p :
{

M → Dκ,
(u, s, t) 7→ (s, t).

We also observe that the foliation L is the foliation by the fibres of the projection
(u, s, t)→ (u, s).

11.1 Contracting the leaves (bis)

For later use, using the above notations, we prove the following easy result which
allows us to restate Condition (3) of Theorem 11.3.

Proposition 11.4 Let ρ0 be a faithful homomorphism of π1(Σ) to Diff1,h(M)
such that ρ0(π1(Σ))\M is compact. Then the following conditions (2) and (2’)
are equivalent

(2) The action of R on ρ0(π1(Σ))\M contracts the leaves of L.
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(2’) Let {t}m∈N be a sequence of real numbers going to +∞. Let {γ}m∈N be a
sequence of elements of π1(Σ). Let (u, s, t) be an element of M such that

{ρ0(γm)(u+ tm, s, t)}m∈N,

converges to (u0, s0, t0) in M . Then for all w in T, with w 6= κ(s), the
sequence {ρ0(γm)(s, w)}m∈N converges to (s0, t0).

Proof: To simplify the proof, we omit ρ0. Let Π be the projection of M on
π1(Σ)\M . To say that the R action on M contracts the leaves of L is to say
that

lim
h→∞

d(Π(u+ h, s, t),Π(u+ h, s, w)) = 0.

Assume Condition (2’). Let {t}m∈N be a sequence of real numbers going to
+∞. Let {γ}m∈N be a sequence of elements of π1(Σ) such that after extracting
a subsequence – since π1(Σ)\M is compact – the sequence

{γm(u+ tm, s, t)}m∈N,

converges to (u0, s0, t0) in M . Then by hypothesis,

{γm(s, w)}m∈N,

converges to (s0, t0). It follows that

{γm(u+ tm, s, w)}m∈N,

converges to (u0, s0, w) in M . Hence

lim
h→∞

d(Π(u+ h, s, t),Π(u+ h, s, w)) = 0.

The converse relation is a similar yoga. Q.e.d.

11.2 A Conjugation Lemma

We prove a preliminary result. Let κ : T → T and Dκ be as before. Let ds
(respectively dt) be the Lebesgue probability measure on the first (respectively
second) factor of T× T.

Definition 11.5 [κ-infinite] A positive continuous function f defined on Dκ

is κ-infinite if for all s, t such that κ(s) 6= t∫ κ(s)

t

f(s, u)du =
∫ t

κ(s)

f(s, u)du =∞. (31)

Lemma 11.6 Assume that f is κ-infinite and Hölder. Then, there exists a
Hölder homeomorphism ψ from Dκ to T ∗T such that
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• ψ∗ω = dθ∧dr, where ω = f(s, t)ds∧dt and where dθ∧dr is the canonical
symplectic form of T ∗T.

• π ◦ ψ = πD, where πD be the projection from Dκ to the first T factor,

• if c is a C1-curve in Dκ, then ψ(c) is a π-curve. Furthermore if c is a
closed curve then

e
R
c
λ = Hol(ψ(c)).

• For any two elements γ1, γ2 of Diff1,h(T) such that γ = (γ1, γ2) preserves
the 2-form ω then

ψ ◦ γ ◦ ψ−1,

is Hölder and is π-symplectic above γ1.

The homeomorphism ψ is unique up to right composition with a π-exact sym-
plectomorphism. Finally ψ depends continuously on κ and f .

Proof: The uniqueness part of this statement follows from the characterisation
of π-exact symplectomorphisms given in Proposition 10.5. The proof of the
existence is completely explicit. Let g be a C1-diffeomorphism of the circle T
such that ∀s, g(s) 6= κ(s). We consider

ψ :

{
Dκ → T ∗T = T× R,

(s, t) 7→ (s,
∫ t
g(s)

f(s, u)du).

It is immediate to check that

• ψ∗ω = dθ ∧ dr,

• π ◦ ψ = πD.

We also observe that ψ is a Hölder map and a homeomorphism. We now prove
that ψ−1 is Hölder. We have

ψ−1(s, u) = (s, α(s, u)),

where ∫ α(s,u)

g(s)

f(s, w)dw = u.

It is enough to prove that α is Hölder. We work locally so that f is bounded
from below by a positive constant k. Firstly,

|α(s, v)− α(s, u)| ≤ 1
k
|
∫ α(s,u)

α(s,v)

f(s, w)dw| = 1
k
|u− v|.

This proves that α is Hölder with respect to the second variable. Let us take
care of the first variable. We have by definition of α, for all s and t∫ α(s,u)

g(s)

f(s, w)dw = u =
∫ α(t,u)

g(t)

f(t, w)dw.
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Hence,∫ α(t,u)

α(s,u)

f(t, w)dw =
∫ g(s)

g(t)

f(t, w)dw +
∫ α(t,u)

g(t)

(f(t, w)− f(s, w))dw. (32)

Since we work locally, we may assume that k ≤ |f(t, w)| ≤ K. Since f is
a ζ-Hölder function for some ζ, we also have |f(t, w) − f(s, w)| ≤ C|t − s|ζ .
Therefore, Equality (32) yields

k|α(s, u)− α(t, u)| ≤ K|t− s|+ C|t− s|ζ .

This finishes the proof that α is a Hölder function.
By the construction of ψ, if c is a C1-curve in Dκ, then ψ(c) is a π-curve.

Note that

λ(s, t) =
(∫ t

g(s)

f(s, u)du
)
ds,

is a primitive of ω. It follows that if c : s 7→ (c1(s), c2(s)) is a C1 curve in Dκ.
Then ∫

c

λ =
∫

T

∫ c2(s)

g(s)

f(s, u)ċ1(s)duds = log(Hol(ψ(c))).

By construction, ψ ◦γ ◦ψ−1 is π-symplectic and Hölder. The continuity also
of ψ on κ and f follows from the construction. Q.e.d.

11.3 Proof of Theorem 11.3

11.3.1 A preliminary lemma

We prove

Lemma 11.7 Let ρ1 and ρ2 be two H-Fuchsian representations from π1(Σ) in
Diffh(T). Let κ be a Hölder homeomorphism of T such that κ ◦ ρ1 = ρ2 ◦ κ. Let
f(s, t) be a positive continuous function on Dκ.

Assume that, for all γ in π1(Σ), ω = f(s, t)ds ∧ dt is invariant under the
action of (ρ1(γ), ρ2(γ)). Then f is κ-infinite.

Proof: For the sake of simplicity, we write ρi(γ) = γi. We first observe that
the invariance of ω yields that for all γ in π1(Σ)

f(s, t) =
dγ1

ds
(s)

dγ2

dt
(t)f(γ1(s), γ2(t)). (33)

For any (s, t) in Dκ, we may find a sequence {γn}n∈N as well as (s0, t0) in
Dκ such that

lim
n→∞

γ1
n(s) = s0, (34)

lim
n→∞

γ2
n(t) = t0, (35)

lim
n→∞

dγ1
n

ds
(s) = +∞. (36)
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Relation (33) yields∫ t

κ(s)

f(s, u)du =
∫ t

κ(s)

dγ1
n

ds
(s)

dγ2
n

du
(u)f(γ1

n(s), γ2
n(u))du

=
dγ1
n

ds
(s)
∫ t

κ(s))

dγ2
n

du
(u)f(γ1

n(s), γ2
n(u))du

=
dγ1
n

ds
(s)
∫ γ2

n(t)

γ2
n(κ(s))

f(γ1
n(s), u)du

=
dγ1
n

ds
(s)
∫ γ2

n(t)

κ(γ1
n(s))

f(γ1
n(s), u)du.

From Assertions (34) and (35), we deduce that

lim
n→∞

∫ γ2
n(t)

κ(γ1
n(s))

f(γ1
n(s), u)du =

∫ t0

κ(s0)

f(s0, u)du > 0.

Hence Assertion (36) shows that∫ t

κ(s)

f(s, u)du =∞.

A similar argument yields ∫ κ(s)

t

f(s, u)du =∞.

Q.e.d.

11.3.2 Proof of Theorem 11.3

Proof: Recall our hypothesis and notations. Let ρ1 and ρ2 be two H-Fuchsian
representations. Let κ be a Hölder homeomorphism of T such that κ◦ρ1 = ρ2◦κ.
Let p : M = R × Dκ → Dκ be a principal R-bundle over Dκ equipped with a
connection ∇. Assume the curvature ω of ∇ is such that ω = f(s, t)ds∧dt with
f positive and Hölder. Let

π :
{

M → T,
(u, s, t) 7→ t,

p :
{

M → Dκ,
(u, s, t) 7→ (s, t).

Assume that π1(Σ) acts on M by C1-diffeomorphisms with Hölder derivatives.
Assume that this action preserves ∇, and that

• π1(Σ)\M is compact,

• the action of R on π1(Σ)\M contracts uniformly the fibres of π1,
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• we have p(γu) = (ρ1(γ)(p(u)), ρ2(γ)(p(u))).

We want to prove there exists an R-commuting Hölder homeomorphism ψ̂
from M to J over a homeomorphism ψ from Dκ to T ∗T, a representation ρ from
π1(Σ) to H(T) element of HomH , such that

ψ̂ ◦ γ = ρ(γ) ◦ ψ̂.

By Lemma 11.7, f is κ-infinite. Hence, by Lemma 11.6 there exists a Hölder
homeomorphism ψ from Dκ to T ∗T unique up to right composition with a π-
exact symplectic homeomorphism, such that

1. ψ∗ω = dθ · dr,

2. π ◦ ψ = πD,

3. if γ1, γ2 are two C1 diffeomorphisms with Hölder derivatives of the circle
such that γ = (γ1, γ2) preserves the 2-form ω then

ψ ◦ γ ◦ ψ−1,

is Hölder and π-symplectic above γ1,

4. if c is a C1-curve in D, then ψ(c) is a π-curve and Holω(c) = Hol(ψ(c)),
where Holω(c) =

∫
c
λ.

Let γ be an element of π1(Σ). Since γ acts on M preserving the connection
∇, it follows that µ(γ) = (ρ1(γ), ρ2(γ)) acts on Dκ in such a way that for all
C1-curves Hol∇(c) = Hol∇(µ(γ)c).

We now show that

Holω(c) = Holω(µ(γ)c). (37)

We choose a trivialisation of L. In this trivialisation ∇ = D + λ+ α, where D
is the trivial connection and α is a closed form. Then

Hol∇(c) = Holω(c).e
R
c
α.

To prove Equality (37), it suffices to show∫
f(γ)(c)

α =
∫
c

α. (38)

But ρ1(γ) preserves the orientation of T, hence is homotopic to the identity by
a family of mapping ft. It follows that µ(γ) is also homotopic to the identity
through the family (ft, κftκ−1). This implies that µ(γ) acts trivially on the
homology. Hence Equality (38).

It follows from (3) and (4) that g(γ) = ψ ◦ µ(γ) ◦ ψ−1 is a π-exact symplec-
tomorphism.
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Finally, we describe the construction of a map ψ̂ from M to J above ψ,
commuting with R action, ”preserving the holonomy ” well defined up right
composition by an element of R. Let fix an element y0 of the fibre of p above
x0 in Dκ and an element z0 of the fibre of δ above ψ(x0). Let y be an element
of the fibre of p above some point x of Dκ. Let c be path joining x0 to x. We
observe that there exists ζ in R such that

y = ζ + Hol∇(c)y0.

We define
ψ̂(y) = ζ + Hol(ψ(c))z0.

Since for any closed curve Hol∇(c) = Hol(ψ(c)), it follows that ψ̂(y) is indepen-
dent of the choice of c.

By construction, ψ̂ satisfies the required conditions. The uniqueness state-
ment follows from the Lemma 10.1 The continuity statement follows by the cor-
responding continuity statement of Lemma 11.6 and the construction. Q.e.d.

12 Negatively curved metrics

We first use our conjugation Theorem 11.3 to prove the space RepH contains
an interesting space.

Theorem 12.1 Let M be the space of negatively curved metrics on the surface
Σ identified up to diffeomorphisms isotopic to the identity. Then, there exists a
continuous injective map

ψ :M→ RepH .

Moreover, for every g, ψ(g) is coherent. Furthermore, for any γ in π1(Σ)

`g(γ) = `ψ(g)(γ).

Here `g(γ) is the length of the closed geodesic for g freely homotopic to γ, and
`ψ(g) is the ψ(g) -length of γ.

We first recall some facts about the geodesic flow and the boundary at infinity
of negatively curved manifolds.

12.1 The boundary at infinity and the geodesic flow

Let Σ be a compact surface equipped with a negatively curved metric. Let Σ̃
be its universal cover. Let U Σ̃ (respectively UΣ) be the unitary tangent bundle
of Σ̃ (respectively Σ). Let ϕt be the geodesic flow on these bundles. Let ∂∞Σ̃
be the boundary at infinity of Σ̃.

We collect in the following proposition classical facts :

Proposition 12.2 1. The boundaries at infinity of π1(Σ) and Σ̃ coincide∂∞Σ̃ =
∂∞π1(Σ).
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2. ∂∞Σ̃ has a C1-structure depending on the choice of the metric such that
the action of π1(Σ) on it is by C1,h-diffeomorphisms. The action of π1(Σ)
is Hölder conjugate to a Fuchsian one.

3. Let G be the space of geodesics of Σ̃. Then G is C1,h-diffeomorphic to
(∂∞π1(Σ))2∗.

4. U Σ̃ → G is a principal R-bundle (with the action of the geodesic flow).
Furthermore the Liouville form is a connection form for this bundle which
is invariant under π1(Σ), and its curvature is symplectic.

We recall in the next Proposition the identification of the unitary tangent
bundle with a suitable subset of the cube of the boundary at infinity. Let

∂∞π1(Σ)3+ = { oriented (x, y, z) ∈ (∂∞π1(Σ))3 | x 6= y 6= z 6= x}.

For any (x, y) let
L(x,y) = {(w, x, y) ∈ (∂∞π1(Σ))3+}.

Proposition 12.3 There exist a homeomorphism f of ∂∞π1(Σ)3+
with U Σ̃

such that if ψt = f−1 ◦ ϕt ◦ f then ψt(L(x,y)) = L(x,y).
Moreover, for any sequence of real number {t}m∈N going to infinity, let

(x, y, z) ∈ ∂∞π1(Σ)3+, let {γ}m∈N be a sequence of elements of π1(Σ), such
that

{γm ◦ ψtm(z, x, y)}n∈N converges to (z0, x0, y0),

Then, for any w, v such that (w, x, v) ∈ ∂∞π1(Σ)3+, there exists v0 such that

{γm ◦ ψtm(w, x, v)}n∈N converges to (v0, x0, y0).

Proof: We first explain the construction of the map f . Let (z, x, y) ∈
∂∞π1(Σ)3+. Let c the geodesic in Σ̃ going from x to y. Let c(t0) be the image
of the projection of z on c, that is the unique minimum on c of the horospherical
function associated to z. We set f(z, x, y) = ċ(t0). Then, the first property of f
is obvious, and the second one is a classical consequence of negative curvature,
namely that two geodesics with the same endpoints at infinity go exponentially
closer and closer. Q.e.d.

12.2 Proof of Theorem 12.1

Using Proposition 11.4, 12.2 and 12.3 yields that the hypotheses of Theorem
11.3 are satisfied

Therefore, we obtain a continuous map ψ fromM to Hom∗/H(T). For a hy-
perbolic metric, we obtain precisely the associated ∞-Fuchsian representation.
Since the space of negatively curved metrics on a compact surface is connected,
all the representations are actually in RepH .

Finally if ψ(g0) = ψ(g1), then the two metrics have the same length spectrum
and therefore are isometric by Otal’s Theorem [27]. This proves injectivity. The
continuity follows from the continuity statement of Theorem 11.3.
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13 Hitchin component

We now prove that RepH contains all these Hitchin components.

Theorem 13.1 There exists a continuous injective map

ψ : RepH(π1(Σ),PSL(n,R))→ RepH ,

such that, if ρ ∈ RepH(π1(Σ),PSL(n,R)) then, for any γ in π1(Σ), we have

`ψ(ρ)(γ) = wρ(γ), (39)

where `ψ(ρ)(γ) is the ψ(ρ)-length of γ, and wρ(γ) is the width of γ with respect
to ρ.

Moreover, the cross ratio associated to ρ and ψ(ρ) coincide, and the repre-
sentation ψ(ρ) is coherent (cf Definition 9.8).

Remarks: It follows in particular that if ρ belongs to ρ ∈ RepH(π1(Σ),PSL(n,R)),
and if ρ∗ is the contragredient representation, then ψ(ρ) and ψ(ρ∗) have the same
spectrum although they are different representations.

13.1 Hyperconvex curves

We recall a proposition obtained in Section 2.2.1

Proposition 13.2 Let ρ be a hyperconvex representation. Let

ξ = (ξ1, . . . , ξn−1),

be the limit curve of ρ. Then, there exist

• two C1 embeddings with Hölder derivatives, η1 and η2, of T in respectively
P(Rn) and P(R∗n),

• two representations ρ1 and ρ2 from π1(Σ) in Diffh(T), the group of C1-
diffeomorphisms of T with Hölder derivatives,

• a Hölder homeomorphism κ of T,

such that

1. η1(T) = ξ1(∂∞π1(Σ)) and η2(T) = ξn−1(∂∞π1(Σ)),

2. the map ηi is ρi equivariant,

3. if κ(s) 6= t, then the sum η1(s) + η2(t) is direct,

4. κ intertwines ρ1 and ρ2.

We shall use we following the continuous map

η̇ = (η−1
1 ◦ ξ1, η−1

2 ◦ ξn−1), (40)

from ∂∞π1(Σ)2∗ to Dκ.
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13.2 Proof of Theorem 13.1

We use in this section the independent results proved in the Section 4.4.
Let ρ be a hyperconvex representation. Let η1, η2 and κ as in Proposition

2.7. Let η = (η1, η2). Let Dκ be defined as usual. We observe that π1(Σ) acts
by ρ̇ = (ρ1, ρ2) on Dκ. By Proposition 2.7, η is a ρ-equivariant C1 map from
Dκ to

P(n)2∗ = P(Rn)× P(R∗n) \ {(D,P )|D ⊂ P⊥}.

In Section 4.7, we show there exists a principal R-bundle L on P(n)2∗ equipped
with an action of PSL(n,R) and an invariant connection whose curvature is a
symplectic form Ω.

We pull back this structure on Dκ:

• Let M be the induced bundle by η. Note that M is equipped with an
action of π1(Σ) induced from the PSL(n,R) action on L.

• Let ϕt be the flow of the induced R-action on M .

• Let L be the foliation of M by horizontal sections along the curves cs :
t 7→ (s, t) in Dκ.

We observe the following

Proposition 13.3 Let γ be an element of π1(Σ). Let x = η̇(γ+, γ−) be a fixed
point of γ in Dκ. Let λmax and λmin be the largest and smallest eigenvalues (in
absolute values) of ρ(γ). Then the action of γ on the fibre Mx of M above x is
given by the translation by

log
∣∣λmax

λmin

∣∣.
Proof: This follows from the last point of Proposition 4.7. Q.e.d.

13.2.1 Proof

By Propositions 5.4 and 5.5, the 2-form ω = η∗Ω is non degenerate and Hölder
To complete the proof of Theorem 13.1, we prove

• the quotient π1(Σ)\M is compact (in Proposition 13.4),

• the action of R on M contracts the leaves of L (in Proposition 13.6).

We now explain how these properties imply the theorem: by Theorem 11.3,
there exists a homeomorphism ψ̂ from M to J , an area preserving homeomor-
phism ψ from D to T ∗T such that

• ψ̂ commutes with the R-action,

• δ ◦ ψ̂ = ψ ◦ p,

• ψ̂ sends L to F ,
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and a representation ρ from π1(Σ) to H(T) such that

ψ̂ ◦ γ = ρ(γ) ◦ ψ̂.

In particular, ρ belongs to Hom∗.
Let us prove that ρ actually belongs to HomH . By the definition of the

Hitchin component and the fact that we can choose ψ̂ to depend continuously
on our parameters, it suffices to verify this assertion whenever ρ is an n-Fuchsian
representation. In this case, the action of π1(Σ) extends to a transitive action
of PSL(2,R) and is by definition in HomH .

The statement (39) about the spectrum follows from Proposition 13.3 which
implies the spectrum is symmetric. Therefore, by definition, ψ(ρ) is symmetric
or, equivalently, coherent. Finally, by construction and Proposition 4.7, the two
cross ratios coincide.

By Theorem 9.13, an ∞-Hitchin representation which is symmetric is deter-
mined by its cross ratio. It follows that ψ is injective.

Finally the continuity statement follows from the continuity statement of
Theorem 11.3

13.2.2 Compact quotient

Let M be the R-bundle over Dκ defined by M = η∗L. Inducing the connection
form L, M is equipped with a connection whose curvature form is ω. Further-
more π1(Σ) acts on M , by the pull back of the action of PSL(n,R) on L. We
now prove

Proposition 13.4 The quotient π1(Σ)\M is compact.

Recall that π1(Σ) acts with a compact quotient on

∂∞π1(Σ)3+ = {oriented triples (x, y, z) ∈ (∂∞π1(Σ))3, x 6= y, y 6= z, x 6= z},

We first prove:

Proposition 13.5 There exists a continuous onto π1(Σ)-equivariant proper map
l from ∂∞π1(Σ)3+ to M . Moreover, the map l is above the map η̇ = (η̇1, η̇2)
from ∂∞π1(Σ)2∗ to Dκ.

Proof: Let (z, x, y) be an element of T3+ = ∂∞π1(Σ)3+. The two trans-
verse flags ξ(x) and ξ(y) define a decomposition

Rn = L1(x, y)⊕ L2(x, y)⊕ . . .⊕ Ln(x, y),

such that ξ1(x) = L1(x, y) and

ξn−1(y) = L2(x, y)⊕ . . .⊕ Ln(x, y). (41)

Let u be a nonzero element of ξ1(z). Let ui be the projection of u on Li(x, y).
By hyperconvexity, ui 6= 0. We choose u, up to sign, so that

|u1 ∧ . . . ∧ un| = 1.
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Finally we choose f in ξn−1(y)⊥ so that 〈f, u1〉 = 1. The pair (u1, f) is well
defined up to sign, and hence defines a unique element l(z, x, y) of the fibre of
M above η̇(x, y).

Our first assertion is that l :{
T3+ → M,

(z, x, y) 7→ l(z, x, y),

is proper.
Let {(zm, xm, ym)}m∈N be a sequence of elements of T3+ such that

{l(zm, xm, ym) = (um, fm)}m∈N,

converges to (u0, f0) with 〈f0, u0〉 = 1. In particular, {(xm, ym)}m∈N converges
to (x0, y0), with x0 6= y0. We may assume after extracting a subsequence that
{zm}m∈N converges to z0. To prove l is proper, it suffices to show that x0 6= z0

and y0 6= z0.
Suppose that this is not the case and let us first assume that z0 = x0. Let

πm be the projection of ξ1(zm) on ξ1(xm) along ξn−1(ym). We observe that
πm converges to the identity from ξ1(z0) = ξ1(x0) to ξ1(x0). Let vm ∈ ξ1(zm)
such that πm(vm) = um. Since {um}m∈N converges to a nonzero element u0,
{vm}m∈N converges to u0. As a consequence, all the projections {vim}m∈N of vm
on Li(xm, ym) converge to zero for i > 1. Hence,

1 = |v1
m ∧ . . . ∧ vnm| → 0,

and the contradiction.
Suppose now that z0 = y0. Using the volume form of Rn, we identify

ξn−1(y)⊥ with
L2(x, y) ∧ . . . ∧ Ln(x, y).

We use the same notations as in the previous paragraph. Then v2
m ∧ . . .∧ vnm is

identified with fm. It follows that

v2
m ∧ . . . ∧ vnm → f0. (42)

By hyperconvexity
ξ1(zm)⊕ ξp(ym)→ ξp+1(y0).

We also have,
ξp(y) = Ln−p+1(x, y)⊕ . . .⊕ Ln(x, y).

Since ξ1(zm)→ ξ1(y0), it follows that for all k

‖v1
m‖
‖vkm‖

→ 0.

In particular
‖v1
m‖n−1

‖v2
m ∧ . . . ∧ vnm‖

→ 0.
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Thanks to Assertion (42), we finally obtain that ‖v1
m‖ → 0. Hence

1 = ‖v1
m ∧ . . . ∧ vnm‖

≤ ‖v1
m‖‖v2

m ∧ . . . vnm‖ → 0,

and the contradiction. Therefore (z0, x0, y0) ∈ T3+ and l is proper.
It remains to prove that l is onto. Note first that for every (x, y),

L(x,y) = l(T3+) ∩Mη̇(x,y),

is an interval, being the image of an interval. If (γ+, γ−) is a fixed point of γ,
then L(γ+,γ−) is invariant by ρ(γ) that acts as a translation on M(γ+,γ−). It
follows that

L(γ+,γ−) = M(γ+,γ−).

Since the set of fixed points of elements of π1(Σ) is dense in ∂∞π1(Σ)2, and
l(T3+) is closed by properness, we conclude that l(T3+) = M and that l is onto.
Q.e.d.

As a corollary, we prove Proposition 13.5

Proof of Proposition 13.5:
Since π1(Σ) acts properly on T3+ and l is proper and onto, the action of

π1(Σ) on M is proper. Indeed for any compact K in M

{γ ∈ π1(Σ) | γ(K) ∩K 6= ∅} ⊂ {γ ∈ π1(Σ) | γ(l−1(K)) ∩ l−1(K) 6= ∅},

Hence,

]{γ ∈ π1(Σ) | γ(K) ∩K 6= ∅} ≤ ]{γ ∈ π1(Σ) | γ(l−1(K)) ∩ l−1(K) 6= ∅} <∞.

Since π1(Σ) has no torsion elements and acts properly, it follows that the
action of π1(Σ) on M is free. The space π1(Σ)\M is therefore a topological
manifold. Finally, the quotient map of l from π1(Σ)\T3+ (which is compact)
being onto, it follows π1(Σ)\M is compact.

13.2.3 Contracting the leaves

We notice that M is topologically a trivial bundle. Let L be the foliation of
M by horizontal sections along the curves cs : t 7→ (s, t) in Dκ. We choose a
π1(Σ)-invariant metric on M . We prove now:

Proposition 13.6 The flow ϕt contracts the leaves of L on M .

Proof: In the proof of Proposition 13.5, we exhibited a proper onto con-
tinuous π1(Σ)-equivariant map l from ∂∞π1(Σ)3+ to M . This map is such that

l(z, x, y) ∈Mη̇(x,y). (43)

By Proposition 12.3, the choice of a hyperbolic metric on Σ gives rises to a
flow ψt by proper homeomorphisms on ∂∞π1(Σ)3+ such that
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1. for all t ∈ R, for all (z, x, y) ∈ ∂∞π1(Σ)3+, there exists w such that

ψt(z, x, y) = (w, x, y),

2. For any sequence {t}m∈N of real numbers going to infinity, let (z, x, y) ∈
∂∞π1(Σ)3+ and let {γ}m∈N be a sequence of elements of π1(Σ), such that

{γm ◦ ψtm(z, x, y)}n∈N converges to (z0, x0, y0).

Then for any w, v such that (w, x, v) ∈ ∂∞π1(Σ)3+, there exists v0 such
that

{γm ◦ ψtm(w, x, v)}n∈N converges to (w0, x0, y0).

Since Σ is compact and since l and the flows are proper, there exist positive
constants a and B such that

∀u,∀T, ∃t ∈]T/a− b, Ta+ b[ such that l(ψt(u)) = ϕT (l(u)).

Therefore, the following assertion holds:
Let {t}m∈N be a sequence of real numbers going to infinity, let u ∈ M , let

{γ}m∈N be a sequence of elements of π1(Σ), such that

{γm ◦ ϕtm(u)}n∈N converges to u0 ∈Mη̇(x0,y0),

then for any w, s such that w ∈Mη̇(x,s), there exists v0 such that

{γm ◦ ϕtm(w)}n∈N converges to v0 ∈Mη̇(x0,y0).

By Proposition 11.4, the action contracts of φt contracts the leaves of L. Q.e.d.
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[5] Steven B. Bradlow, Oscar Garćı a Prada, and Peter B. Gothen, Maxi-
mal surface group representations in isometry groups of classical hermitian
symmetric spaces, To Appear in Geometriae Dedicata.

70
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