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1. Introduction

In his celebrated paper [10], Greg McShane showed that for a
1-cusped hyperbolic torus the following identity holds:

1 =
∑
γ∈G

1
e`(γ) + 1

, (1)

where the sum runs over the set G of oriented simple loops in the
torus. Similarly for 1-cusped hyperbolic surfaces

1 =
∑
P∈P

1

e
`(∂P)

2 + 1
. (2)

where the sum runs now over the space P of embedded 1-cusp pair
of pants – or equivalently the space of oriented simple arcs from the
cusp to itself.

This formula has had a lot of descendants and generalisations, to
quasifuchsian spaces [14, 17, 16, 15, 4], to higher rank geometries [8],
to surfaces with boundary components [11]. An extensive survey of
geometric identities with similar features can be found in [3]. Quite
notably, this identity has played a fundamental role in Mirzakhani
acclaimed proof of the Kontsevich–Witten formula for intersection
numbers [12].

Among these proofs stands a remarkable argument by Bowditch
[2] proving McShane’s identity on the torus using Markoff triples
and a combinatorial approach. In turn this interpretation has given
rise to yet another higher rank construction [5] whose geometrical
interpretation remains elusive.

The present paper grow out of the fascination of both authors for
Bowditch’s proof and wishes to present a generalisation of Bowditch’s
proof for higher genus surfaces, equally working in the context of
higher geometries. More importantly, we want to present a new
interpretation of McShane’s identity: essentially, we show that this
formula has a probabilistic nature – as emphasized by the 1 on the
lefthand side of the equations above – and we hope that in the future
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this could lead to a better understanding of Mirzakhani’s topological
recursion.

Essentially our interpretation runs as follows. Let S be a topological
surface with one marked point x0. As a rebranding of a Lemma by
L. Mosher [13], we show that given any triangulation with x0 as the
only vertex, one can “code" any simple arc in S passing through x0
by an edge of the original triangulation together with a word in the
semigroup with two generators (Theorem 6.1.1) and similar results
holds with infinite words and lamination (Theorem 6.9.1). We actually
consider these words as embedded paths in some trivalent (except at
the root) rooted planar tree T .

Moreover, in that context the planar structure of the tree allows
us to distinguish between rational paths – which end up coding
rational laminations – and irrational paths – which interpret irrational
laminations.

Now the geometry – a hyperbolic structure or more generally a
cross ratio [8][6] – gives rise to a harmonic 1-form on F and thus to a
probability measure µ on the space of embedded paths.

Finally, using the Birman–Series Theorem [1] as in [10], one con-
cludes that the measure of the set of irrational paths is zero, whereas the
measure on the space of rational paths corresponds to the right-hand
side of the equations above. Since the rational paths are countable and
essentially labelled by simple paths though x0 thanks to our coding
theorem, McShane’s identity is just expressing that the sum of the
measure of rational paths is one.

Although, there are no new results in this article and in many
ways the proofs are either trivial or well known, we hope that our
presentation insisting on the probabilistic nature of McShane’s identity
will be helpful in the future.

The first section recalls harmonic measures on trees and how they
define random paths in section 2. Then we specialize to planar trees
in section 3 and describe the gap (the measure of rational paths) and
error terms (the measure of irrational paths) of a general harmonic
measure in Section 4. In Section 5, we relate the error term to the
Lebesgue measure of a certain set on the circle. In section 6, we
introduce a path coding geodesics once one choses a triangulation.
Then in section 7, we explain how hyperbolic structures and more
generally cross ratios give rise to specific measures. In section 8, we
show that the Birman–Series Theorem implies that the error term
vanishes. Finally in Section 9, we indicate how one could generalize
the above construction to surfaces with more boundary components.
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2. Green formula for rooted trees

We will recall in this section very standard material about harmonic
analysis on graphs.

Let T be a rooted tree whose root is denoted v0. Motivated by the
applications to geodesics, we shall assume that all vertices –except
for the root – has valence 3.

Every edge comes with an orientation: we say an edge is positively
oriented or positive if it comes outward from the root, negatively
oriented if it goes inward. We shall denote by S(n) the sphere of
combinatorial radius n centred at the root v0. If v is a vertex, let |v| be
the distance to the root, if e is a positive edge we define by |e| := |v+

|,
where v+ is the endpoint of e. Finally, if e is an edge we denote by ē
the edge with the opposite orientation.

2.1. Harmonic forms. A function Φ on the set of edges of the tree is
said to be a 1-form if

Φ(ē) = −Φ(e),

moreover Φ is a harmonic, if for every vertex different from the root, if
ex is the incoming edge (from the root) and e± the outgoing edges, we
have

Φ(ex) = Φ(e+) + Φ(e−). (3)

Since Φ is a function of the edges, we could consider it as a 1-form on
the graph. Then the above equation just says that Φ considered as a
1-form is harmonic, everywhere except possibly at the root. Let us
then define

∂Φ :=
∑

e∈S(1)

Φ(e). (4)

We have

Corollary 2.1.1. [Green formula] The following equality holds∑
e∈S(n)

Φ(e) = ∂Φ. (5)



PROBABILITY AND MCSHANE’S IDENTITY 5

2.2. The harmonic measure. Assume now that Φ is positive on posi-
tive edges. Any vertex x in the tree other than the root is trivalent,
let us define a probability measure µx on the edges having x as an
extremities (two outgoing, one ingoing) in the following way

• the probability µx(ex) = 0 if ex is the edge directed towards the
root,
• Otherwise, let

µx(e) =
Φ(e)
Φ(ex)

.

This family of measures defines an inhomogeneous Markov process.
Let P be the set of infinite embedded paths in the tree starting from
the root. Although we shall not need it we may identify P with ∂∞T .
Let πn be the map from P to set of edges of T which associates to a
path its n step:

pn := πn(p) ∈ S(n) .
We thus have the harmonic measure, see [9], µΦ on P associated to

this random process. By definition, this measure is such that

πn
∗
(µΦ) = Φ|S(n) . (6)

In particular

µΦ{p} = Φ∞(p) and µΦ(P) = ∂Φ , (7)

where, given a path p, we define

Φ∞(p) = lim inf
n→∞

Φ(πn(p)).

Observe that since Φ is positive on positive edges – that is edges
oriented away from the root – Φ(πn(p)) is decreasing as a function of
n and thus Φ∞ is actually the limit of Φ ◦ πn.

By construction, if e ∈ S(n), Φ(e) is the probability that a random
path starting from the root arrives at e at the n step.

3. Planar tree, complementary regions and rational paths

A planar tree is a tree that can be embedded in the plane. Equivalently
a planar structure on the tree is given by a cyclic order on the edges
outgoing form each vertex. In particular,

• we obtain a cyclic order on S(n),
• Given a positive edge e arriving in v, we define the edges L(e)

and R(e) to be the outgoing edges from v so that (ē,L(e),R(e))
is positively oriented. In particular, the edges L(e) and R(e)
are positive.
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3.1. Complementary regions. Every edge e in the tree defines (injec-
tively) a complementary region of the planar graph if we considered
it properly embedded in the plane. This region, also denoted e, is
bounded by the edgesLn

R(e) and Rn
L(e) for all non negative integers

n and we define the paths

∂Re :=
⋃
n∈N

L
n
R(e), ∂Le :=

⋃
n∈N

R
n
L(e)

where the paths are completed by adding the necessary initial edges
so that they start at v0 (by abuse of notation we will usually consider
this tail end of the path to be the path).

So far some complementary regions are missing from this con-
struction, namely those innermost regions which are adjacent to
the root v0. Let us label those as well. Let e1, . . . , eN are the edges
stemming from the root v0 in their cyclic order, let by definition
S(0) := {(ei, ei+1) | i ∈ {1, . . .}}. Then any f = (ei, ei+1) defines also a
complementary region bounded by the two paths Rn(ei) andLn(ei+1). By
convention we write L f := ei and R f := ei+1. Then, similarly

∂R f :=
⋃
n∈N

L
n
R( f ), ∂L f :=

⋃
n∈N

R
n
L( f ) .

The set
F :=

⊔
n∈N

S(n) ,

is the set of complementary regions.

3.2. Rational paths. The planar structure on the tree helps us to
distinguish between “irrational" and “rational" paths: we saw that
every complementary region e defines two paths ∂Le and ∂Re starting
from v0. By definition we call these paths rational and any other paths
irrational. Observe that the set Q of rational paths is countable.

Remark that the set of paths P inherits a lexicographic order from
the order in S(n). If p0 and p1 are two paths with p0 < p1 in the
lexicographic order, we define

[p0, p1] := {p | p0 6 p 6 p1}. , (8)
]p0, p1[ := {p | p0 < p < p1} . (9)

We can observe the following fact:

Proposition 3.2.1. Given two distinct paths p, q so that ]p, q[ is empty,
then there exists a complementary region so that {p, q} = {∂Le, ∂Re}. In
particular p, q are rational.
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4. Gap function, error terms and the Gap inequality

We now assume that we have a positive harmonic 1-form Φ defined
on our tree. Given a complementary region e we define its gap as

GapΦ(e) =
1
2

(
µφ∂

Le) + µφ(∂Re)
)

Our first result is the following:

Theorem 4.0.1. [Gap inequality] We have∑
e∈F

GapΦ(e) 6
1
2
∂Φ . (10)

We will refer to

Error(Φ) :=
1
2
∂Φ −

∑
e∈F

GapΦ(e) (11)

as the error term of Φ. This gap inequality is almost a tautology and
we shall give two immediate proofs. One emphasizes the probabilistic
nature of the situation, the other uses the Green Formula and is very
close to Bowditch’s original idea.

4.1. Gap and error terms using the hamonic measure on the space
of paths. We can express the gap and error terms using the harmonic
measure

Proposition 4.1.1. We have the equalities

Gap(Φ) =
1
2
µΦ(Q), Error(Φ) =

1
2
µΦ(P \ Q) .

Proof. Since µΦ(P) = ∂Φ, the second equality is a consequence of
the first. To prove the first we have to notice that any rational path
appears in the boundary of exactly one complementary region, Thus

Gap(Φ) =
∑
e∈F

GapΦ(e) =
1
2

∑
p∈Q

Φ∞(p) =
1
2
µΦ(Q) .

�

4.2. The gap inequality from the Green Formula. For any comple-
mentary region f and n ∈N let

Gapn
Φ( f ) :=

1
2
(
Φ(Ln

· R· f ) + Φ(Rn
· L· f )

)
.

Then obviously, from the positivity of Φ, we have

Gapn
φ( f ) > GapΦ( f ) := lim inf

n→∞
Gapn

Φ( f ).
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We can now revisit the Green Formula by rearranging its term to get

Proposition 4.2.1. We have∑
f∈S(p)|p<n

Gapn−p
Φ

(e) =
1
2
∂Φ , (12)

The gap inequality follows from this formula since GapΦ(e) 6
Gapn

φ(e).

Proof. For every n, we have the Green formula∑
x∈S(n)

Φ(x) = ∂Φ. (13)

For all n, recall that

Gapn
Φ(e) =

1
2

(Φ(Ln
· R· e) + Φ(Rn

· L· e)) . (14)

Recall also that given an element z inS(n+1) there exist unique element
z in S(p) with p < n with z ∈ ∂y. or in other words z = Ln−p

· R· y or
z = Rn−p

· L· y. Then we have∑
x∈S(p)|p<n

Gapn−p
Φ

(x) =
1
2

∑
x∈S(p)|p<n

(Φ(Ln−p
· R· x) + Φ(Rn−p

· L· x))

=
1
2

∑
y∈S(n+1)

Φ(y) =
1
2
∂Φ. (15)

�

5. The error term and random variables on P

The terminology "rational" and "irrational" paths seems to suggest
that the measure of rational paths ought to be zero. This is indeed the
case when the probability is balanced: we have equal probability to
take the left or right edge. However, we shall see on the contrary that
in the geometric context which is underlying McShane’s identity the
measure of irrational paths is zero.

We develop in this section a framework to understand the error
term as the measure on some set on the circle. More precisely, we
describe an "increasing embedding" of P in R/∂ΦZ. This will be
closer to the original point of view of Mc Shane’s and will also us to
define the error term as the Lebesgue measure of some set in the circle,
which we call the Birman–Series phenomenon in Theorem 5.1.4.
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5.1. Gap and error terms using random variables on P. The Green
Formula ∑

e∈S(n)

Φ(e) = ∂Φ,

as well as the circular order on S(n) can be used to define a partition
of R/∂ΦZ in intervals labelled successively by edges in S(n) and of
length Φ(e). Such a partition is unique up to translation.

Using the extremities of this evolving partition rather than the
length of the corresponding intervals, we express in Theorem 5.1.4
the values of the error term as the Lebesgue measure of some set X∞.

In our future geometric application, the vanishing of the Lebesgue
measure of this set – and consequently the vanishing of the error
term – will be an application of the Coding Theorem 6.9.1 and the
Birman–Series Theorem [1] which is a cornerstone of the proof of
McShane’s type identity as in [10] and [8].

Taking the mid points of each such interval gives rise to an increasing
random variable Yn on S(n), which is unique up to translation when
characterised by

Yn(p0) − Yn(p1) =
1
2

(φ(pn
0) + φ(pn

1)),

when p0 < p1 and there is no edge between pn
0 and pn

1 .
We may consider Yn as a random variable on P, and increasing n,

obtain a variable X∞. Finally the goal of this section is to define the
error term in terms of X∞.

5.1.1. The variables Yn. Let us choose one “initial” complementary
region f0 whose boundary contains the root. Then the fact that the
tree is planar gives a natural ordering of the edges of S(n).

For every n, we construct a function Yn on S(n) with values in
R/∂ΦZ, by

Yn(e) :=
1
2

Φ(e) +
∑

f∈S(n)| f<e

Φ( f )

= −
1
2

Φ(e) +
∑

f∈S(n)| f6e

Φ( f ).

The following proposition is an immediate consequence of the
definition of Yn and the positivity of Φ.
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Proposition 5.1.1. For e and f in S(n) with e > f , we have the inequalities

Yn+1(R· f ) 6 Yn+1(L· e) 6 Yn(e) 6 Yn+1(R· e) , (16)∣∣∣Yn+1(g) − Yn(e))
∣∣∣ 6 1

2
Φ(h) for {g, h} = {R(e),L(e)} , (17)

5.1.2. The variables Xn and X∞. We then define for every path p in the
set P of infinite embedded paths starting from the root.

Xn(p) := Yn(pn)). (18)

Anticipating Proposition 5.1.3, we shall see that the variables Xn
converges uniformly to a variable X∞.

Let us first prove the following Proposition:

Proposition 5.1.2. Let p be a path. Let p̂ = {p̂n
}n>2 be the sequence of edges

so that p̂n ∈ S(n) and {pn, p̂n
} = {R(pn−1),L(pn−1)}. Then
∞∑

n=1

Φ(p̂n) < ∞ ,

and in particular
lim
n→∞

Φ(p̂n) = 0 .

Proof. Since Φ(pp) + Φ(p̂p) = Φ(pp−1) it follows by induction that for all
p,

Φ(pp) +

p∑
n=2

Φ(p̂n) = Φ(pp−1) +

p−1∑
n=2

Φ(p̂n) = Φ(p1) .

The result follows since Φ is positive. �

The main observation of this section is

Proposition 5.1.3. We have
(1) The random variable Xn is increasing with respect to the lexicographic

ordering on P.
(2) The sequence Xn converges pointwise to a random variable X∞.

Moreover

X∞(p1) − X∞(p0) = µΦ ([p0, p1]) −
1
2

(Φ∞(p0) + Φ∞(p1)) , (19)

= µΦ (]p0, p1[) +
1
2

(Φ∞(p0) + Φ∞(p1)) . (20)

Proof. The first item is a consequence of Proposition 5.1.1 Notice now,
using the notation of Proposition 5.1.2, that Equation (17) implies that

|Xn+1(p) − Xn(p)| = Φ(p̂n) . (21)
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Thus by Proposition 5.1.2, Xn converges pointwise. Finally, let p0
and p1 be two paths with p0 < p1 in the lexigraphic order. Let
[p0, p1] := {p | p0 6 p 6 p1}. Then for n large enough

Xn(p1) − Xn(p0) =
∑
e∈S(n)
pn

06e6pn
1

Φ(e) −
1
2

(
Φ(pn

0) + Φ(pn
1)
)
. (22)

Thus

X∞(p1) − X∞(p0) = µΦ[p0, p1] −
1
2

(Φ∞(p0) + Φ∞(p1)) .

This proves equation (19), equation (20) follows then from equation
(7). �

5.1.3. The error term using X∞. The set X∞(P) might be not be closed,
for instance when X∞ is not continuous. Let us then define for every
p ∈ P,

XL
∞

(p) := sup
q<p

(X∞(q)) ,

XR
∞

(p) := inf
q>p

(X∞(q)) ,

X∞ :=
⋃
p∈P\Q

[XR
∞(p)),XL

∞(p)] .

Then we can express the error term using the variable X∞:

Theorem 5.1.4. [Birman–Series phenomenon]

λ
(
X∞

)
= 2 Error(Φ). (23)

This will be a consequence of the following proposition:

Proposition 5.1.5. Suppose that p is a limit of a strictly increasing sequence
{pn}n∈N, and q is limit of a strictly decreasing sequence {qn}n∈N. Then

X∞(p) − X−
∞

(p) =
1
2

Φ∞(p) (24)

X+
∞

(q) − X∞(q) =
1
2

Φ∞(q) (25)

(R/∂ΦZ) \ X∞ =
⊔
e∈F

]XL
∞

(∂Le),XR
∞

(∂Re)[ . (26)

We first prove Theorem 5.1.4 from Proposition 5.1.5.
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Proof. Since ]∂−e, ∂+e[= ∅, we have that from the previous proposition
and equation (20) ,

X∞(∂Re) − X∞(∂Le) =
1
2

(
Φ∞(∂Le) + Φ∞(∂Re)

)
= GapΦ(e).

Moreover from Equations (24) and (25), for i = R or i = L

|Xi(∂ie) − X∞(∂ie)| =
1
2

Φ∞(∂ie) .

Thus combining the two preceding equations one gets that

λ(]XL
∞

(∂Le),XR
∞

(∂Re)[) = XR
∞

(∂Re) − XL
∞

(∂Le) = 2 GapΦ(e).

Thus from equation (26), we get

∂Φ = λ(X∞) +
∑
e∈F

λ(]XL
∞

(∂Le),XR
∞

(∂Re)[)

= λ(X∞) + 2
∑
e∈F

GapΦ(e) .

Hence, λ(X̄∞(P)) = ∂Φ − 2 Gap(Φ) = 2 Error(Φ). �

Let us now prove Proposition 5.1.5

Proof. Given a path p and an infinite strictly incresasing sequence
{pn}n∈N converging to p, then {X∞(pn)}n∈N converges to X−

∞
(p). In

particular, {X∞(pn)−X∞(pn+1)}n∈N converges to zero. Since by Equation
(20),

X∞(pn+1) − X∞(pn) = µΦ(]pn, pn+1[) +
1
2

(Φ(pn) + Φ(pn+1)) ,

the sequence {Φ∞(pn)}n∈N converges to zero. Then by Equation (20)
again,

X∞(p) − X∞(pn) = µΦ(]pn, p[) +
1
2

(Φ(pn) + Φ(p)) .

Thus taking the limit, one gets Equation (24). A symmetric argument
yields Equation (25).

For the last statement, let u < X∞. Since X∞ is closed, let u ∈]v,w[⊂
R/∂Φ·Z \ X∞ and let

P
L = {p | XL

∞
(p) 6 v}, PR = {p | XR

∞
(p) > w}.

Let now pR = inf(p ∈ PR) and pL = sup(p ∈ PL). By definition of
u it follows that XL

∞
(pL) 6 v and symmetrically that XR

∞
(pR) 6 w.

Let q ∈]pL, pR[. Then XL
∞

(q) > w > u and XR
∞

(q) 6 v < u. This
is impossible, hence ]pL, pR[= ∅. It follows that pi = ∂ie for some
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complementary region e and u ∈]XL
∞

(∂Le),XR
∞

(∂Re)[. Conversely, if
u ∈]XL

∞
(∂Le),XR

∞
(∂Re)[ then u < X∞. �

6. A rooted tree coding geodesics

This section is purely topological. Let S be a compact surface with
one marked point x0 and Σ = S \ {x0}. Let N = 6(1 − χ(S)). Let T be
the rooted trivalent tree, which has N edges at the root. As a corollary
of our main result we will obtain the following result.

Theorem 6.0.1. Let T be a triangulation of S whose only vertex is x0. There
there exists a labelling of the edges of T by simple curves passing though x0.

Our actual results, Theorem 6.1.1 and 6.9.1 will be more precise
and will allow us to describe simple infinite geodesics starting at x0
as embedded paths in T .

The main proposition is actually an elaboration on a Lemma by L.
Mosher [13] as Saul Schleimer has explained to us and the proof is
actually identical. Our point of view and purpose are nevertheless
different.

6.1. A dynamical system on the set of triangulations. Let S be a
closed oriented surface with one puncture x0 and Σ = S \ {x0}. An ideal
triangulation of Σ is a triangulation of S, up to isotopy, whose only
vertex is x0. Observe that the number N of oriented edges is 6(1−χ(S)):
the singular flat metric obtained by identifying the triangles with
equilateral triangles of length 1, has total curvature Nπ/3 − 2π. Since
this total curvature is −2πχ(S), we obtain that N = 6(1 − χ(S)).

We will usually think of this triangulation as a triangulation by
ideal triangles of the surface Σ equipped with a complete hyperbolic
structure. Given a triangulation T and an oriented edge e, let ē be the
same edge with the opposite orientation, and s(e) the oriented edge
whose origin is the end point of e such that e and s(e) are both on the
boundary of the triangle on the right of e.

Let S be the space of pairs (T, e) where T is an ideal triangulation
of S and e an oriented edge of T. We are going to describe three
transformations F, R and L on S.

First F(T, e) = (T̂, ê) where T̂ is the triangulation flipped at e, and ê
the new corresponding edge so that (e, ê) is positively oriented.

Given (T, e), define R(T, e) := F(T, s(e)).
A similar definition holds for L after changing the orientation of Σ.

All together, these two transformations define an action of the free
semigroup in two generators F+

2 on S.
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e

(a) (T, e)

ê

(b) R(T, e)

ê

(c) L(T, e)

Figure 1. Transformations R and L

Let also L(x0) be the space of simple loops, up to homotopy, passing
through x0 and π the natural projection from S defined by π(T, e) = e.

Our main result is the following

Theorem 6.1.1. [Topological coding] Let T0 be an ideal triangulation
and f an oriented topological embedded loop on S through x0. Then, either f
is an edge of T0 or there exists a unique oriented edge e of T0 and a unique
element g in F+

2 such that π(g·F(T0, e)) = f .

In particular, the action of F+
2 on S is free. We will explain later a

more precise version of this result.
We will also explain that this construction give rise to a coding of

all embedded geodesics without self intersection issuing from x0 in
an auxiliary complete hyperbolic metric on Σ. A further property of
this coding yields the Birman–Series Theorem.

We will also explain using this coding that every Hölder cross ratio
on ∂∞ gives by a harmonic measure construction a transverse measure
with zero entropy on the set of simple infinite geodesics (emanating
from a boundary component).

Then, generalising an idea from Bowditch in the punctured torus
case [2], this construction will yield a new proof –or rather a new
interpretation– of McShane identity for cross ratios [8].

6.2. An arboreal interpretation. For later use and in order to make
the connection with the previous constructions, we present the results
in terms of a planar tree.
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Let T be a triangulation with n edges whose only vertex is x0. then
let T be the rooted trivalent (except at the root) planar tree with 2n
root at the origin.

We first define a labelling of the edges and the complementary
regions as follows:

• We label the initial edges by the pairs F(T, e) using the cyclic
order that comes from the cyclic order on the oriented simple
curves π(F(T, e)).
• Next, label every other edge recursively so that if an edge

a of the tree is labelled by (T′, e′), the edge on the right of a
is labelled by R((T′, e′)) and the edge on the left is labelled
L((T′, e′)).
• We label the interior-most complementary regions f (those

adjacent to the root v0) by (T, e), where R(T, e) is the label of
the first edge of the tree on the right of f . It then follows that
L(T, e) is the label of the first edge of the tree on the left of f .
• Finally, we label finally the other complementary regions by

the label of the edge of the tree defining it.
Our theorem now can be rewritten as

Theorem 6.2.1. [Labelling complementary regions] Let T be a trian-
gulation of S with n edges whose only vertex is x0. Let Ψ be the labelling
of the complementary regions of Tn by pairs (T′, e′) where e′ is an oriented
edge of the triangulation T′ – described above. Then the map f 7→ π(Ψ( f )
is a bijection from the space of complementary region to the space of simple
curves passing through x0.

6.3. Order preserving. In this section, we equip Σ with an auxiliary
complete hyperbolic metric so that the triangles are realized as ideal
hyperbolic triangles

Let L(x0) be the set of simple oriented geodesics based at x0. Observe
that the orientation of Σ, as well as that of an auxiliary hyperbolic
metric, gives a cyclic ordering on L(x0) eventually independent of the
metric: we order the geodesics γ by the order on a small horosphere
H at x0 of the first intersection point in H ∩ γ.

We now define a map Ψ from E × F+
2 to L(x0) by

Ψ(e, g) := π
(
g·F(T0, e)

)
. (27)

We consider the cyclic ordering on E induced by e 7→ Ψ(e, 1) from the
order on L(x0).

We fix a triangulation T. We define a cyclic order (by lexicographic
ordering) on E × F+

2 . We now prove
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Proposition 6.3.1. The map Ψ from E × F+
2 to L(x0) is order preserving.

As an immediate corollary, we get that the action of F+
2 on S is free.

Proof. We will prove the proposition by induction on the length of the
word in F+

2 . Since E has N-elements, the simple loops E and the simple
loops of the form Ψ(e, 1) divides the horocycle into 2N intervals so that
elements of E and elements of Ψ(E, 1) alternate. Furthermore, by the
definition of the action of F+

2 , we see that when g has word length one,
π(g·F(T0, e)) lies in the interval to the left or right of the corresponding
element e ∈ Ex0 depending whether g = R or g = L. The new 2N
edges that are introduced alternate with the original 2N edges with
respect to the cyclic ordering and again, by construction every pair of
alternating edges (one of these being π(g·F(T0, e))) bound a triangle
of the triangulation associated to g·F(T0, e). Continuing inductively,
we see that at any distance d > 1 from the root, we have 2dN edges
whose cyclic ordering agrees with that of E × F+

2 which completes the
proof. �

6.4. Reducing the complexity. We are going to define in this para-
graph a complexity invariant associated to a triple (T,∆, η) where

• T is a triangulation by geodesics arcs for a complete (auxiliary)
hyperbolic metric of Σ,
• η is an oriented simple geodesic starting at the puncture x0,
• ∆ is a fundamental domain for the surface with respect with the

triangulation, that is a map from a triangulated disk D to S,
which sends triangles to triangles, so that ∆ restricted to the
interior of D is injective with a dense image.

Our complexity invariant is a pair of integers

C(T,∆, η) = (n(T,∆, η),N(T,∆, η)), (28)

defined in the following way. First if η is an edge of T, then

C(T,∆, η) = (1, 1). (29)

If η is not an edge, let (η1, η2, . . . , ηN) be the (ordered) connected
components of ∆−1(η). Then

(1) N(T,∆, η) is the number of connected components of ∆−1(η),
that is N(T,∆, η) = N,

(2) n(T,∆, η) is the number of triangles of D that η1 intersects.
Our two main results are the following
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Proposition 6.4.1. Assume that n(T,∆, η) = 1 and N(T,∆, η) > 2, then
there exists ∆̊ so that

N(T, ∆̊, η) 6 N(T,∆, η) − 1, (30)

2 6 n(T, ∆̊, η). (31)

The second proposition is as follows.

Proposition 6.4.2. Assume that n(T,∆, η) > 1 and let e be the first edge of
T that η meets. Let (T̊, e̊) := F(T, e). Then ∆ is still a fundamental domain
for T̊ and furthermore,

N(T̊,∆, η) = N(T,∆, η),

n(T̊,∆, η) = n(T,∆, η) − 1. (32)

6.5. Proof of proposition 6.4.1. By assumption there is a (closed)
triangle δ in D such that η1 ⊂ δ. Let e0 be the edge of δ opposite to the
origin of η1, e+ and e− be the edges of δ on the left, respectively right
of η1. Let also D+ be the connected component of D \ δ whose closure
contains e+ and let us define similarly D− (See figure 2).

e0

e0

Figure 2. The subdomains of ∆

Now, we may as well assume that e0 appears on the boundary
of D+, the case where e0 appears on the boundary of D− is handled
symmetrically. We remark that D− could be empty.

Let then

D−0 := D− ∪ δ. (33)

We now define a new triangulated disk and a new fundamental
domain by

D̊ := D−0 ∪e0 D+, (34)
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where the notation means that we glue D−0 and D+ along e0. The
fundamental domain is then constructed accordingly. Observe that
D+ is non empty and thus

n(T, ∆̊, η) > 2. (35)

e0

e0

(a) The old ∆

e0

(b) The new ∆̊

Figure 3. Mutating the fundamental domain

Our proposition thus reduces to the following assertion

N(T, ∆̊, η) 6 N(T,∆, η) − 1, (36)

which we now prove.
Let φ be a collection of edges of T and i(φ, η) be the cardinal of the

intersection of η and φ. To make things precise, φ is a collection of
curves in Σ (not in D) and thus there is no repetition of edges.

We now observe that if ∆ is a fundamental domain and ∂∆ is the
collection of edges of T of the boundary of ∆, then

N(T,∆, η) = i(∂∆, η) + 1.

Now by construction

∂∆̊ = (∂∆ \ {e0}) ∪ {e+}.

Thus
N(T,∆, η) −N(T, ∆̊, η) = i(e0, η) − i(e+, η).
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e0

Figure 4. Intersection of η with e0 and e+

But since η1 is embedded and goes from the vertex x0 to e0, every
ηi that intersects e+ intersects e0 as well (See figure 4). Furthermore,
since η1 intersects e0 but not e− it follows that

i(e0, η) − i(e+, η) = 1 + i(e−, η) > 1. (37)

This is what we wanted to prove.

6.6. Proof of proposition 6.4.2. By assumption, n(T,∆, η) > 2. Thus
if δ1 and δ2 are the first triangles that η1 encounters they are both in D.
Thus, after flipping δ1 ∪ δ2 along their common edge, we see that ∆ is
still a fundamental domain for T̊ and thus obviously

N(T̊,∆, η) = N(T,∆, η). (38)

Also, in the new triangulation of D, η1 hits one less triangle, thus

n(T̊,∆, η) = n(T,∆, η) − 1, (39)

This concludes the proof.

6.7. The coding. We now prove the coding theorem. The injectivity
of the coding follows from Proposition 6.3.1. The sujectivity from the
following

Proposition 6.7.1. There exists constant A and B depending only on the
topology of S so that, if f be any simple loop based at x0, if T0 is any
triangulation, then there exists e in T0, an element g of F+

2 such that

π(g·F(T0, e)) = f , (40)
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and moreover, denoting by λ the word length of g, we have the rough
inequality

λ 6 A· i( f ,T0) + B (41)

By definition, the length λ of the element g satisfying Equation
(40) will be called the tree length of f and denoted λT0( f ) where the
subscript is omitted when no confusion is possible, similarly i( f ,T0)
will be called the intersection length of f .

Proof. We first want to prove the existence of g satisfying Equation
(40).

Let η be a simple geodesic starting at the puncture x0. Let us choose
a fundamental domain ∆ for the initial triangulation T.

From the proof in the preceding paragraph, one sees that

λ( f ) 6 ]{T0}· (N(T0,∆, f ) + 1). (42)

Similarly one observes that

N(T0,∆, f ) − 1 = i( f , ∂∆) 6 i( f ,T0) 6 2· ]{T0}·N(T0,∆, f ). (43)

The result follows. �

6.8. Spiraling. In this section, we equip Σ with an auxiliary complete
hyperbolic metric of finite volume. Let L(x0) be the set of oriented
simple geodesic arcs from x0 to x0 andP be the set of embedded paths
in the tree T . Let also Q be the set of rational paths as defined in
Paragraph 3.2. Given a complementary region e, recall that we have
two rational paths ∂+e and ∂−e.

Our goal is two prove that the simple arcs labelling πn(∂±e) both
converges to laminations spiralling around a closed geodesic in a
precise sense.

We first define the closed geodesic which the lamination spirals
around. For f ∈ L(x0), define f R to be the oriented closed geodesic in Σ
homotopic to f in S on the right of f . Then f and f R bounds a cylinder
CylR( f ) in Σ with one cusped geodesic boundary corresponding to f
on the left, and one geodesic boundary corresponding to f R on the
right. Let f R

∞
be the unique geodesic lamination in CylR( f ) starting

from x0 and spiralling around f R, respecting the orientation.
We have a similar definition for f L, CylL( f ) and f L

∞
, replacing right

by left in the above.
If now F is a complementary region, by an abuse of notation, we

denote also byπn(∂iF) the closed geodesic arc from x0 to x0 representing
the simple arc labelling the edge πn(δiF) for i = L or i = R. Our result
is now
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Proposition 6.8.1. Let F be a complementary region labelled with the
simple arc f . The sequence of geodesic arcs {πn(∂RF)}n∈N converges to f R

∞

and similarly {πn(∂RF)}n∈N converges to f L
∞

.

Proof. The proof follows from (a) a simple observation about geodesics
in the cylinder CylR( f ) originating from x0, (b) Theorem 6.2.1 on
topological coding, and (c) proposition 6.3.1 on order preserving.

First observe that every simple geodesic arc in L(x0) whose begin-
ning lies in CylR( f ) must intersect f R. In particular, the simple arcs
dn := πn(∂RF) all intersect f R and f R

∞
is a left bound for dn with respect

to the cyclic ordering. Next, the cyclic ordering implies that dn are
monotone to the left, so limn→∞ dn exists. Let D be the positive Dehn
twist about f R, then limn→∞Dn(d0) = f R

∞
. If limn→∞ dn = l , f R

∞
, then

there exists m such that Dm(d0) is between l and f R
∞

. But the order
preserving property now implies that for k sufficiently large, dk is
between f R

∞
and l which is a contradiction. Hence, limn→∞dn = f R

∞
.
�

6.9. Coding non self intersecting geodesics. The previous proposi-
tion extends in the following way. Let L∞(x0) be the set of non properly
embedded simple arcs from x0. The proof of this Theorem follows
immediately from original arguments by McShane’s in [10].

Theorem 6.9.1. [Coding simple arcs and laminations] The map Ψ
extends in a unique way to a bijection Ψ∞ from P to L∞(x0), so that if p ∈ P
then

lim
n→∞

Ψ(pn) = Ψ∞(p).

Proof. We just proved that Ψ extend to Ψ∞ for rational paths, Ψ∞ –
restricted to irrational path – is monotone. Let us now consider an
irrational path p. Let us define

Ψ−
∞

(p) = sup{Ψ∞(q) | q ∈ Q, q < p} ,
Ψ+
∞

(p) = inf{Ψ∞(q) | q ∈ Q, q > p} .

If w is a properly embedded simple geodesic arc from x0 to x0, then
either ∂Rw < p or ∂Lw > p for the lexicographic order on paths coming
from the coding. Since Ψ∞(∂Lw) < Ψ(w) < Ψ∞(∂Rw), it follows that
either Ψ(w) < Ψ−

∞
(p) of Ψ+

∞
(p) < Ψ(w). Now by McShane’s gap

Lemma [10], if we have two distinct non properly embedded simple
arcs starting at x0, then there is always a simple properly embedded
arc in the sector between them. Thus Ψ−

∞
(p) = Ψ+

∞
(p). This concludes

the proof. �
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7. Cross ratio and a harmonic form

We now explain in this section how the geometry – be it hyperbolic,
or that corresponding to a higher rank representation of the surface
group – has a counterpart in our planar tree picture as a harmonic
1-form in the sense of the first section.

7.1. Cross ratio. We now consider the boundary at infinity ∂∞π1(Σ)
of π1(Σ). Every element α in π1(Σ) has two fixed points on ∂∞π1(Σ):
the attracting fixed point α+, and the repelling fixed point α−.

We consider a Hölder equivariant cross ratio b on ∂∞π1(Σ) (See
[8, 7, 6] for definitions).

Recall the the length of an element γ is then

`(γ) := log
(
b(γ−, γ+, y, γ.y

)
, (44)

where y is any element of ∂∞π1(Σ) not fixed by γ.
A triangle ∆ in a triangulation T, gives rise to three peripheral

elements α, β and γ of π1(Σ), so that the triple (α, β, γ) is well defined
up to gobal conjugation.

Similarly an edge e of the triangulation T gives rise to four peripheral
elements that we denote by

δ(T, e), α1(T, e), γ(T, e), α(T, e), (45)

which corresponds to the vertices of the lozenge defined the the
two triangles bounded by e, labelled using the cyclic ordering and
starting at the initial vertex of e.

7.2. A divergence free vector field. Then we define

Φ(T, e) := log b
(
δ+(T, e), δ−(T, e), α+

0 (T, e), α+
1 (T, e)

)
, (46)

where δ is the initial vertex of the edge, α0 and α1 are the vertices of
∆0 and ∆1 opposite to e. Then we have

Proposition 7.2.1. [Divergence free] The vector field Φ is divergence
free, moreover

∂Φ = `(∂S). (47)

This proposition is a immediate consequence of the multiplicative
cocycle properties of cross ratio.
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7.3. A special case: hyperbolic surface with one cusp. Instead of
explaining in detail the not so exciting proof of the previous example,
we insted give another related example of the construction of the
harmonic 1-form in the case of an hyperbolic surface with cusp which
is perhaps more illuminating.

Let us consider an embedded horosphere H around the cusp. Every
triangulation T defines an ideal hyperbolic triangulation of the surface.
Then every oriented edge e of T defines a point eH in H, namely the
(first) intersection of H with the geodesic associated to e. Let then K
be the collection of these points, and given eH ∈ K, let e+H ∈ K be the
point immediately on the right and e−H be the point immediately on
the left (for some auxiliary orientation of H). Let finally I(e), be the
interval on H with extremities e±H and containing eH. Define

Φ(T, e) =
1
2

length(I(e))
length(H)

.

An elementary geometric construction shows you that

Proposition 7.3.1. The form Φ is harmonic:

Φ(R(T, e)) + Φ(L(T, e)) = Φ(T, e).

Moreover ∂Φ = 1.

7.4. Gaps and pairs of pants. Let us move back again to the case of
a general cross ratio and make the connection with [8].

Recall that a pair of pants is a regular homotopy class of immersion
of the plane minus two points – that we identify with S1

×]−1, 1[\{1, 0}
for later use – in S. A pair of pants is alternatively described by a
triple (α, β, γ) of elements of π1(Σ), defined up to conjugation so that
α·γ· β = 1. The set of pairs of pants is then π1(Σ)3/π1(Σ) where the
latter action is by conjugation. A pair of pants is embedded if it can
be represented by an embedding.

Then, following [8]1.

Definition 7.4.1. Let b be a cross ratio. The gap of the pair of pants
P = (α, β, γ) with respect to the cross ratio b is

Gapb(P) := log
(
b(α+, α−, γ−, β+)

)
. (48)

Observe that a simple loop ε passing though x0 define a pair of pants
P(ε), associated to the embedding of S1

×] − 1, 1[\{1, 0} corresponding
the the identification of a tubular neighbourhood of εwith S1

×]− 1, 1[.

1We us a different convention for cross ratio
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We saw that if T is a triangulation, then ε labels exactly one
complementary region f (ε) of the tree T . In particular, one can
associate a gap to the harmonic function associated to b.

The two notions of gap coincide.

Proposition 7.4.2. Let Φ be the associated divergence free vector field to a
cross ratio b as in Equation (46). Then if f is a complementary region,

GapΦ( f (ε)) = Gapb(P(ε)). (49)

Proof. This follows from Proposition 6.8.1. Indeed, by construction, if
f is a complementary region in T an induction shows that

Gn
Φ( f ) = b(α+, α−, γ−n , β

+
n ),

where γn is the simple arc associated to the edge R·Ln−1
· R f , and βn is

the simple arc associated to the edgeL·Rn−1
· L f . Then by Proposition

6.8.1, γn converges to γ = ∂R f and βn converges to β = ∂L f . �

Similarly in the case of hyperbolic surfaces with cusp one can get
explicit formulas for the gaps in terms of lengths of simple curves
bounding the pair of pants as in [10], [11] and [8].

8. The error term and the Birman–Series Theorem

Our Gap Formula for planar trees now reads, since every every
complementary region is labelled by a simple loop passing though x0,
as

`(∂S) = Error(Φ) +
∑
ε∈L(x0)

Gapb(P(ε)),

where L(x0) is the set of simple loops up to homotopy passing though
x0. To recover the McShane’s identity, we need to prove that the error
term vanishes.

As in McShane’s original proof and most of the subsequent proofs –
except notably the proof by Bowditch in [2] – the vanishing of the error
term relies on Birman–Series Theorem [1]: the closure of the reunion
of the space of simple closed geodesics has Hausdorff dimension 1.

We will sketch this proof this only in the context of hyperbolic
surface with one cusp and use the apparatus developed in paragraph
5.1.

In this context R/∂φZ is identified with the horosphere H centered
at x0. Then if e is a simple loop passing though x0 corresponding to
an edge in S(n) of the tree T , Yn(e) is the intersection of e with the
horosphere centered at x0 – normalized so that it has length one. If p
is an irrational path corresponding to an infinite simple geodesic γ
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initiating at the cusp, we obtain that X−
∞

(p) = X+
∞

(p) which corresponds
to the intersection of γ with the horosphere H.

Then X∞(P \ Q) is included in the closure of the intersection of
the horosphere H with the union of simple geodesics initiating in
x0. Thus, according to the Birman–Series Theorem, λ(X∞(P \ Q)) = 0.
Hence, by Theorem 5.1.4, the error term vanishes.

9. Surfaces with more than one boundary

If S has more than one puncture, x0, . . . , xn−1, n ≥ 2, we may still
define Σ = S \ {x0, . . . , xn−1} and a triangulation of Σ such that the
set of vertices is {x0, . . . , xn−1}. Again it is useful to endow S with an
auxiliary complete hyperbolic structure so that x0, . . . , xn−1 correspond
to cusps. We choose a distinguished cusp, say x0, and this time, we let
L(x0) be the set of oriented simple geodesic arcs starting from x0 and
terminating in another (not necessarily distinct) cusp. We can now
defineS to be the space of pairs (T, e) where T is an ideal triangulation
of S and e is an oriented edge of T which is in L(x0).

The transformations F, L and R are defined as before, with some
slight modifications. To start with, note that F is defined on the pairs
(T, e), where e is an edge of T but it is not necessary that e ∈ L(x0)
(e may originate from a different cusp). On the other hand, the
transformations L and R may not be defined on (T, e) ∈ S for certain
non-proper triangulations T as we shall see later. Nonetheless, where
L or R is defined on (T, e), then L(T, e) ∈ S and R(T, e) ∈ S. We
now form the rooted tree as in the previous case, with the following
modifications:

• The root v0 of the tree is an ideal triangulation T0 of S with
vertices in the set x0, . . . , xn−1.
• The neighbors of v0 are the pairs (T̊, e̊) ∈ S such that (T̊, e̊) =
F(T0, e) for some oriented edge e of T0 which is not necessarily
in L(x0) (note however that we do require that e̊ ∈ L(x0)).
In particular, it is possible for v0 to be of valence 1 which
occurs when only one edge of T0 (counted twice) is in L(x0).
By construction, all the neighbors of v0 are labeled by some
element (T, e) ∈ S and e is adjacent to two distinct triangles of
T.
• For a vertex v labeled by (T, e) at distance n ≥ 1 from v0,
R(T, e) and L(T, e) are defined as before, provided that the
corresponding flip moves are possible. Each admissible move
results in a vertex at distance n + 1 from v0 adjacent to v.
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• In the case of a vertex (T, e) which for which R(T, e) is not
defined, we call the vertex right blocked. Similarly, if L(T, e) is
not defined, we call the vertex left blocked.
• A vertex (T, e) is right blocked if s2(e) = s(e) or equivalently, if e

bounds a punctured disk on the (see figure 5) . An analogous
statement holds for left blocked vertices . If S is not a thrice
punctured sphere, then a vertex v , v0 cannot be both left
blocked and right blocked. Hence the vertices of the rooted
tree apart from the root have valence two or three.

Page 2

x0

e

s(e)

x1

Figure 5. An example of (T, e) which is right-blocked.
Here S is a torus with two punctures x0, x1 and only the
edges e and s(e) of the triangulation T are shown.

With this set-up, we have the following generalization of the
topological coding theorem, with essentially the same proof:

Theorem 9.0.1. [Topological coding for surfaces with more than
one boundary] Let T0 be an ideal triangulation and f an oriented topological
embedded arc on S starting from x0 and ending in {x0, . . . , xn−1}. Then,
either f is an edge of T0 or there exists a unique oriented edge e of T0 and a
unique element g in F+

2 such that π(g·F(T0, e)) = f .

Similarly, the order preserving property holds.
Remark: In the computation of the gap functions and the McShane
identity, the “end gaps” correspond to the vertices which are left or
right blocked.
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