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Résumé

Nous étudions deux classes de représentations linéaires d’un groupe

de surface : les représentations de Hitchin et les représentations symplec-

tiques maximales. En reliant ces représentations à des birapports, nous

montrons qu’elles sont déplaçantes, c’est à dire que leurs longueurs de

translation sont grossièrement contrôlées par celles du graphe de Cayley.

Ceci nous permet de montrer que le groupe modulaire agit proprement

sur l’espace de ces représentations et que la fonctionnelle énergie associée

à une telle représentation est propre. Nous en déduisons alors l’existence

de surfaces minimales dans les quotients d’espaces symétriques associés

et en tirons deux conséquences : un résultat de rigidité pour les représen-

tations symplectiques et un résultat partiel concernant la description de

la composante de Hitchin en termes purement holomorphes.

Abstract

We study two classes of linear representations of a surface group:

Hitchin and maximal symplectic representations. We relate them to

cross ratios and thus deduce that they are displacing which means

that their translation lengths are roughly controlled by the transla-

tions lengths on the Cayley graph. As a consequence, we show that

the mapping class group acts properly on the space of representations

and that the energy functional associated to such a representation is

proper. This implies the existence of minimal surfaces in the quotient

of the associated symmetric spaces, a fact which leads to two conse-

quences: a rigidity result for maximal symplectic representations and a

partial result concerning a purely holomorphic description of the Hichin

component.

1 Introduction

Let S be a closed connected oriented surface of genus greater than one. Mon-
odromies of hyperbolic structures on S define a distinguished class of homo-
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morphisms from the fundamental group π1(S) into PSL(2,R). In this pa-
per we study two generalisations of these surface group representations, one
in which we replace PSL(2,R) by PSL(n,R) and one in which we generalise
PSL(2,R) = PSp(2,R) to PSp(2n,R).

The first generalisation uses the irreducible representation of PSL(2,R) in
PSL(n,R). A Fuchsian representation from π1(S) into PSL(n,R) is a repre-
sentation which decomposes as the product of a faithful cocompact representa-
tion from π1(S) to PSL(2,R) and the irreducible representation from PSL(2,R)
to PSL(n,R) (see [30] and Section 4.1). The representations we study, called
Hitchin representations, are those which may be deformed into a Fuchsian rep-
resentation. In [26], Hitchin studies the moduli space of reductive (i.e. whose
Zariski closure is a reductive group) Hitchin representations. For a combinato-
rial point of view on a related subject, see Fock and Goncharov in [16].

The second generalisation exploits the fact that the homogeneous space M
associated to PSp(2n,R) is Hermitian symmetric and thus carries an invariant
symplectic form ω (see Section 4.2.1 for details). Given a representation ρ from
π1(S) to PSp(2n,R), if f is any ρ-equivariant map from the universal cover of
S to M , then f∗ω is invariant under the action of π1(S). The following number

τ(ρ) =
n

2π

∫

S

f∗ω

is then an integer independent of the choice of f . This number, called the
Toledo invariant of ρ, remains constant under continuous deformations of the
representation and satisfies a generalised Milnor-Wood Inequality (see [43])

|τ(ρ)| 6 n|χ(S)|.
By definition, a maximal symplectic representation is one for which the

Toledo invariant attains the upper bound in this inequality. The notion of
maximality and a suitable version of the Milnor-Wood Inequality extend to all
Hermitian symmetric spaces. W. Goldman shows in [18, 19] that maximal repre-
sentations in PSL(2,R) are precisely monodromies of hyperbolic structures. In
the general case, these maximal representations have been extensively studied
by Bradlow, Garćıa-Prada, Gothen, Mundet i Riera (as well as Xia in a specific
example) ([3, 5, 4, 17, 22, 45]) using Higgs bundle techniques on one hand and
Burger, Iozzi and Wienhard ([6, 9, 8, 44]) using bounded cohomology techniques
on the other hand.

Both type of representations – Hitchin representations and maximal sym-
plectic representations – can be thought of as generalisations of the PSL(2,R)-
representations which arise from monodromies of hyperbolic structures and
hence as generalising Teichmüller-Thurston theory.

The maximal symplectic representations and the Hitchin representations are
known to share several fundamental properties, including:

• They are Anosov as defined in [30]. For Hitchin representations this is
proved in [30], for maximal representations this is shown in [7] by Burger,
Iozzi, Wienhard and the author.
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• The Zariski closure of the images are reductive. For Hitchin representa-
tions, see Proposition 4.1.5. For maximal representations, this is proved
by Burger, Iozzi and Wienhard in [8].

• They are discrete: see [30] for Hitchin representations and the proof by
Burger, Iozzi and Wienhard in [8] for maximal representations.

The results presented in this paper extend this list of common features by
showing that both types of representation have the property that we call dis-
placing. More precisely, let Γ be a finitely generated subgroup of the isometry
group of a metric space X : we say that Γ is displacing if, given a finite generat-
ing set G of Γ, there exist positive constants A and B such that for all elements
γ of Γ

inf
x∈X

d(x, γ(x)) > A inf
η∈Γ

‖ηγη−1‖G −B.

where ‖γ‖G is the word length of γ with respect to G. It is easy to check that
this definition is independent of the generating set G. Note that cocompact
groups are always displacing, as are convex-cocompact groups whenever X is
Hadamard (i.e. complete, nonpositively curved and simply connected). If ρ is
a representation from a finitely generated group Γ with values in a connected
semi-simple real Lie group G without compact factor and with trivial centre,
then ρ is displacing if the group ρ(Γ) is displacing as a group of isometries of
the associated symmetric space.

We now briefly summarise results of Delzant, Guichard, Mozes and the au-
thor in [13] which compare this notion to the fact that orbit maps are quasi-
isometries. While the two notions turn out to be equivalent for surface groups
and more generally hyperbolic groups, they are not equivalent for every group:
there are known examples which have displacing representations whose orbit
maps are not quasiisometries and also nondisplacing representations for which
the orbit maps are quasiisometries.

The starting point of this article is the following result.

Theorem 1.0.1 Hitchin and maximal symplectic representations are displac-
ing.

It has already been observed by Burger, Iozzi, Wienhard and the author in [7]
that the orbit maps are quasiisometries for maximal symplectic representations.
Here we prove the theorem by relating Hitchin representations and maximal
symplectic representations to cross ratios (cf Theorems 4.1.6 and 4.2.4).

The two main applications of this result are that

• the mapping class group acts properly on certain moduli spaces, and

• the energy functional on Teichmüller space is proper.

Let us be more specific. Let HomH(π1(S),PSL(n,R)) be the space of Hitchin
homomorphisms and

RepH(π1(S),PSL(n,R)) = HomH(π1(S),PSL(n,R))/PSL(n,R),
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where the action of PSL(n,R) is by conjugation.
Similarly, let HomT (π1(S),PSp(2n,R)) be the space of maximal symplectic

homomorphisms and

RepT (π1(S),PSp(2n,R)) = HomT (π1(S),PSp(2n,R))/PSp(2n,R).

Both spaces HomH and HomT are unions of connected components, each of
which is a component of the corresponding space of reductive homomorphisms.
Moreover, since they consist of reductive representations, the quotient spaces
RepH and RepT are Hausdorff (hence locally compact). This last fact follows
from the identification due to Hitchin [25] of reductive representations with
polystable Higgs bundle, although more direct proofs could be obtained. The
mapping class group M(S) – that is the group of outer automorphisms of π1(S)
which may be represented by orientation preserving diffeomorphisms – acts by
precomposition on these spaces. The following result will be an immediate
consequence of Theorem 1.0.1.

Theorem 1.0.2 The mapping class group M(S) acts properly by precomposi-
tion on the spaces RepH(π1(S),PSL(n,R)) and RepT (π1(S),PSp(2n,R)).

In the case of PSL(3,R), W. Goldman proved in [20] that the mapping class
group acts properly on the moduli space of convex RP

2 structures. Moreover,
together with Choi in [10], he identified this moduli space with the Hitchin
component.

Our second main application concerns the energy functional. We first recall
briefly the general framework and refer to Paragraph 5 for precise definitions.
Let ρ be a representation from π1(S) to a connected semi-simple real Lie group
G without compact factor and with trivial centre. Let M be the symmetric
space associated to G and let Mρ be the flat M -bundle over S defined by the
representation ρ. Let Γ(S,Mρ) be the space of smooth sections of Mρ. If J is a
complex structure on S and f an element of Γ(S,Mρ), we define

EnergyJ(f) =

∫

S

〈df ∧ df ◦J〉.

Then, the energy functional eρ, associated to the representation ρ, is the map
from the space of all complex structures on S to the real numbers defined by

eρ(J) = inf{EnergyJ (f) | f ∈ Γ(S,Mρ)}.

The value of this function depends only on the isotopy class of the complex
structure J , and hence defines a function on Teichmüller space. Denoted by eρ
and also called the energy functional, this function is smooth on Teichmüller
space (cf Paragraph 5.2). We shall prove the following result

Theorem 1.0.3 If ρ is a Hitchin representation or a maximal symplectic rep-
resentation, then the energy functional eρ is a proper function on Teichmüller
space.
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It is classical that critical points of the energy functional are related to
minimal surfaces. Indeed, using Gulliver’s definition of a branched immersion
([24]), we obtain the following consequence

Corollary 1.0.4 Let ρ be a Hitchin or maximal symplectic representation. Then
there exists a minimal branched immersion from S into M/ρ(π1(S)) which rep-
resents ρ at the level of homotopy groups.

This corollary will lead to two applications that we shall explain in the next
section.

I wish to thank L. Lemaire for his help on minimal surfaces and harmonic
mappings, F. Paulin for a very helpful comment on irreducible representations
and many useful comments on the writing up, A. Iozzi for clarifications on
Toledo invariant, M. Burger, O. Garćıa-Prada, O. Guichard and A. Wienhard
for numerous conversations and useful remarks on inconsistencies of the first
draft, as well as W. Goldman for his interest and his help on the writing up. I
am also extremely grateful to S. Bradlow for his final comments on this article.

2 Application of the main results and outline of

the paper

2.1 The minimal area and the Toledo invariant

We restrict ourselves in this paragraph to representations of surface groups with
values in PSp(2n,R).

Definition 2.1.1 [Minimal area] The minimal area of a representation ρ
from π1(S) to PSp(2n,R) is

MinArea(ρ) = inf{eρ(J) | J ∈ T (S)}.

Definition 2.1.2 [Diagonal representation] A homomorphism ρ from π1(S)
with values in PSp(2n,R) is diagonal if it factors as ρ = ϕ ◦ δ ◦ σ where σ is a
cocompact homomorphism of π1(S) into PSL(2,R), δ is the diagonal mapping
from PSL(2,R) into

i=n∏

i=1

PSL(2,R)

and ϕ is an embedding of this product in PSp(2n,R) corresponding to a decom-
position of R2n in a direct sum of 2-dimensional orthogonal symplectic vector
spaces.

Note that the set of diagonal homomorphisms is invariant under conjugation.

Theorem 2.1.3 For every representation ρ, we have

n

2π
MinArea(ρ) > |τ(ρ)|,
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where τ(ρ) is the Toledo invariant of ρ. If furthermore ρ is maximal and

n

2π
MinArea(ρ) = τ(ρ),

then ρ is a diagonal representation.

As a corollary of the proof, we have the following result

Corollary 2.1.4 Let ρ be a maximal representation. Assume that there exists
a holomorphic equivariant map f from S to the associated symmetric space of
PSp(2n,R). Then ρ is diagonal and f is totally geodesic.

2.2 The Hitchin map is surjective

In his article [26], N. Hitchin gives explicit parametrisations of the Hitchin com-
ponents RepH(π1(S),PSL(n,R)). Namely, given a choice of a complex structure
J over S, he produces a homeomorphism

HJ : Q(2, J) ⊕ . . .⊕Q(n, J) → RepH(π1(S),PSL(n,R)),

where Q(p, J) denotes the space of holomorphic p-differentials on the Riemann
surface (S, J). The first step in the construction of this map uses results from K.
Corlette’s seminal paper [11] – see also [15, 27] – to identify conjugacy classes of
representations with harmonic mappings to symmetric spaces. The second step
is to associate holomorphic differentials to a harmonic mapping with values
in a symmetric space. This is accomplished by means of a construction very
similar to the construction of characteristic classes in Chern-Weil theory – see
Paragraph 8.1.3.

However, in this construction, the homeomorphismHJ depends on the choice
of the complex structure J . In particular, this choice breaks the mapping class
group symmetry. The construction thus does not give any information on the
topological nature of the quotient of RepH(π1(S),PSL(n,R)) by the mapping
class group.

We now explain a construction which is equivariant with respect to the action
of the mapping class group and which conjecturally leads to a complex analytic
description of the quotient. Let E(n) be the vector bundle over Teichmüller space
whose fibre above the (isotopy class of the) complex structure J is

E(n)
J = Q(3, J) ⊕ . . .⊕Q(n, J).

The dimension of the total space of E(n) is the same as that of the Hitchin
component

RepH(π1(S),PSL(n,R))

since the dimension of the ”missing” quadratic differentials in E(n)
J accounts for

the dimension of Teichmüller space. The Hitchin map 1 is then the map from

1We are aware that this terminology is awkward since this Hitchin map is some kind of an

inverse of what is usually called the Hitchin fibration.
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E(n) to RepH(π1(S),PSL(n,R)) defined by

(J, ω) → HJ(0, ω).

It follows from Hitchin’s construction that this map is equivariant with respect
to the mapping class group action. We prove

Theorem 2.2.1 The Hitchin map is surjective.

Our strategy is to identify E(n) with the moduli space of equivariant minimal
surfaces in the associated symmetric space and then, by tracking a critical point
of the energy, to prove that there exists an equivariant minimal surface for every
representation.

We conjectured in [30] that the Hitchin map is a homeomorphism. This
would be a consequence of the following:

Conjecture 2.2.2 If ρ is a Hitchin representation, then there exists a non
degenerate minimum of eρ.

This conjecture is well known to be true for n = 2. For n = 3, it is proved in
[31] by relating real projective structures, affine spheres and Blaschke metrics
(as in [28, 31] or in [34]). By our previous discussion, Conjecture 2.2.2 would
imply the following consequence which sheds light on the action of the mapping
class group M(S) on the Hitchin components:

Conjecture 2.2.3 The quotient RepH(π1(S),PSL(n,R))/M(S) is homeomor-
phic to the total space of the vector bundle E – in the orbifold sense – over the
Riemann moduli space, whose fibre at a point J is

EJ = Q(3, J) ⊕ . . .⊕Q(n, J).

Again, by the previous discussion this result is true for n = 2 and n = 3.

2.3 Outline of the paper

• 3. Cross ratios and the boundary at infinity. We recall the basic
definitions (cross ratios, periods), explain how cross ratios are related to
flows and finally show how this relation helps to control the growth of the
periods (Proposition 3.3.1).

• 4. Representations and cross ratios. We explain that Hitchin
and maximal symplectic representations are reductive, how they gener-
ate curves in Grassmannian spaces and how they relate to cross ratios.

• 5. The energy functional and the minimal area. We recall basic
results about existence of equivariant harmonic mappings in symmetric
spaces as well as classical definitions and results concerning minimal sur-
faces, energy and Teichmüller space.
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• 6. Displacing representations and the energy functional. We
introduce the notion of displacing representations. Using the relation with
cross ratios, we show that the Hitchin and maximal symplectic represen-
tations are displacing. We then prove the main properties of displacing
representations and obtain Theorems 1.0.2 and 1.0.3. As a consequence,
we deduce the existence of equivariant minimal surfaces for our two main
examples.

• 7. The Toledo invariant and the minimal area. We prove Theo-
rem 2.1.3.

• 8. The Hitchin map. We prove Theorem 2.2.1.

3 Cross ratios and the boundary at infinity

3.1 The boundary at infinity

Let ∂∞π1(S) be the boundary at infinity of π1(S). We recall that ∂∞π1(S) is a
circle with a Hölder structure and is equipped with an action of π1(S) by Hölder
homeomorphisms. Up to equivariant Hölder homeomorphisms, this action can
be characterised by the following two properties

• every orbit is dense,

• every nontrivial element of π1(S) has exactly two fixed points: one attrac-
tive and one repulsive.

If one fixes an uniformisation of the universal cover of the surface equipped
with a complex structure, then ∂∞π1(S) can be identified with the real projec-
tive line RP

1 considered as the boundary of the Poincaré disk model.

3.2 Cross ratios

Let X be a metric space equipped with an action of a group Γ by Hölder home-
omorphisms. Let

X4∗ = {(x, y, z, t) ∈ X4 | x 6= t and y 6= z}.
We equip X4∗ with the diagonal action of Γ. In the sequel, our main exam-
ples are X = ∂∞π1(S) equipped with the natural action of π1(S) by Hölder
homeomorphisms, or variants of that.

Definition 3.2.1 [Cross ratio] A cross ratio on X is a real valued Γ-invariant
Hölder function B on X4∗ which satisfies the following rules

B(x, y, z, t) = B(z, t, x, y), (1)

B(x, y, z, t) = 0 ⇔ x = y or z = t, (2)

B(x, y, z, t) = 1 ⇔ x = z or y = t, (3)

B(x, y, z, t) = B(x, y, z, w)B(x,w, z, t), (4)

B(x, y, z, t) = B(x, y, w, t)B(w, y, z, t). (5)
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The classical cross ratio b on RP
1, defined in an affine chart by

b(x, y, z, t) =
(x− y)(z − t)

(x− t)(y − z)
,

is an example of a cross ratio with respect to the action of PSL(2,R).

Definition 3.2.2 [Period] Let B be a cross ratio on ∂∞π1(S) and γ be a
nontrivial element in π1(S). The period ℓB(γ) is

ℓB(γ) = log |B(γ−, γy, γ+, y)|, (6)

where γ+ and γ− are respectively the attracting and repelling fixed points of γ
on ∂∞π1(S) and y is any element of ∂∞π1(S) different from γ+ and γ−.

Relation (4) and the invariance under the action of γ imply that ℓB(γ) does not
depend on y. Moreover, by Equation (1), ℓB(γ) = ℓB(γ−1).

For more information and examples on a related notion see the work of Otal
and Ledrappier in [37, 33]. For other applications to representations of surface
groups, see [29, 32].

3.3 Periods and lengths

The next proposition compares periods with length of geodesics.

Proposition 3.3.1 We fix a hyperbolic metric on S. For every nontrivial γ
in π1(S), let λ(γ) be the length of the closed geodesic associated to γ for this
hyperbolic metric. Let B be a cross ratio. Then there exists a positive constant
A, depending only on the cross ratio and the choice of the hyperbolic metric,
such that or all nontrivial element γ in π1(S)

1

A
λ(γ) 6 ℓB(γ) 6 Aλ(γ).

The idea of the proof is to define compatible flows on the space of oriented
triples of pairwise distinct points of ∂∞π1(S) and study their periodic orbits.

3.3.1 Compatible flows on the space of oriented triples

Recall first that the orientation on S induces an orientation on ∂∞π1(S).

Definition 3.3.2 [Oriented triples] We denote by ∂∞π1(S)3+ the space of
oriented triples of pairwise distinct points of ∂∞π1(S).

The quotient ∂∞π1(S)3+/π1(S) is compact and homeomorphic to the uni-
tary tangent bundle of the surface S for any auxiliary metric.
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Definition 3.3.3 [Compatible flow] A continuous flow {φt}t∈R on ∂∞π1(S)3+

is compatible if

• every homeomorphism φt is π1(S)-equivariant,

• every homeomorphism φt acts without fixed points,

• for every real number t, for every triple (x, z, y) in ∂∞π1(S)3+, there exists
u in ∂∞π1(S) such that φt(x, z, y) = (x, u, y).

If we identify ∂∞π1(S)3+ with the unit tangent bundle of S for some hyper-
bolic metric, then a compatible flow is nothing but a reparametrisation of the
geodesic flow.

Definition 3.3.4 [Period for a flow] For notational convenience, given a
compatible flow {φt}t∈R, we define for every real number t the map

φ̂t : ∂∞π1(S)3+ → ∂∞π1(S),

by the condition that (x, φ̂t(x, z, y), y) = φt(x, z, y).
If γ is a nontrivial element of π1(S), we then define the period of γ with

respect to {φt}t∈R to be the least positive number ℓφ(γ) such that

φ̂ℓφ(γ)(γ
−, y, γ+) = γ(y).

We first prove

Proposition 3.3.5 Let {φt}t∈R and {ψt}t∈R be two compatible flows. Then
there exists a constant K such that for all nontrivial element γ of π1(S)

ℓψ(γ) 6 Kℓφ(γ).

Proof: There exists a positive continuous π1(S)-invariant positive function Θ
defined on ∂∞π1(S)3+ such that

ψ̂1(x, y, z) = φ̂Θ(x,y,z)(x, y, z).

Since ∂∞π1(S)3+/π1(S) is compact, it follows that there exists a constant A
such that for all oriented triple (x, y, z)

0 < Θ(x, y, z) 6 A.

Then we have
ℓψ(γ) 6 Aℓφ(γ) +A.

By compactness of ∂∞π1(S)3+/π1(S), there exists a constant l such that for all
nontrivial element γ of π1(S), we have

ℓφ(γ) > l > 0.

Therefore it follows that

ℓψ(γ) 6 (A+ A/l)ℓφ(γ).

Q.e.d.

10



3.3.2 Proof of Proposition 3.3.1

We show that every cross ratio is associated to a compatible flow and thereby
conclude the proof of Proposition 3.3.1.

Proposition 3.3.6 Let B be a cross ratio. Let x and y be two distinct elements
of ∂∞π1(S). Let I be one of the connected components of ∂∞π1(S) \ {x, y}. Let
z be an element of I. Then the map from I to R given by

ϕ : t→ log(B(x, t, y, z)),

is a homeomorphism.

Proof: By the definition of cross ratio, if (x, s, t, y) is cyclically oriented, then
B(x, s, y, t) is greater than 1. In particular B(x, t, y, z) is positive if z and t
belong to I and thus ϕ is well defined.

We now prove that ϕ is injective. Suppose that ϕ(s) = ϕ(t). This implies
that

B(x, t, y, s) =
B(x, t, y, z)

B(x, s, y, z)
= eϕ(t)−ϕ(s) = 1.

Hence s = t by the definition of a cross ratio. The same proof shows that ϕ is
increasing. It follows that ϕ(I) is an interval ]α, β[.

We now prove that β = +∞. Assume on the contrary that β is finite. By
definition

lim
t→y

log(B(x, t, y, z)) = β.

Choose an auxiliary compatible flow {ψt}t∈R on ∂∞π1(S)3+. Since (x, t, ψ̂1(x, t, y), y)
is cyclically oriented, we have

lim
t→y

ψ̂1(x, t, y) = y.

Hence,

lim
t→y

B(x, t, y, ψ̂1(x, t, y)) = lim
t→y

(
B(x, t, y, z)

B(x, ψ̂1(x, t, y), y, z)

)
= 1. (7)

Now choose a sequence {tn}n∈N converging to y. Since the quotient ∂∞π1(S)3+/π1(S)
is compact, there exists a sequence {γn}n∈N of elements in π1(S) and an oriented
triple (X,Y, T ) of pairwise distinct elements in ∂∞π1(S) such that

lim
n→∞

(γn(x), γn(y), γn(tn)) = (X,Y, T ) ∈ ∂∞π1(S)3+ .

If follows from Assertion (7) that

B(X,T, Y, ψ̂1(X,T, Y )) = lim
n→∞

B(γn(x), γn(tn), γn(y), ψ̂1(γn(x), γn(tn), γn(y))

= lim
n→∞

B(γn(x), γn(tn), γn(y), γn(ψ̂1(x, tn, y))

= lim
n→∞

B(x, tn, y, ψ̂1(x, tn, y))

= 1.
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This yields the conclusion that T = ψ̂1(X,T, Y ), which contradicts the fact that
ψ1 has no fixed points. A similar argument yields α = −∞. Therefore ϕ is a
homeomorphism. Q.e.d.

Proposition 3.3.7 There exists a compatible flow {φt}t∈R on ∂∞π1(S)3+ such

that log(B(x, z, y, φ̂t(x, z, y))) = t.

Proof: By Proposition 3.3.6, the family of homeomorphisms {φt}t∈R is well
defined. The multiplicative cocycle relation

B(x, y, z, t).B(x, t, z, u) = B(x, y, z, u),

implies that {φt}t∈R is a one-parameter group. Q.e.d.

Proposition 3.3.1 is now a consequence of Propositions 3.3.7 and 3.3.5.

4 Representations and cross ratios

We shall in the sequel distinguish between homomorphism from a group to
an other and representation which we consider as a class of homomorphism
up to conjugation. Whenever a property is defined for a homomorphism, this
definition will be extended to representation whenever the property is invariant
by conjugation.

We explain that our two favourite classes of representations from π1(S) are
associated to cross ratios whose periods can be computed from holonomy. We
also recall that these representations are reductive.

4.1 Hitchin representations

Definition 4.1.1 [Deformation] Let ρ0 and ρ1 be representations of π1(S)
with values in a topological group G. A deformation of ρ0 into ρ1 is a family
of representations {ρt}t∈[0,1] such that for every element γ of π1(S), the map
t→ ρt(γ) is continuous.

Definition 4.1.2 [Hitchin homomorphisms] Following [30], a Fuchsian ho-
momorphism from π1(S) to PSL(n,R) is a homomorphism ρ which factors as
ρ = ι◦ρ0, where ρ0 is a convex-cocompact injective homomorphism with values in
PSL(2,R) and ι is an irreducible homomorphism from PSL(2,R) to PSL(n,R).

A Hitchin homomorphism is a homomorphism that may be deformed into a
Fuchsian homomorphism.

Definition 4.1.3 [Reductive homomorphism] A homomorphism is reduc-
tive if the Zariski closure of its image is a reductive group.

Later we will show that every Hitchin homomorphism is reductive. In [26],
Hitchin studies the moduli space of reductive Hitchin representations.

In [30], we showed the following result.

12



Theorem 4.1.4 Let ρ be a reductive Hitchin representation. Let γ be a non-
trivial element of π1(S). Then ρ(γ) is R-split.

4.1.1 Reductivity

Recall that a subgroup of (or a homomorphism with values in) PSL(n,R) is
irreducible if it does not preserve any proper subspace of Rn. We show the
following result.

Proposition 4.1.5 Every Hitchin representation is irreducible.

Proof: In [30], Lemma 10.1, using elementary observations on Higgs bundle,
we show that every reductive Hitchin representation is irreducible. We now
explain that every Hitchin representation is reductive, hence irreducible.

Obviously the set of irreducible homomorphisms is open since its complement
is closed. Hence, to conclude the proof, it suffices to show that the set of
irreducible Hitchin homomorphisms is closed.

Let ρ be a limit of Hitchin homomorphisms. Let G be the Zariski closure of
ρ(π1(S)). Let N be the nilradical of G. Let R = G/N be the reductive part
of G – i.e the Levi component. We identify R with a subgroup of G so that
G = N ⋊R. Let π be the projection from G to R.

We first prove that π ◦ρ is also a limit of reductive homomorphisms. Indeed,
there exists an element h in the centraliser of R such that for all u in N ,

lim
n→∞

h−nuhn = 1.

It follows that
π ◦ ρ = lim

n→∞
h−nρhn.

In particular, π ◦ ρ is also a limit of Hitchin homomorphisms and hence a
Hitchin homomorphism itself. By construction, π ◦ ρ is reductive and hence
irreducible.

We now prove by contradiction thatN is trivial. Assume the contrary. Then,
since N is unipotent, the set of vectors fixed by N is a proper subspace of Rn.
This set is fixed by R and hence by π ◦ ρ, from which it follows that π ◦ ρ is not
irreducible. Hence we obtain a contradiction.

We have just shown that N is trivial. By definition ρ is reductive, and hence
irreducible. Q.e.d.

I owe this argument to F. Paulin.

4.1.2 Cross ratios

In [29], we showed how to associate a cross ratio to every Hitchin representation.
More precisely, we showed the following:

13



Theorem 4.1.6 Let ρ be a Hitchin representation. Then there exists a cross
ratio B on ∂∞π1(S)4∗ such that for every nontrivial element γ of π1(S), the
period of γ is given by

ℓB(γ) = log

(∣∣∣∣
λmax(ρ(γ))

λmin(ρ(γ))

∣∣∣∣
)
. (8)

Here λmax(ρ(γ)) and λmin(ρ(γ)) are respectively the eigenvalues of of ρ(γ) with
the maximum and minimum modulus.

Using O. Guichard’s work [23], we also proved a converse of this statement
(see [29]).

4.2 Symplectic Anosov structures

In [7], together with Burger, Iozzi and Weinhard, we studied maximal represen-
tations from surface groups to PSp(2n,R). We first recall some definitions and
notation from [8].

4.2.1 The symplectic structure

In this section, we normalise the symplectic form on the associated symmetric
space M and construct the Toledo invariant.

We denote by g the Lie algebra of G = PSp(2n,R) and we identify g with
the Lie algebra of Killing vector fields on M . For every m in M , let km be the
Lie algebra of the stabiliser Km of m in G. We finally identify TmM with the
orthogonal of km in g with respect to the Killing form.

We choose a continuous map ∂θ from M to g such that, for every m in M ,
∂θ(m) is a generator of the centre of km verifying

exp(s∂θ(m)) = 1 ⇔ s ∈ 2πZ.

Observe that ∂θ is well defined up to sign. The complex structure on TM is
then given by the following map from TM to itself

J : A 7→ [∂θ, A].

We normalise the Killing form 〈 , 〉 so that ‖∂θ‖ = 1.

Definition 4.2.1 [Canonical complex structure] The canonical symplec-
tic structure ω of M is given, for all tangent vectors X and Y , by

ω(X,Y ) = 〈[X,Y ], ∂θ〉.

4.2.2 The Toledo invariant

The homomorphism
det : Km → T,
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is a degree n map when restricted to the centre of Km. It follows that n.ω is
the curvature of a line bundle L.

The following inequality is fundamental.

|τ(ρ)| 6 n|χ(S)|.

For n = 1, this is the Milnor-Wood Inequality [36]. This specific inequality
for the symplectic group is due to V. Turaev [43]. It has been extended to
other Hermitian symmetric spaces (see in particular [14, 41, 42, 9, 8]). We shall
restrict ourselves to PSp(2n,R) although the discussion extends to the general
case as well.

Definition 4.2.2 [Maximal representation] A maximal representation is
a representation, say ρ, for which

|τ(ρ)| = n|χ(S)|.

4.2.3 Reductivity

Using bounded cohomology techniques, Burger, Iozzi and Wienhard prove in
[8]:

Theorem 4.2.3 Every maximal representation is reductive.

4.2.4 Cross ratios and maximal representations: the main result

For everyA in PSp(2n,R), let {λi}16i62n be the eigenvalues (with multiplicities)
of A ordered so that

|λ1| 6 |λ2| . . . 6 |λ2n|.
We define

c(A) =

i=2n∏

i=n+1

|λi|.

The main result of this paragraph is the following.

Theorem 4.2.4 Let ρ be a maximal symplectic representation. Then there ex-
ists a cross ratio B on ∂∞π1(S) such that

ℓB(ρ(γ)) = 2 log c(ρ(γ)).

We prove this theorem in Paragraph 4.2.8.

4.2.5 Positivity

Let L(E) be the Grassmannian of Lagrangian spaces in a vector spaceE equipped
with a symplectic form ω.

Definition 4.2.5 A triple of Lagrangian spaces (F,G,L) is positive if
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• F ⊕ L = E and

• ω(uf , ul) is positive for every pair of vectors (uf , ul) in F × L such that
uf + ul belongs to G,

Definition 4.2.6 [Positive curve] An oriented curve ξ from the circle T to
L(E) is positive if (ξ(x), ξ(y), ξ(z)) is positive for every oriented triple of pair-
wise distinct points (x, y, z) in T.

With Burger, Iozzi and Wienhard, we proved the following result (see [7])

Theorem 4.2.7 Let E be a symplectic vector space. Let ρ be a maximal sym-
plectic homomorphism from π1(S) to PSp(E). Then there exists a positive
Hölder ρ-equivariant curve ξ from ∂∞π1(S) to L(E).

Furthermore, ξ(γ+) (respectively ξ(γ−)) is generated by the eigenvectors of
ρ(γ) corresponding to the eigenvalues of absolute value greater than 1 (resp.
smaller than 1).

4.2.6 The cross ratio of four Lagrangian spaces

Let (L1, L2, L3, L4) be a quadruple of Lagrangian spaces in a symplectic space of
dimension 2n. We suppose that L4 is transverse to L1 and that L2 is transverse
to L3. Let l1, l2, l3 and l4 be bases of L1, L2, L3 and L4 respectively. For every
pair (a, b) ∈ {1, 2, 3, 4}2, we consider the n× n matrix

Ala,lb = (ω(lai , l
b
j)).

We observe that for every endomorphism g of La whose matrix in the basis la

is G then
Ag(la),lb = G.Ala,lb . (9)

Similarly
Ala,lb = −Atlb,la .

We now define

B(ℓ1, ℓ2, ℓ3, ℓ4) =
det(Al1,l2). det(Al3,l4)

det(Al1,l4). det(Al3,l2)
.

By Assertion (9), B(ℓ1, ℓ2, ℓ3, ℓ4) depends only on (L1, L2, L3, L4). Hence we
can define

B(L1, L2, L3, L4) = B(ℓ1, ℓ2, ℓ3, ℓ4).

The following proposition follows easily from the definition

Proposition 4.2.8 We have

B(L1, L2, L3, L4)B(L1, L4, L3, L5) = B(L1, L2, L3, L5), (10)

B(L1, L2, L3, L4) = B(L2, L1, L4, L3). (11)

Finally, if (L,U, V ) are generic,

B(L,U, L, V ) = 1, (12)

B(L,L, U, V ) = 0. (13)
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4.2.7 Cross ratios and positivity

Proposition 4.2.9 If the triples of Lagrangian spaces (E,F1, G) and (E,F2, G)
are positive, then

B(E,F1, G, F2) > 0.

If moreover the triple (F1, F2, G) is positive, then

B(E,F1, G, F2) > 1.

Proof: We assume that (E,F1, G) and (E,F2, G) are positive. Let p be the
projection onto G along E. Let qi be the quadratic form on Fi defined by

qi(u) = ω(p(u), u).

Since (E,Fi, G) is positive, it follows that qi is positive definite. By simultaneous
orthogonalisation, we can choose an basis f i of Fi, which is orthogonal for qi,
such that p(f1) = p(f2) = g. Let

ei = (1 − p)(f i) = f i − g

be the corresponding bases of E. We then have

Aei,fj = Aei,g = −Ag,f i ,

and also
ω(eji , gk) = q(f ji , f

j
k) = ω(gi, f

j
k).

Furthermore let

λi =
q(f2

i , f
2
i )

q(f1
i , f

1
i )
,

then
e2i = λie

1
i .

It follows that

B(E,F1, G, F2) =
det(Ae1,f1). det(Ag,f2)

det(Ae1,f2). det(Ag,f1)

=
det(Ae1,g). det(−Ae2,g)
det(Ae1,g). det(−Ae1,g)

=
∏

i

λi > 0.

Finally, assume that (F1, F2, G) is positive. Let π be the projection onto G
along F1. Recall that

f2
i = e2i + gi = λie

1
i + gi = λif

1
i + (1 − λi)gi.
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It follows that

ω
(
π(f2

i ), (1 − π)(f2
i )
)

= ω
(
(1 − λi)gi, λif

1
i

)

= (1 − λi)λiω(gi, f
1
i )

= λi(λi − 1)q1(f
1
i , f

1
i ).

Hence the positivity of (F1, F2, G) implies that λi > 1 and therefore

B(E,F1, G, F2) =
∏

i

λi > 1.

Q.e.d.

Finally, we have the following:

Proposition 4.2.10 Let S be a symplectic automorphism preserving two trans-
verse Lagrangian spaces E and F . Then, for every Lagrangian space G, we have

B(E,G, F, S(G)) =
det(S|E)

det(S|F )
= det(S|E)2.

Proof: Let S be a symplectic transformation. Let e be a basis of a space K
invariant by S. We have

det(Ae,S(l)) = det(AS−1e,l) =
det(Ae,l)

det(S|K)
,

from which the formula follows. Q.e.d.

4.2.8 Cross ratios and maximal representations

We now prove Theorem 4.2.4. Let ρ be a maximal symplectic homomorphism.
Let ξ be the positive map from ∂∞π1(S) to L(R2n) associated to ρ by Theo-
rem 4.2.7. By Proposition 4.2.9 the following formula (using the notation of
Paragraph 4.2.6) defines a cross ratio on ∂∞π1(S)

B(x, y, z, t) = B(ξ(x), ξ(y), ξ(z), ξ(t)).

Furthermore, by Proposition 4.2.10, we have

ℓB(γ) = 2 log det
(
ρ(γ)|ξ(γ+)

)
.

The Theorem follows from this.

5 The energy functional and the minimal area

Let M be a Hadamard manifold– i.e complete, nonpositively curved and simply
connected. Let

ρ : π1(S) −→ Iso(M)
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be a representation from π1(S) to the group of isometries of M and let Mρ be
the associated M bundle over S. We denote by Fρ the space of ρ-equivariant

smooth mappings from the universal cover S̃ of S to M :

Fρ = {f : S̃ → M | f ◦ γ = ρ(γ) ◦ f}.

The space Fρ is canonically identified with the space Γ(S,Mρ) of smooth sections
of Mρ.

5.1 The energy of a map and the energy functional

Let 〈, 〉 be the metric on M . Let f be an element of Fρ. Let J be a complex

structure on S lifted to S̃. Let u and v be tangent vectors in S̃, the following
expression defines an exterior differential 2-form on S̃

〈df ∧ df ◦J〉(u, v) :=
1

2
(〈Tf(v), Tf(Ju)〉 − 〈Tf(u), Tf(Jv)〉) .

Notice that 〈df ∧ df◦J〉 is π1(S)-invariant, hence defines an exterior differential
2-form on S also denoted by 〈df ∧ df ◦J〉.

Definition 5.1.1 [Energy of a map] The energy of f with respect to J is the
following real number

Energy(J, f) =

∫

S

〈df ∧ df ◦J〉.

The definition above is slightly nonstandard and restricted to dimension 2. We
use it in order to emphasise the conformal invariance of the energy. Observe
that for any diffeomorphism φ of S isotopic to the identity and lifted to a
diffeomorphism Φ of S̃ we have

Energy(J, f) = Energy(Φ∗J, f ◦ Φ). (14)

Definition 5.1.2 [Energy functional on Teichmüller space] Let ρ be a
representation of π1(S) in Iso(M). The energy functional associated to ρ is the
real valued function on the Teichmüller space T (S) of S defined by

eρ : J → eρ(J) := inf{Energy(J, f) | f ∈ Fρ}.

In the definition above, we have used that eρ(J) only depends on the isotopy
class of J which is a consequence of Equation (14).

5.2 Harmonic mappings

By definition, a harmonic mapping is a critical point of the energy. Whenever ρ
is reductive, the existence of a ρ-equivariant harmonic mapping is guaranteed by
Corlette’s Theorem in the context of symmetric spaces [11]. Note that [27] gives
an alternative simpler proof which works in the general context of Hadamard
manifolds:
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Theorem 5.2.1 [Corlette]. Let ρ be a reductive representation from π1(S)
into a connected semi-simple real Lie group G without compact factor and with
trivial centre. Let M be the associated symmetric space. Then there exists a
ρ-equivariant harmonic mapping f from S to M . Furthermore this mapping is
unique up to an isometry of M and minimises the energy.

The definition of the energy extends to maps from higher dimensional man-
ifolds – although in that case it is not anymore a conformal invariant – and the
above statement holds in this general context.

As a byproduct of the proof of this theorem, together with a simple applica-
tion of the implicit function Theorem, the energy functional is a smooth function
on Teichmüller space. Combining Corlette’s Theorem with Propositions 4.2.3,
4.1.5, we deduce the following result.

Proposition 5.2.2 Let ρ be a Hitchin or maximal symplectic representation.
Let J be a complex structure on S. Then there exists a unique (up to isometries)
ρ-equivariant harmonic mapping fρ,J . Moreover

Energy(J, fρ,J) = eρ(J).

5.3 Minimal area

Let f be an element of Fρ and let R(f) be the open set of points x in S for
which Txf is injective. We observe that the induced bilinear form f∗(gM ) is
invariant under π1(S) and defines a metric on R(f). We define the area of f to
be the area of R(f) with respect to this metric, i.e.

Area(f) = areaf∗(gM )(R(f)).

We recall that

Area(f) 6 Energy(J, f), (15)

with equality if and only if f is conformal with respect to J . Finally one can
find a sequence of complex structure {Jn}n∈N on S so that

Area(f) = lim
n→∞

Energy(Jn, f), (16)

Definition 5.3.1 [Minimal area] The minimal area of ρ is

MinArea(ρ) = inf{eρ(J) | J ∈ T (S)}.

It follows from Assertions (15) and (16) that

MinArea(ρ) = inf{Area(f) | f ∈ Fρ}.

We also recall the classical results of Sacks–Uhlenbeck [39][38] and Schoen–Yau
[40]:
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Theorem 5.3.2 [Sacks–Uhlenbeck], [Schoen–Yau] Let J be a point in
Teichmüller space which is a critical point of the energy. Let fJ be a mapping
such that

Energy(J, f) = MinArea(ρ).

Then f is harmonic and conformal.

6 Displacing representations and the energy func-

tional

In Definition 6.1.2, we introduce the notion of displacing homomorphism. In
Theorem 6.1.3, we prove that Hitchin and maximal symplectic representations
are displacing and finally show in Theorem 6.2.1 that the energy functional
associated to a displacing representation is a proper map.

6.1 Displacing representations

Definition 6.1.1 [Displacement function] Let γ be an isometry of a metric
space M . The displacement of γ is

d(γ) = inf
x∈M

d(x, γ(x)).

If M is the Cayley graph of a group Γ with set of generators G and word length
‖ ‖G , then

d(γ) = inf
η∈Γ

‖ηγη−1‖G .

The displacement function is explicit in the case ofM = PSL(n,R)/SO(n,R).
Let A be an element in PSL(n,R). Let {λi}16i6n be the eigenvalues of A, then
up to a multiplicative constant that depends on the normalisation of the metric
on M

d(A) =

√√√√
n∑

i=0

(
log |λi|

)2
. (17)

Definition 6.1.2 [Displacing homomorphism]. Let M be a metric space. A
homomorphism ρ from a finitely generated group Γ to Iso(M) is displacing if for
every finite generating set G of Γ there exist positive constants A and B such
that such that for every γ in Γ

d(ρ(γ)) > A. inf
η∈Γ

‖ηγη−1‖G −B.

where ‖γ‖G is the word length of the element γ of Γ.

In other words, the displacement of a displacing representation is roughly con-
trolled by the displacement in the Cayley graph. Alternatively, in the case
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Γ = π1(S), the representation ρ is displacing if for every hyperbolic metric g on
S, there exist positive constants A and B such that for every nontrivial element
γ in π1(S)

d(ρ(γ)) > A.λg(γ) −B.

Here λg(γ) is the length of the closed geodesic, with respect to g, representing
the nontrivial element γ.

6.1.1 Examples of displacing representations

Representations in Iso(M) are displacing for cocompact groups. The same holds
for convex-cocompact groups whenever M is Hadamard. The use of cross ratios
allow us to identify other examples of displacing representations.

Theorem 6.1.3 Every Hitchin representation is displacing. Every maximal
symplectic representation is displacing.

Proof: Let ρ be a Hitchin representation. Let B be the cross ratio associated
to ρ by Theorem 4.1.6. Let {λi}16i6n be the eigenvalues of the element ρ(γ).
We order the eigenvalues so that |λj | > |λi| if j > i. Combining Equations (8)
and (17), we obtain

d(ρ(γ)) =

√√√√
i=n∑

i=1

(log |λi|)2

>
1√
n

i=n∑

i=1

|log |λi||

>
1√
n

(|log |λn|| + |log |λ1||) .

Since |λn| > 1 > |λ1|, we get

d(ρ(γ)) >
1√
n

log
|λn|
|λ1|

=
1√
n
ℓB(γ).

By Theorem 3.3.1, there exist positive constants A and B such that

ℓB(γ) > A.λ(γ) −B,

where λ(γ) is the length of the geodesic associated to γ in some auxiliary hy-
perbolic metric. It follows that every Hitchin representation is displacing.

For maximal symplectic representations, we have a very similar argument.
Let ρ be such a representation and let B be the cross ratio associated to it by
Proposition 4.2.4. Since the injection i from PSp(2n,R) into PSL(2n,R) gives
rise to a totally geodesic embedding of the corresponding symmetric spaces, it
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suffices to show that i ◦ ρ is displacing. Let {λi}16i62n be the eigenvalues, with
multiplicities, of the element ρ(γ). We order them so that

|λ1| 6 |λ2| . . . 6 |λ2n|.

We observe that λiλ2n+1−i = 1 from which it follows that for i less than n,
|λi| 6 1 6 |λ2n+1−i|. Then, we have

d(ρ(γ)) =

√√√√
i=2n∑

i=1

(log |λi|)2

>
1√
n

i=2n∑

i=1

|log |λi||

>
1

n
log

∣∣∣∣∣

∏i=2n
i=n+1 λi∏i=n
i=1 λi

∣∣∣∣∣

>
1√
n

log

(
i=2n∏

i=n+1

|λi|2
)

=
1√
n
ℓB(γ).

The result follows from this last inequality. Q.e.d.

6.2 Energy of displacing representations

The main result of this section, proved in Paragraph 6.2.2, is the following.

Theorem 6.2.1 Let ρ be a displacing representation from π1(S) to the isometry
group of a Hadamard manifold. Then the energy functional eρ, defined from
T (S) to R, is proper.

In particular, we recover as a corollary the result of W. Goldman and R.
Wentworth [21] that the energy functional is proper for convex-cocompact rep-
resentations.

Corollary 6.2.2 Let ρ be a Hitchin or maximal representation. Then there
exists a complex structure J0 on S and a J0-conformal harmonic ρ-equivariant
mapping f defined from the universal cover of S to the corresponding symmetric
space such that

Area(f) = Energy(J0, f) = MinArea(ρ).

Proof: By Proposition 6.1.3 and the previous theorem, there exists a complex
structure J0 on S which achieves the minimum of the energy functional. By
Proposition 5.2.2, there exists a ρ-harmonic mapping f , such that

Energy(J0, f) = eρ(J0) = MinArea(ρ).

We conclude the proof by applying Theorem 5.3.2 of Sachs–Uhlenbeck and
Schoen–Yau. Q.e.d.
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6.2.1 The intersection is proper

Let g and g0 be two hyperbolic metrics on S. Let US and U0S be the associated
unit tangent bundles, with geodesic flows {φt}t∈R and {φ0

t }t∈R generated by X
and X0 respectively. Let µ and µ0 be the corresponding Liouville measures
normalised to be probability measures. We know that these two geodesic flows
are orbit conjugate. In other words, there exist a homeomorphism F from
US to US0 and a positive continuous function ψ(g,g0) on US such that F is
differentiable along X and DF (ψ(g,g0)X) = X0.

Definition 6.2.3 [intersection] The intersection of g and g0 is

inter(g, g0) =

∫

US

ψ(g,g0)dµ.

The following proposition is a classical result. For the sake of completeness since
we could not find a good reference for it, we include a sketchy proof. For a less
down to earth point of view and for extra information on intersections, we refer
to Francis Bonahon’s original article ([1]) or to Curt McMullen’s notes ([35]).

Proposition 6.2.4 Fixing g0, the function g 7→ inter(g, g0) is a proper map
from T (S) to R.

Proof: We denote by [γ] the free homotopy class of a closed curve γ. By
definition, the intersection of two homotopy classes of closed curves c1 and c2
in the compact surface S is

inter(c1, c2) = inf{♯(γ1 ∩ γ2) | [γi] = ci}.

If γ1 and γ2 are geodesics with distinct support for a negatively curved metric
g, then

inter([γ1], [γ2]) = ♯(γ1 ∩ γ2).

We denote by G(S) the set of closed geodesics in S. Let η be a simple closed
curve. Using a tubular neighbourhood of η, we see that there exists a constant
C(η, g), depending only on the isotopy class of η and the metric g, such that for
every closed geodesic γ we have

inter([η], [γ]) 6 C(η, g)λg([γ]). (18)

Now let g be a hyperbolic metric and let

GL = {γ ∈ G(S) | λg(γ) 6 L}.

According to the equirepartition of closed geodesics due to R. Bowen in [2], for
every continuous function f on US the following formula relates the integral
of f with respect to the Liouville measure for g with its average along closed
geodesics

∫

US

fdµg = lim
L→∞

(
1

♯(GL)

∑

γ∈GL

∫
γ
fdt

λg(γ)

)
. (19)
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Hence, if g0 is another hyperbolic metric

inter(g, g0) = lim
L→∞

(
1

♯(GL)

∑

γ∈GL

λg0(γ)

λg(γ)

)
.

Furthermore, if η is a simple closed geodesic, then we also have

λg(η) = lim
L→∞

(
1

♯(GL)

∑

γ∈GL

inter(η, γ)

λg(γ)

)
. (20)

Combining Equation (20) and Inequality (18), we obtain that for every simple
closed geodesic η,

λg(η) 6 C(η, g0)inter(g, g0).

But we can find a finite set of simple closed curves A such that the function

λA : g →
∑

η∈A

inf
c∈[η]

λg(c)

is proper on Teichmüller space. The statement thus follows from the following
inequality

λJ (g) 6 inter(g, g0)
∑

η∈A

C(η, g0).

Q.e.d.

6.2.2 The energy functional is proper

We now prove Theorem 6.2.1 by adapting a beautiful argument of C. Croke
and A. Fathi ([12]). We use the notation of the previous paragraph. Let ρ be
a displacing representation. Let J be a complex structure on S and let g be
the associated hyperbolic metric whose area form is dσ and Liouville measure
– normalised to be a probability measure – is dµ. Let g0 be a fixed hyperbolic
metric. We now prove that there exists a constant K dependent on g0 but
independent of J such that

eρ(J) > K(inter(g, g0))
2.

Let f an element of Fρ. We consider the function from US to R

h : u→ ‖Tf(u)‖.

From the definition of the energy, we have

Energy(J, f) =
1

2

∫

S

trace(Tf∗Tf)dσ = 2π|χ(S)|
∫

US

h2dµ.

By the Cauchy-Schwarz inequality

Energy(J, f) > 2π|χ(S)|
(∫

US

h dµ

)2

.
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Let γ be a closed orbit of the geodesic flow of g and let λg(γ) be the length of γ
with respect to g. We denote also by γ the corresponding conjugacy class in the
fundamental group. Let c be the curve from the interval [0, λg(γ)] to M defined
by

c : t→ f(γ̃(t)),

where γ̃ is a lift of γ in S̃. Then

∫

γ

h dt = length(c)

> d(c(0), ρ(γ)(c(0))

> Aλg0 (γ) −B = A

∫

γ

ψ(g,g0)dt−B.

From Equation (19), it follows that for every f

√
Energy(J, f)

2π|χ(S)| >

∫

US

h dµ = lim
L→∞

(
1

♯(GL)

∑

γ∈GL

∫
γ
hdt

λg(γ)

)

> A lim
L→∞

(
1

♯(GL)

∑

γ∈GL

∫
γ
ψ(g,g0)dt

λg(γ)

)

−B lim
n→∞

(
1

♯(GL)

∑

γ∈GL

1

λg(γ)

)

> A

∫

US

ψ(g,g0)dµ = A inter(g, g0).

Hence

eρ(J) > 2π|χ(S)|A2(inter(g, g0))
2.

Finally, by Proposition 6.2.4, the function g 7→ inter(g, g0) is proper. Hence, the
energy functional eρ is proper.

6.3 Mapping class group and displacing representations

6.3.1 Point set topology

We recall some elementary point set topology. Let X be a topological space.
We define an equivalence relation on X as follows: we say that x ∼ y, if for
any continuous function f from X to a Hausdorff topological space, we have
f(x) = f(y). We denote by X♯ the quotient X/ ∼. Observe that

Proposition 6.3.1 The space X♯ is Hausdorff. Moreover, we have a morphism
from the group of homeomorphisms of X to the group of homeomorphisms of
X♯. Finally, every continuous map from X to a Hausdorff space factors through
X♯.
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Proof: Let us denote by [x] the equivalence class of a point x in X . For any
continuous function f from X to a Hausdorff space, the preimage of any point is
a union of equivalence classes. This implies the last statement of the assertion.
Moreover, by definition, if [x] 6= [y], there exists a continuous function f with
values in a Hausdorff space so that f(x) 6= f(y). Then the preimage of disjoint
neighbourhoods of f(x) and f(y) are disjoint neighbourhoods of [x] and [y].
Q.e.d.

Let G be a topological group acting continuously on a topological space M .

Definition 6.3.2 The action of G on M is proper if the map from G × M
to M ×M defined by (g,m) → (gm,m) is proper, or equivalently if, for any
compact K in M , the set

GK = {g ∈ G | gK ∩K 6= ∅}

is a compact of G.

This definition immediately implies the following result.

Proposition 6.3.3 Assume that the topological group G acts continuously on
the topological spaces M and N . Assume that the action on N is proper. Assume
that there exists a continuous G-equivariant map from M to N . Then the action
of G on M is proper.

This notion of a proper action is mainly interesting under hypotheses on M
whenever one is interested in the quotient space: for instance the quotient of a
locally compact Hausdorff space by a proper action is Hausdorff. Moreover in
the sequel, we shall only consider the case of continuous actions on Hausdorff
spaces.

6.3.2 Proper actions of the mapping class group

Let Homdisp(π1(S), Iso(M)) be the space of displacing homomorphisms from
π1(S) to Iso(M). Let us define

Rep♯disp(π1(S), Iso(M)) = [Homdisp(π1(S), Iso(M))/ Iso(M)]♯

Observe that M(S) acts continuously on Rep♯(π1(S), Iso(M)).

Proposition 6.3.4 The mapping class group M(S) acts properly on the space

Rep♯disp(π1(S), Iso(M)).

Proof: Let Rπ1(S) be the space of maps from π1(S) to R. We equip Rπ1(S)

with the product topology. We fix a hyperbolic metric on S and for every γ in
π1(S) we denote by λ(γ) the length of the closed geodesic associated to γ. Let

R
π1(S)
hyp = {ℓ ∈ R

π1(S) | ∃A,B > 0, ∀γ ∈ π1(S), ℓ(γ) > Aλ(γ) −B.}
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For every divergent sequence {gn}n∈N of elements of M(S), there exists an
element γ in π1(S) such that after extracting a subsequence

lim
n→∞

λ(gn(γ)) = ∞.

It follows that M(S) acts properly on R
π1(S)
hyp . Let

S :

{
Homdisp(π1(S), Iso(M)) → Rπ1(S),

ρ 7→ {d(ρ(γ))}γ∈π1(S).

Observe that S is a continuous map, invariant under conjugation and equivari-
ant with respect to the action of the mapping class group. Therefore S yields the
existence of a continuous M(S)-equivariant map from Rep♯disp(π1(S), Iso(M))

to R
π1(S)
hyp . Thus, by Proposition 6.3.3, the properness of the action of M(S) on

R
π1(S)
hyp implies the properness of the action of M(S) on Rep♯disp(π1(S), Iso(M)).

Q.e.d.

Remark: The Hausdorff space Rep♯disp(π1(S), Iso(M)) is locally compact when
M is a symmetric space: indeed Hom(π1(S), Iso(M)) is locally compact. We do
not know however under which conditions on M such a result holds.

Our main goal is the following result.

Corollary 6.3.5 The mapping class group M(S) acts properly on the spaces
RepH(π1(S),PSL(n,R)) and RepT (π1(S),PSp(2n,R)). Moreover the quotient
spaces are Hausdorff.

Proof: We write the proof only in the case of PSL(n,R), the other case being
similar. Let M be the symmetric space of PSL(n,R) and observe that PSL(n,R)
is a subgroup of Iso(M). Let

Rep♯H(π1(S),PSL(n,R)) = [HomH((π1(S),PSL(n,R))/PSL(n,R)]♯.

From Theorem 6.1.3, it follows that HomH(π1(S),PSL(n,R)) consists only of

displacing homomorphisms. Since the induced map from Rep♯H(π1(S),PSL(n,R))

to Rep♯disp(π1(S), Iso(M)) is an M(S)-equivariant continuous map, it follows

from the previous proposition that the action ofM(S) on Rep♯H(π1(S),PSL(n,R))
is proper.

We already know that RepH(π1(S),PSL(n,R)) is Hausdorff, this implies by
the construction before Proposition 6.3.1 that

RepH(π1(S),PSL(n,R)) = Rep♯H(π1(S),PSL(n,R)).

Hence the first part of the statement follows. The last part follows from the
local compactness of the spaces under consideration. Q.e.d.
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7 The Toledo invariant and the minimal area

We now restrict ourselves to the case of maximal symplectic representations.

Theorem 7.0.6 Let ρ be a representation of π1(S) in PSp(2n,R). Then

n

2π
MinArea(ρ) > |τ(ρ)|.

Moreover, if ρ is maximal and the inequality above is an equality, then ρ is
diagonal. In this situation, there exists a unique minimal equivariant immer-
sion, realised by a totally geodesic embedding, of S̃ in the symmetric space of
PSp(2n,R).

We begin with a lemma which uses the identification of tangent vectors to ele-
ments of the Lie algebra of Killing vector fields as in the beginning of Paragraph
4.2.1.

Lemma 7.0.7 Let M be an irreducible Hermitian symmetric space of noncom-
pact type. Let ω be its symplectic form. Let (u, v) be an orthonormal pair of
tangent vectors at a point m of M . Let κ be the sectional curvature of the plane
generated by (u, v), then

|ω(u, v)| 6
√
−κ. (21)

Moreover the equality occurs exactly whenever the Lie bracket [u, v] generates
the centre of the Lie algebra of the stabiliser of m in the isometry group of M .

Proof: In the notation of Paragraph 4.2.1, the symplectic structure is given
by

ω(u, v) = 〈[u, v], ∂θ〉 6
√
−〈[u, v], [u, v]〉.

The curvature tensor satisfies R(u, v)w = [[u, v], w]. The result then follows by

√
−〈[u, v], [u, v]〉 6

√
−κ.

Q.e.d.

We can now prove Theorem 7.0.6.

Proof: The first point is immediate. Let ω be the Kähler form on the associ-
ated symmetric space X . Let (u, v) be an orthonormal system in TxX . Then,
ω(u, v) 6 1 with equality if and only if the plane generated by (u, v) is complex.
It follows that for every ρ-equivariant mapping f , we have

n

2π
Area(f) >

n

2π

∫

S

f∗(ω) = τ(ρ). (22)

Moreover, if the equality in (22) holds for an immersion f , then there exists an
invariant complex structure on S̃ for which f is a holomorphic map.
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Assume now that ρ is maximal. According to Theorem 6.2.2, there exist a
complex structure J on S and a J-conformal harmonic mapping f such that

Area(f) = MinArea(ρ).

Let f be such a conformal harmonic mapping. We know by Proposition 2.4
and Example (3) of the article by Gulliver, Osserman and Royden [24] that f
is a branched minimal immersion. Let x1, . . . , xn be the branch points of order
k1, . . . , kn respectively. Let Ŝ = S \ {x1, . . . , xn}. Denote by κ the curvature of
the metric f∗gX on Ŝ. Note that

1

2π

∫

Ŝ

κdµ−
∑

i

(ki − 1) = χ(S).

Let κf be the sectional curvature of the 2-plane Tf(T Ŝ) and let B be the second
fundamental form of f . By the Gauss equation

κ = κf − ‖B‖ 6 κf .

Finally, assume that τ(ρ) = n
2πMinArea(ρ). Let µ be the measure of area of the

metric f∗gX . We have by Inequality (21)

2π|τ(ρ)| = n

∣∣∣∣
∫

Ŝ

f∗ω

∣∣∣∣

6 n

∫

Ŝ

√
−κfdµ

6 n

√
Area(f)

∫

Ŝ

−κfdµ

6
√

2nπτ(ρ)

√∫

Ŝ

−κfdµ.

It follows that

1

n
|τ(ρ)| 6 − 1

2π

∫

Ŝ

κfdµ

6 − 1

2π

∫

Ŝ

κdµ− 1

2π

∫

Ŝ

‖B‖dµ

6 −χ(S) −
∑

i

(ki − 1) − 1

2π

∫

Ŝ

‖B‖dµ

6
1

n
|τ(ρ)| −

∑

i

(ki − 1) − 1

2π

∫

Ŝ

‖B‖dµ.

As a first consequence, we see that ki = 1 for all i. In other words, f is an
immersion. Moreover B vanishes everywhere. This means that f is totally
geodesic. It follows from the equality case in Lemma 7.0.7 that f is associated
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to an embedding of PSL(2,R) in PSp(2n) whose Lie algebra contains the centre
of the Lie algebra of the maximal compact subgroup. Hence ρ is diagonal.
Q.e.d.

Corollary 7.0.8 Let ρ be a maximal representation. Assume that there exists
a holomorphic equivariant map f from S to the associated symmetric space of
PSp(2n,R). Then ρ is diagonal and f is totally geodesic.

Proof: If f is holomorphic then f is minimal and Area(f) =
∫
S
f∗ω. By

Inequality (22), it follows that MinArea(ρ) = τ(ρ). Hence by the previous
theorem, ρ is diagonal and f is totally geodesic. Q.e.d.

8 The Hitchin map

8.1 Representations and holomorphic differentials

We first recall that representations from π1(S) to a semi-simple connected real
Lie group G, without compact factor and with trivial centre, give rise to holo-
morphic differentials by a construction quite similar to the basic construction in
Chern-Weil theory. The construction that we now describe associates to every
reductive representation from π1(S) to G, to every complex structure J on S
and to every Ad(G)-invariant polynomial q of degree n on the Lie algebra of G,
a holomorphic n-ic differential on (S, J).

By Corlette’s Theorem ([11] and [27] for an alternative simpler proof), there
exists a ρ-equivariant harmonic mapping f from S to the symmetric space M
associated to G. Moreover this mapping is unique up to an isometry of M . We
define

Homred(π1(S), G)

to be the space of reductive homomorphisms from π1(S) to G and

Repred(π1(S), G) = Homred(π1(S), G)/G.

8.1.1 Harmonic maps on surfaces

We begin with a standard observation on harmonic maps on surfaces. Let S be
a Riemann surface whose complex structure is denoted by J . Let f be a smooth
map from S to a smooth manifold M . Let

Ω1(S, f∗TM)

be the space of one-forms on S with values in the pull back vector bundle f∗TM
and let

Ω1
C(S, f∗TM ⊗R C)

be the space of complex linear one-forms on S with values in the complexified
vector bundle f∗TMC = f∗TM ⊗R C. For every one-form ω on S with values in
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f∗TM , we denote by ωC its complexification. This complexification is defined
for every tangent vector u in S by

ωC(u) = ω(u) − iω(Ju).

The map ω → ωC is a linear map from Ω1(S, f∗TM) to Ω1
C
(S, f∗TMC).

Definition 8.1.1 [holomorphic one-form] An element β of Ω1
C
(S, f∗TMC)

is holomorphic if
∇Juβ = i∇uβ.

We consider the tangent map Tf of f as a one-form on S with values in the
pullback bundle by f of TM . Then, we have the following classical observation.

Proposition 8.1.2 The map f is harmonic if and only if TfC is holomorphic.

Proof: Indeed, f is harmonic if and only if for every X

∇XTf(X) + ∇JXTf(JX) = 0.

Since ∇XTf(Y ) is symmetric in X and Y , the condition above is equivalent to

∇XTf(Y ) + ∇JXTf(JY ) = 0,

for all X and Y in TS. This turns out to be equivalent to

∇JXTf(Y ) −∇XTf(JY ) = 0,

for all X and Y in TS. On the other hand, by definition

(∇JXTfC − i∇XTfC)(Y ) = (∇JXTf(Y ) −∇XTf(JY ))

− i(∇XTf(Y ) + ∇JXTf(JY )).

The statement follows from these remarks. Q.e.d.

8.1.2 Holomorphic differentials

Let M be a Riemannian manifold. Let p be a parallel section of (T ∗M)⊗k. We
denote by pC the parallel section of (T ∗MC)⊗k characterised by

pC

∣∣
(TM)⊗k = p.

Let f be a map from a Riemann surface S to M . Then we have the following
easy observation.

Proposition 8.1.3 Let β be an element in Ω1
C
(S, f∗TMC). Suppose that β is

holomorphic. Then pC(β, β, . . . , β) is a holomorphic differential of degree k.
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As a specific example of this construction, we can take p = g, the Riemannian
metric on M . If f is harmonic by Propositions 8.1.1 and 8.1.3

H(f) := gC(TfC, T fC)

is a quadratic differential, which is called the Hopf differential of f . Observe
that we have the following result.

Proposition 8.1.4 Let f be a harmonic map from a surface S to M . Then the
Hopf differential of f vanishes if and only if f is minimal.

Proof: Indeed, the quadratic differential gC(TfC, T fC) vanishes if and only if
f is conformal and hence minimal. Q.e.d.

8.1.3 Commutative Chern-Weil Theory

When M is the symmetric space associated to G = Iso(M), then every Ad(G)-
invariant symmetric k-multilinear form P on the Lie algebra of G gives rise
naturally to a parallel k-tensor field function P̌ on M . Indeed such a P gives
naturally rise to a G-invariant tensor field P̌ on M . But on a symmetric space,
any tensor field invariant under isometries is parallel.

Let J be a complex structure on S and P be a symmetric Ad(G)-invariant
multilinear form P of degree k on G. Let Q(k, J) be the space of holomorphic
k-differentials on S equipped with the complex structure J . Combining the
above constructions, we define a map FP,J from Repred(π1(S), G) to Q(k, J) by

ρ 7→ FP,J(ρ) := P̌C(TfC, . . . , TfC),

where f is a ρ-equivariant harmonic mapping from S to M given by Corlette’s
Theorem. The uniqueness part of Corlette’s result shows that FP,J is well
defined.

When G = PSL(n,R), let σk be the symmetric polynomial of degree k seen
as a homogeneous function of degree k on the Lie algebra g of G. There exists
a unique k-multilinear symmetric Ad(G)-invariant form pk on g so that

pk(A, . . . , A) = σk(A).

Notice that up to a multiplicative constant Fp2 is the metric on M . We define
the map

ξJ =

k⊕

k=2

Fpk,J .

We can now state Hitchin’s Theorem [26].

Theorem 8.1.5 [Hitchin] The map ξJ is a homeomorphism from the space of
Hitchin representations RepH(π1(S),PSL(n,R)) to Q(2, J) ⊕ . . .⊕Q(n, J).
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As in the introduction, we define the Hitchin map

H

{
E(n) → RepH(π1(S),PSL(n,R)),

(J, ω) 7→ ξ−1
J (ω).

This map is equivariant with respect to the mapping class group action. The
following result is now immediate.

Theorem 8.1.6 The Hitchin map is surjective.

Proof: Let ρ be a Hitchin representation. By Corollary 6.2.2, there exists a
complex structure J on S and a ρ equivariant conformal harmonic mapping f
with respect to J . It follows by Proposition 8.1.4 that the quadratic differential
Fp2,J vanishes. This shows that the Hitchin map is surjective. Q.e.d.

8.1.4 The normal bundle to the space of Fuchsian representations

We conclude with a partial result. The energy functional associated to a faithful
cocompact representation ρ with values in PSL(2,R) is the same – up to a mul-
tiplicative constant only depending on n – as the energy functional eρ̌ associated
to the Fuchsian representation ρ̌ = ι ◦ ρ with values in PSL(n,R). Hence the
energy functional eρ̌ has a unique strict minimum. Therefore the same holds for
representations which are closed to being Fuchsian. It follows that the Hitchin
map is a diffeomorphism from a small neighbourhood of the zero section onto its
image. This implies that the normal bundle of the space of Fuchsian represen-
tations in the Hitchin component can be identified – equivariantly with respect
to the action of the mapping class group – with E(n).

9 Comments and extensions

We conclude this article with two comments

1. The theory of Hitchin representations extends to all real split groups. Sim-
ilarly, the theory of maximal representations extends to all isometry groups
of Hermitian symmetric spaces. It is quite natural to conjecture that the
constructions of this article extend to these more general cases. The fact
that these representations are (at least conjecturally) Anosov representa-
tions is certainly meaningful from this point of view. However, one cannot
expect all the results here to extend to all Anosov representations since one
can construct Anosov representations which are not reductive. It also re-
mains a puzzle to understand the algebraic conditions under which Anosov
representations are associated to cross ratios; this is a crucial argument in
our paper.

2. For maximal symplectic representations in other components than Hitchin’s,
the map from the space of equivariant minimal surfaces to the space of
representation is surjective for the same reason that apply to the Hitchin
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component. However, in that case, the structure of a generic fibre is mys-
terious.
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