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CHAPTER 1

Foreword and warning

The aim of this small series of note is to give a concise and elementary
introduction to hyperbolic surfaces. Starting from a synthetic point of view, we
shall give the classification of compact oriented connected hyperbolic surfaces,
introduce some elementary dynamical ideas and ergodic theory, count closed
geodesics on them, define arithmetic surfaces and finally state some of the
major conjectures in the subject.

The text is meant to be accessible to a student with very little background.
However a knowledge of covering spaces and simply connected objects would
help as well as an exposition to projective line geometry. No knowledge of
differential geometry and specifically Riemannian geometry is assumed and
the corresponding basic notions are not introduced. These notes are structured
in three parts.

The first part is an introduction to planar hyperbolic geometry. They are
many excellent and worthy textbooks introducing hyperbolic geometry and it
did not seem useful to repeat the standard (and excellent) presentation which
usually starts with the upper half-plane model. Instead, I chose a slightly
non-standard synthetic introduction: I present planar hyperbolic geometry
as an offshoot of projective line geometry. More precisely, after a classical
introduction on the projective line geometry emphasizing the cross-ratio, I
define a hyperbolic plane as a set with a boundary at infinity and lines satisfying
some axioms. Then I exhibit some models satisfying these axioms: involution
model, upper half-plane model. This has the advantage that first it does not
rely very much on the ground field provided it is real closed, second it uses
very little mathematics besides projective line geometry. The emphasis on
the boundary at infinity and the cross-ratio is also an important and useful
point of when one wants to deal with surface groups in Lie groups. The
disadvantage of this presentation is that the very important metric aspects
(length, area, asymptotic geodesics, geodesic minimizing length) of the subject
come afterwards, and also that we restrict ourselves to planar geometry. After
that, I present classical results about hexagons and the Gauß–Bonnet Formula
for triangles. In a second chapter, I present hyperbolic surfaces as metric spaces
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4 1. FOREWORD AND WARNING

locally isometric to hyperbolic planes. Then I deal with completeness and
prove the relevant version of Hopf–Rinow Theorem, prove that every complete
hyperbolic surfaces is a quotient and that every surface is obtained by gluing
pair of pants thus stopping very short of the construction of Teichmüller space
with the Fenchel–Nielsen coordinates. Not using the basic tools of differential
geometry, Riemannian geometry, makes the notes accessible with very little
knowledge, but forces to do some gymnastics.

The reader familiar with hyperbolic geometry should skip directly to the
second part. In this part, I introduce the unit tangent bundle of the hyperbolic
plane together with its two fundamental commuting actions: the action on
the left of the isometry group, the action on the right of the group PSL2(R). I
then introduce the major players: the geodesic and horospherical flows. I then
prove the Anosov property, the closing lemma, Poincaré Recurrence Theorem,
the Statistical Ergodic Theorem, mixing and ergodicity of the flows using the
unitary representation methods – although Hopf argument for ergodicity is
given. The final chapters are concerned with equidistributions and counting à
la Margulis: equidistribution of circles, counting orbit points, equidistribution
of horocycles, of geodesics and their asymptotic counting. The proofs in this
simple case of hyperbolic surfaces is much easier and less technical than the
general cases that could be considered and I hope that this makes the beautiful
ideas of the proofs more transparent. However, the proofs are still intricate.

The third and final part is really about tourism: I tour, essentially without
proofs, two very important subjects for hyperbolic surfaces: arithmeticity
and harmonic functions. I try to emphasize the relation with the geodesic
flow as well as common features. Some very elementary proofs are given
and thanks to Margulis commensurability criterion we emphasize the point
of view that arihtmetics give extra dynamics which can be seen as acting on
the hyperbolic solenoid. Using several crucial results as black boxes, I give a
proof of the equidistribution of Hecke point. This part should really be seen
as encouraging the reader to have a look into more serious references on these
fascinating subjects.

Each part is concluded with suggestions of references and further reading.
None of the material here is original, although some of the proofs were sim-
plified since we used a rather specific setting. These notes are supposed to be
complementary reading, parallel to some serious study of this central theme
in Mathematics, or as a “tourist guide” for a curious reader and in the best case
as an invitation to learn more.

They are many exercises in the book. And many parts of the proofs are
left as exercises. Some of the exercises are easy applications. Those with a (*)
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are harder. Those with (**) are definitely difficult and may require knowledge
outside of these notes, and for those with (***), well, I actually do not know
the answer.

A shorter version of this set of notes was initially intended for a summer
class in the CIRM, and the present much expanded state is the result of an
experimental testing on graduate students and post-docs during the Fields In-
stitute semester on Random Geometric Structures, while I was on a University
of Toronto Dean Professorship’s visiting position. I very warmly thank the
audience there for their questions and patience, which helped improve the
writing up. I also hope no harm came out of my experimentation.
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Hyperbolic geometry and hyperbolic
surfaces





CHAPTER 2

Hyperbolic plane

1. The projective line

We start by giving without proofs a summary of projective geometry.

Given a vector space V over a field K, the projective space P(V) is the set of
non-zero vectors in V up to multiplication by an element ofK∗:

P(V) ≔ {L ⊂ V | dim(L) = 1} = V \ {0} /K∗ .

For a non-zero element v in V, we denote by [v] its class in P(V). Geometrically,
we interpret P(V) as the set of lines of V. By construction the group

PGL(V) ≔ GL(V)/K Id ,

acts transitively on P(V). The corresponding bijections of P(V) are called
projective transformations.

1.1. Basis and coordinates. A basis (e1, . . . , en) of V identifies V with Kn.
We denote every element L in P(V) as

L = [x1, . . . , xn] ,

where (x1, . . . , xn) is a non zero vector in L. The set (x1, . . . , xn) is well defined
up to a multiplication by a non zero element ofK.

The set (x1, . . . , xn) are – by a slight abuse of language – called the projective
coordinate of L. Every n-tuple (x1, . . . , xn), with xi not all zero, is the projective
coordinate of some line.

A usual convention, that we will follow, is to replace the comma ”,” by a
colon ”:” and replace the above equation by

L = [x1 : . . . : xn] .

Observe that
[x1 : . . . : xn] = [y1 : . . . : yn] ,

if and only if there is a non-zero element λ ofK such that for all i, xi = λi.
11



12 2. HYPERBOLIC PLANE

1.2. Projective line and homographies. When dim(V) = 2, the projective
space P(V) is called the projective line and we will now focus in that situation.
Adding a symbol∞, called infinity, toKwe have a bijection of P1(K) ≔ P(K2)
withK ⊔ {∞} given in projective coordinates by

[1 : λ] → λ , [0, 1] → ∞ .
Given a basis (e1, e2), by a slight abuse of language, the element λ of K ⊔ {∞}
associated to a point x in P(V) is also called the projective coordinate of x.

The associated action of the group PGL2(K) onK ⊔ {∞} is then given by

for z  −d
c ,


a b
c d


· z ≔ az + b

cz + d
; for z = −d

c ,


a b
c d


· z ≔ ∞ ,

for c  0,


a b
c d


∞ ≔ a

c
; finally,


a b
0 d


∞ ≔ ∞ .

The corresponding bijections ofK⊔{∞} are called homographies. As an exercise,
the reader is invited to check the following proposition

Proposition 1.1. Given three pairwise distinct points (x, y, z) in P(V), there
exists a basis (e1, e2) so that x , y and z have coordinates respectively 0, 1 and ∞.
Moreover if ( f1, f2) is another basis of V satisfying the same condition, then there is a
non-zero element λ ofK so that ei = λ fi.

As a corollary we see that PGL2(K) acts freely and transitively on the set of
pairwise distinct triples of P(V). We will see in the next paragraph that this is
no longer the case for quadruples of points.

1.3. Quadruple of points and the cross-ratio. Let’s denote by V∗ the dual
of V. Since we are in dimension 2, the map from P(V) to P(V∗),

x → x⊥ ≔ {u ∈ V∗ | x ⊂ ker(u)} ,
is a bijection.

Let a, b, c and d be four pairwise distinct points in P(V), let a0, b0, c0 and d0

be non-zero vectors in a, b, c⊥ and d⊥ respectively. We immediately observe
that the quantity

c0(a0)d0(b0)
d0(a0)c0(b0)

,

only depends on the quadruple (a, b, c, d). Following the same notation, we
then define the cross-ratio of (a, b, c, d) as

[a; b; c; d] ≔
c0(a0)d0(b0)
d0(a0)c0(b0)

(1)

From this definition, we immediately see that
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Proposition 1.2. For any element g of PGL(V),

[a; b; c; d] = [g(a); g(b); g(c); g(d)] .

One can then compute the projective cross-ratio in coordinates and we
obtain that if the projective coordinates of a, b, c and d are α, β, γ and δ
respectively then

Proposition 1.3. For α, β, γ and δ all different from infinity

• For α, β, γ and δ all different from∞, [a; b; c; d] = (α−γ)(β−δ)
(α−δ)(β−γ) ,

• Moreover, [a; b; c;∞] = (α−γ)
(β−γ) .

In particular from this proposition, we have

[λ; 1; 0;∞] = λ .

From this proposition we see all the symmetries of the cross-ratio.

Proposition 1.4. We have, whenever it makes sense,

[a; b; c; d] · [a; b; d; e] = [a; b; c; e] ,
[a; b; c; d] = [c; d; a; b] ,

[a; b; c; d] + [a; c; b; d] = 1 .

We leave as an exercise, easily proved using the previous propositions, the
following theorem which is some sort of reciprocal of the previous proposition

Theorem 1.5 (Fundamental Theorem of projective geometry). Let X be a
set and b a K-valued function with values in K∗ on the set of quadruples of pairwise
distinct points of X satisfying, whenever it makes sense,

b(x, y, z, t) b(x, y, t,u) = b(x, y, z,u) ,
b(x, y, z; t) = b(z; t; x; y) ,

b(x, y, z; t) + b(x; z; y; t) = 1 .

Then, given any 2-dimensional vector space V overK, there is an injection Φ from X
to P(V) so that

b(x, y, z, t) = [Φ(x);Φ(y);Φ(z);Φ(t)] ,
moreover Φ is well defined up to post composition by an element of PGL(V).

This theorem has the following corollary

Corollary 1.6. Let Φ be a bijection of P(V) so that for any quadruple of pairwise
distinct points

[Φ(x);Φ(y);Φ(z)Φ(t)] = [x; y; z; t] .
Then Φ belongs to PGL(V)
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The theorem and it corollary are usually stated as “the cross-ratio determines
the projective geometry of the projective line”.

1.4. The real projective line and orientation. Let us focus on K = R. In
that context, choosing an orientation on V, we distinguish between positively
oriented basis and negatively oriented ones.

We saw that every triple (x, y, z) of pairwise distinct points correspond
to a basis, up homotheties. Since an homothety has a positive determinant, it
follows that we can can speak of positively oriented triples, corresponding to pos-
itively oriented basis, and negatively oriented triple corresponding to negatively
oriented basis.

We also have another structure that comes from the order structure on R,
this time independent on the orientation. Let x, y, z and w be four pairwise
distinct points on P(V). We then say that x, y and z,w intersect or intertwine if
choosing coordinates so that (x, y, z) = (0, 1,∞), then w belongs to [0, 1].

All this is better seen on pictures. Taking the quotient topology on P(V),
we see that the projective line P(V) is homeomorphic to the circle. The choice
of an orientation on V correspond to an orientation on the circle P(V). Then if
we represent x, y by a pair of blue dots and z,w by red dots, we have figure 1.

(1) Intertwining pairs (2) Non-intertwining pairs

Figure 1. Quadruples

1.5. Complex and real projective lines. Let E be a vector space of dimen-
sion 2 over C. Recall that a totally real 2-plane P is a 2-plane in E seen as
4-dimensional real vector space such that

P ⊕ iP = E .

Associated to a totally real plane P we have a circle CP in P(E) which is the
set of complex lines that intersects P.
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We can choose a basis in E, which is also a basis for E, thus identifying E
with C2 and P with R2, we then see

Proposition 1.7. (1) For every quadruple of points (x, y, z, t) in CP, then
the cross-ratio [x; y; z; t] is real.

(2) if (x, y, z) is a triple of pairwise distinct points of P and the cross-ratio
[x; y; z; t] is real, then t belongs to CP.

(3) given any triple of pairwise distinct points in P(E) there exists a unique
totally real plane P containing that triple.

(4) Let P be a totally real plane, then the map

D → D ∩ P ,

from CP to P(P) is a bijection preserving the cross-ratio

Let us consider the subgroup G of PSL(V) defined by

GP = {g ∈ PGL(V) | g(P) = P} .
Since every element of GP preserves the cross-ratio, we deduce that the restric-
tion of GP to CP is a projective transformation. Moreover, if an element of G
acts trivially on CP then its is trivial, it then follows that we can identify GP
with PGL(P), and thus consider routinely PGL(P) as a subgroup of PGL(V),
the one that preserves globally CP.

This proposition also shows that we can associate to a totally real plane
P, an involution σP whose set of fixed points is precisely CP by the following
procedure. if DP is a complex line, σ(D) is characterized by

∀D1,D2,D3,∈ CP, [D1,D2,D3,D] = [D1,D2,D3, σ(D)].

We finally say that two circles CP and CQ are orthogonal, if and only if
P  Q and σP and σQ commute.

Proposition 1.8. The circles CP and CQ are orthogonal if and only if σP leaves
CQ globally invariant. If CP and CQ are orthogonal, then they intersect.

We also have

Proposition 1.9 (Circles in coordinates).
When we use projective coordinates to identify P(C) to C ⊔ {∞}, the set of circles

associated to totally real planes is identified with the set of circles and lines in C.
Moreover, Let P be a totally real plane. Let (x, y, z) be a triple of points in P, thus

identifying P(V) with C ⊔ {∞} and CP with R ⊔ ∞. Then if CQ is orthogonal to P,
the image of CQ in C ⊔ {∞} is either a line orthogonal to R, or a circle whose center is
on R.
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Proof. In C ⊔ {∞}, the circle through x0, y0 and z0 is given by

C = {z | ℑ([z; x0; y0; z0]) = 0} .
Thus we have

(z − y0)(x0 − z0)
(z − z0)(x0 − y0)

−


(z − y0)(x0 − z0)
(z − z0)(x0 − y0)


= 0 .

which we see is of the type

λ
z − y0

z − z0


− λ̄
 z̄ − ȳ0

z̄ − z̄0


= 0 .

Hence using the change of variables Z = z − z0, we obtain an equation of the
type

a +
b
Z
− ā − b̄

Z̄
= 0 ,

which we rewrite as
ZZ̄(a − ā) + b Z̄ − b̄ Z .

which is the equation of a circle or a line. Thus the image of every circle CP is
either a circle or a line. Since the line or circle through three points is unique.
It follows that every circle or line in C is the image of a circle or a line.

Finally, inC⊔{∞}, σP is given by z → z̄. Thus the circles (in P(C)) orthogonal
to P are seen in (in C ⊔ {∞}) as circles or lines orthogonal to the rea axis. □

Corollary 1.10. The group PGL2(C) acting on C ⊔ {∞} preserves the set of
lines and circles. Moreover the group PGL2(R) preserves the set of lines and circles
orthogonal to the real axis.

2. Axiomatic geometry of the hyperbolic plane

The complete geometry of the hyperbolic plane can be recovered synthet-
ically from several features, namely lines and boundary at infinity satisfying
some axioms.

Let V be a vector space of dimension 2 over R. 1

Definition 2.1 (Hyperbolic plane). A hyperbolic plane H2 (over V) is a set
equipped a family of lines or geodesics which are subsets of

H2 ≔ H2 ⊔ P(V)

so that, defining P(V) as the boundary at infinity of H2 and denoting it ∂∞H2. we
have

1The reader will check that all that which follows make sense whenever we replaceRwith
any real field, but we will not pursue in that direction
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(1) Given any two distinct points x and y in H2, there exists a unique line
containing x and y,

(2) Any line l intersects the boundary at infinity in exactly two points called the
ends or endpoints or extremities of point at infinity of l.

(3) If l1 is a line with end points a1 and b1, and l2 with ends a2 and b2, so that
(a1, a2, b1, b2) are distinct and intertwine, then the two lines intersects in H2.

(4) If on the contrary (a1, a2, b1, b2) are distinct and do not intertwine, then l1
and l2 do not intersect.

This sets of axioms already allows us to define given any point x in H2 the involution
ιx of P(V), which exchange the end points of any line through x. We furthermore
assume

(1) for any x in H2, the involution ιx preserves the cross-ratio in P(V).

The set H2 is the completed hyperbolic plane.
In this case, we use the following notation, we denoted the completed hyperbolic

plane by H2, its boundary at infinity by ∂∞H2, and the hyperbolic plane itself is
H2 = H2 \ ∂∞H2.

We finally say

Definition 2.2. A bijection F between two hyperbolic planes is an isometry if it
extends to a map between the boundaries at infinity preserving the cross-ratio and end
lines to lines.2

2.1. The involution model. Let us consider H2(V) to be the set of involu-
tions of P(V) without any fixed points and preserving the cross-ratio. We will
show that this defines a model of the hyperbolic space, that is a set for which
the axioms are realized.

We will do that step by step, leaving the details for the reader, and using
the interpretations of involutions as elements of PGL(V)

(1) Given two distinct points X and Y in P(V), the line through x and y is
the set of involutions i so that i(X) = Y.

(2) Given X in P(V) and y in H2, the line through x and y, is the line
through X and y(X).

(3) Given distinct involutions i and j, then i ◦ j is diagonalizable with
eigenlines X and Y, then the line though i and j is the line through X
and Y. Show that i an j belongs to L.

The less trivial exercise is to show
2It goes beyond the scope of these notes to show that, in order to be an isometry, it is

enough to send geodesics to geodesics
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Proposition 2.3. Lines for the involution model satisfies axioms (3) and (4).

From this construction, we obviously have

Proposition 2.4. The restriction map of the action on H2 to P(V), from the group
of isometries of H2(V) to PGL(V) is an isomorphism.

Proof. Let F be map in PGL(V), then F extends to an isometry from H2 to
itself by

i → F ◦ i ◦ F−1 .

In particular the map from the group of isometries to PGL(V) is surjective.
Let us prove this restriction map is injective. It is enough to show that an

isometry F which restricts to the identity on the boundary is the identity. This
follows at once from the axiom: any point x is the unique intersection of two
lines L and D (why?). Since these lines are determined by their endpoints in
the boundary at infinity, there are both globally invariant, thus the intersection
{x} is preserved. It follows that F(x) = x. □

We now sketch how every hyperbolic plane is isometric to the involution
model. In particular

Theorem 2.5. All hyperbolic planes are isometric. The group of isometries of a
hyperbolic plane is isomorphic to PGL2(R).

Exercise 2.1:
(1) Let F be an involution without fixed points of P(V) preserving the

cross-ratio. Show that there exists x in H2 so that F = ιx. Hint show
that if a and b are distinct then (a, b,F(a),F(b)) are intertwined. Let x be
the intersection of the lines with endpoints a and F(a), and b and F(b)
respectively. Show that ix ◦ F has 4 fixed points then that ix = F.

(2) Let y and z two distinct points in a hyperbolic plane H2. Prove that
ix  iz. Hint: let D be the geodesic through x and y. Let z be a point
in the boundary at infinity of H2, different from the end points of D.
Remark first that ix(z) is not one of the end points of D: otherwise z
would be the other end point of D. Let Z be the geodesic though z
and ix(z) and Y be the geodesic though z and iy(z). Observe that Z and
Y are both different from D, and by counting the intersections with D
that Z  Y. It follows that ix(z)  iy(z) and hence that ix  iy.

(3) Use the the previous two exercises to show that there is a bijection
from any hyperbolic plane with boundary at infinity P(V) to the set
of involutions on P(V) without fixed points and preserving the cross-
ratio.
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We can finally prove using the involution model the following theorem.
2.1.1. Reflexion through geodesics and orthogonality. The following exercise

and subsequent definition are important:

Exercise 2.2: Given any geodesic D, there exists a unique involution σD whose
set of fixed points on P(V) is exactly the endpoints on D.

Definition 2.6. The involution σD associated to a geodesic D in the previous
exercise is called the reflexion through D.

This allows us to have the following definition

Definition 2.7. Two geodesics D an L are orthogonal if σD and σL commutes.

We then have

Proposition 2.8. The following are equivalent
(1) The geodesics D an L are orthogonal,
(2) The reflexion through D preserves L,
(3) The end points (a, b) of D and (c, d) of L form an harmonic division:

[a; b; c; d] = −1.
Moreover, given any point x in D, there exists a unique geodesic orthogonal to D,
passing through x.

Proof. Hint: use coordinates so that (a, b) = (0,∞). Write the involution in
these coordinates. For the last statement consider the isometry ix ◦ σD. □

2.2. Complex projective lines and the hyperbolic plane. Let us consider
a totally real 2-plane P in in 2-dimensional vector space E. We furthermore
choose an orientation on P, we say that a pairwise triple (x, y, z) of points in
CP = P(P) is oriented if a basis for which x, y and z have coordinates 1, 0 and∞
is oriented.

Proposition 2.9. Let P be an oriented totally real 2-plane in a complex two-vector
space. The completed hyperbolic plane is the set of complex lines D so that for any
oriented triples (x, y, z) in CP

ℑ([D; x; y; z])  0.

The hyperbolic plane H2
P associated to P, is the set of complex lines D so that for

any oriented triples (x, y, z) in CP

ℑ([D; x; y; z]) > 0.

A hyperbolic line or geodesic is the intersection of a circle orthogonal to P. The
boundary at infinity is CP.
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We see that the subgroup PSL(P) preserves H2
P.

We will check in the next paragraph, by choosing a basis, that this data
satisfies the axioms of a hyperbolic plane.

2.3. The Poincaré upper half space model. The Poincaré upper half plane
model of the hyperbolic plane as the upper half plane in C.

• The completed hyperbolic plane is

H2 = {z ∈ C, ℑ(z)  0} ∪ {∞}.
• The hyperbolic plane is

H2 = {z ∈ C, ℑ(z) > 0}.
• The boundary at infinity is

∂∞H2 = {z ∈ C, ℑ(z) = 0} ∪ {∞} ∼ P(R2) .

Circles intersecting CP orthogonally interpreted in the upper half plane
model are either a circle whose center is onR or a line parallel to the imaginary
axis. Indeed such a C is characterized by the following characterized by the
following two properties

(1) for any quadruple of points (x, y, z, t) in L, then the cross-ratio [x; y; z; t]
is real

(2) C is globally invariant by the involution z → z̄.

We define finally a line or hyperbolic geodesic as the intersection of C with H2.
Observe then that axioms (1)–(4) of definition 2.1 are easily satisfied.

Furthermore, the group PSL2(R) acts on H2 is by homographies:


a b
c d


x =

ax + b
cx + d

.

One then check

Proposition 2.10. The group PSL2(R) acts transitively on H2 preserves the set
of hyperbolic lines and the cross-ratio on ∂∞H2.

Proof. Let us consider P(C2) asC∪∞, where the coordinates are associated
to a triple points (x0, y0, z0) identified in these coordinates with (1, 0,∞). Then
H2 corresponds to those points t, so that

ℑ([t, x0, y0, z0]) > 0 .

It follows that PSL2(R) acting by homographies on P(C2), preserves the com-
plex cross-ratio on P(C2) as well as the real cross-ratio ∂∞H2, which is a subset
of P(C2).

Finally H2 preserves the circles orthogonal to∂∞H2, hence the geodesics. □
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One also sees that the involution associated to the point i is given by the
homography

z → −1
z
.

We thus obtain the final axiom of a hyperbolic plane.

Proposition 2.11. The involution associated to any point x in H2 preserves the
cross-ratio and has no fixed points.

Proof. Hint: Use an element of PSL2(R) to reduce to the case x = i. □

Exercise 2.3:
(1) Show that the reflexion through the imaginary axis is given by z → 1

z .
(2) What are the geodesics orthogonal to the imaginary axis?
(3) Given a geodesic D, the set of fixed points of the reflexion σD in the

completed hyperbolic plane is D.
(4) Show that given two non-intersecting geodesics D0 and D1, there exists

a unique geodesic intersecting D0 and D1 orthogonally. Hint: consider
the fixed points of σD0 ◦ σD1 .

Remark that a reflexion is not an homography.

Exercise 2.4: Describe the action of PGL2(R) on the upper half plane model.

Exercise 2.5: Identify the upper-half plane model as a complex projective
model: Let us consider a totally real oriented 2-plane P in a complex vector
space E. Let us fix three pairwise distinct points (x, y, z) in CP whose coordinates
are (0, 1,∞). We can now identify P(C2) with C ⊔ {∞}. Show that the upper
half model is H2

P.

Exercise 2.6: Show that the group PSL2(R) is generated as homographies by
the involution z → −1

z , translations z → z+ a, and hyperbolic elements z → λz,
with a and λ real.

3. More geometric features: distances, angles and convex polygons

Now that we have efficient models for hyperbolic planes, we can introduce
new concepts and figures.

3.1. Distances and angles. We first define distances between non-intersecting
geodesics and then define distances between points. We will later prove that.
the latter is indeed a distance.
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3.1.1. Distances between non-intersecting geodesics. Let D and L be non-intersecting
geodesics, with end points (a, b) and (c, d) respectively. We then define

d(D,L) ≔ 2 | arctanh ([a; b; c; d]) | .

Exercise 3.1:
(1) Show that one can always choose coordinates so that {a, b} = {−1, 1},
{c, d} = {−α,α}. Then show that

d(D,L) =
log(α)

 .
(2) Relate the distance between D and L to the trace of σD ◦ σL.

3.1.2. Distances between points. We define the distance between two points
x and y in the following way. Let D be the geodesic passing through x and y,
let Lx the geodesic through x orthogonal to D, and Ly the geodesic through y
orthogonal to D, then we define

d(x, y) ≔ d(Lx,Ly) .

It is far from clear that this is a distance, we shall prove that later in some more
economic way. For the moment we admit that this is indeed a distance. in the
upper half plane model, we see that for α > β > 1

d(i,αi) = log(α) , d(βi,αi) = log

α
β



By construction, the distance is invariant under PSL(V)

Figure 2. distance between points on the imaginary axis

Exercise 3.2: Show that in the upper half plane model, if D is the geodesic
through x an y, if X and Y are endpoints of D, then

d(x, y) = | log([x, y,X,Y])| .
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Hint: reduce to a standard situation using homographies.

Exercise 3.3: Relate the distance between x and y, associated to the involutions
ιx and ιy to the trace of ιx ◦ ιy.

3.1.3. Geodesic arc. Let x and y be two distinct points in H2 and D the
geodesic through x and y.

Definition 3.1. The geodesic arc through [x, y] is the subset of D, given by

[x, y] = {z ∈ D | d(z, x) + d(z, y) = d(x, y) .

Exercise 3.4: Draw in figure 2, the geodesic arc between i and αi

3.1.4. Angles between geodesics. We define an orientation on a geodesic D as
the choice of the pair of endpoints of D. We observe that the angle between
the two geodesics at the intersection point make sense in the Euclidean sense.
This angle is invariant under homographies (which are holomorphic mapping)
hence makes sense for any hyperbolic space.

However we have a more intrinsic point of view

Exercise 3.5: Relate the angle between intersecting geodesic D and L to the
trace of σD ◦ σL. Furthermore, obtain a formula relating the angle between
between D and L to the cross-ration of the end points.

Exercise 3.6: Prove that two distinct geodesics D0 and D1 are orthogonal, if
and only if D1 is globally invariant by σD0 .

Exercise 3.7: Let x and y be two distinct points in H2, show that the only non-
trivial isometry fixing x and y is the reflexion σ through the geodesic passing
through x and y.

3.2. Circles, horocycles. In the upper half plane model, Hyperbolic circles
– later on called simply circles – are the circles in our geometric model that
do not intersect the boundary at infinity, horocycles are circles that intersect the
boundary at infinity at exactly one point.

Both circles and horocycles are invariant by PSL2(R), it follows that circles
and horocycles are defined for every hyperbolic space.

Exercise 3.8:

(1) Show that circles are exactly the orbits of the subgroups of PSL(V) sta-
bilizing a point in H2, while horocycle are orbit of subgroup stabilizing
a point in ∂∞H2.
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(2) Show that given any x in H2 and positive real R , then

C ≔ {z ∈ H2 | d(x, z) = R} ,
is a circle.

3.3. Convex polygons. A half space is a complementary region to a geo-
desic.

A wedge is one of the complementary region of two oriented geodesic
intersecting orthogonally.

A convex polygon is the intersection of half spaces. Among them are trian-
gles, hexagons etc ... two points in a convex polygons are joined by a geodesic
arc inside this polygon

If P is a non-compact convex polygon, we define ∂∞P, as the set of points y
in ∂∞ such that there exists a geodesic arc c : [0,∞[→ P such that c(∞) = y.

Exercise 3.9: Let P be a convex polygon
(1) Assume P invariant by an isometry γ then any fixed point of γ in ∂∞H2

belongs to ∂∞P.
(2) If P  H2, then ∂∞P  ∂∞H2.

3.4. Triangles and ideal triangles. An ideal triangle is a triangle with three
points at infinity, a 2/3-ideal triangle has two points at infinity and a 1/3-ideal
triangle has one. All ideal triangles are congruent meaning that there is an
isometry sending one to another/.

Proposition 3.2. Given any positive numbers a, b and c satisfying the triangles
inequalities there exists a unique triangle – up to the action of PGL2(R) – whose length
are a, b and c.

Proof. Using the isometry group, let us take x = i and y = αi, with a =
log(α). Let us now consider

C1 = {z | d(z, i) = b} , C2 = {z | d(z,αi) = c} .
We showed in an exercise above that these are two (euclidean) circles. By the
inequalities satisfied by a, b and c, these two circles intersect and, since they
are circles, they intersect in precisely two points which are reflection of each
other through the vertical axis. Let z be one of these points then the triangle
(x, y, z) satisfies

d(x, y) = a , d(x, z) = b , d(y, z) = c .

We leave the reader check the uniqueness. □
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Proposition 3.3. Let A and B be two subsets of the hyperbolic plane. Assume A
is not a subset of a geodesic. Assume that there exists a distance preserving map ϕ
from A to B. Then there exists a unique isometry Φ of H2 such that Φ restricted to X
is ϕ.

Proof. We can use the previous proposition to reduce to the case when ϕ
fixes 3 points (x, y, z) not on a geodesic. Let Z be the geodesic through (x, y)
and similarly X and Y. We then want to show that ϕ is the identity. Let t be a
fourth point in A distinct from x, y or z. We can always assume that t does not
belong to Y or Z. Then considering the triangles (x, z, t), (x, y, t) and (y, z, t) we
see that

ϕ(t) = t or ϕ(t) = σZ(t) ,
ϕ(t) = t or ϕ(t) = σY(t) ,

Assume that ϕ(t) = σZ(t)  t, then σZ(t) = σY(t). Thus t is fixed by σZ ◦ σY, but
the only fixed point of σZ ◦ σY is x, hence the contradiction. □

Exercise 3.10: What happens when A is a subset of a geodesic?

3.5. Right-angled hexagons.

Proposition 3.4. Given any positive number a, b and c, there exists a unique right-
angled hexagon – up to the action of PGL(2,R) – whose length of non-intersecting
edges are a, b and c.

Proof. Let D0, D1 and D2 the orthogonal geodesics to the side, such that
d(D0,D1) = a, d(D0,D2) = b, d(D1,D2) = c. Let (ai, bi) be the endpoints of Di. We
can reduce to the situation where (a0, b0) = (−1, 1), (a1, b1) = (−α,α) with α > 1
and α a function of a, (a1, b1) = (x, y), with

1 < x < y < α .

Our goal is to show, given β and γ, we can find x and y uniquely so that

[−1; 1; x; y] = β ,
[−α;α; x, y] = γ .

This gives the equations

(x + 1)(y − 1) = β(x − 1)(y + 1) ,
(x + α)(y − α) = γ(x − α)(y + α) .
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These equations give a set of two affine equations in X ≔ x − y and Y ≔ xy.
One can show that there is a unique solution X and Y, thus a unique solution
in x and y within our range. □

3.6. Regular polygons. We will not use the following proposition but just
state it for cultural reasons related to the tilings by Escher:

Proposition 3.5. Given any integer n > 4, there exist a unique – up to the action
of PSL2(R) – regular right-angled n-gon.

Proof. Hint: a continuity argument. □

4. The Riemannian interpretation: length and area

4.1. The length of a curve. We define the length of a parametrized curve
c = (x, y) : [a, b]→ H2 in the hyperbolic plane in the upper half model as

ℓ(c) =
 b

a


ẋ2 + ẏ2

y
dt.

Then, the following facts is true

Proposition 4.1. The length of the curves is invariant under the action PSL2(R):
if c is a curve and g an element of PSL2(R) then ℓ(g(c)) = ℓ(c).

Proof. The length of the curves is obviously invariant by hyperbolic ele-
ments and translation. A simple computation shows that if ϕ is the involution
z → −1

z , then ℓ(ϕ(c)) = ℓ(c). Then we can conclude using Exercise 2.6. □

4.2. Geodesics minimize length. Recall that we defined an invariant ”dis-
tance” (without checking the triangular inequality) satisfying two properties

(1) d(i,αi) = | log(α)|
(2) For g in PGL2(R), d(gx, gy) = d(x, y)

We are going relate the distance to the length of curves, more precisely we
prove

Proposition 4.2 (Geodesics minimize length). Let x and y be two points in
H2, and c a C1-piecewise curve joining x to y, then

ℓ(c)  d(x, y) ,

with equality if and only if c is a parametrization of the geodesic arc between x and y.

We deduce immediately a relation between distance and length

Corollary 4.3. The distance between two points is

d(x, y) = inf{ℓ(c) | c joins x to y}.
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A corollary that immediately implies

Corollary 4.4. The distance that we defined in paragraph 3.1.2 satisfy the trian-
gular inequality.

Proof of Proposition 4.2. Using the invariance under PGL2(R) it is enough
to check the case when x = i and y = αi, with α > 1.

In that case, the result follows from the following string of inequalities, for
a curve c : [a, b]→ H2, with c(a) = i and c(b) = αi

ℓ(c) =
 b

a


ẋ2(t) + ẏ2(t)

y(t)
dt 

 b

a

|ẏ(t)|
y(t)

dt





 b

a

ẏ(t)
y(t)

dt

 = [log(y(t))]b
a = log(α) .

Tracking the equality case in the above inequalities give you the equality case
in the proposition. □

4.3. The boundary at infinity. Finally, one recover the boundary at infinity
from this picture. We say two oriented geodesics are asymptotic if given two
arc lengths parametrization of these geodesics t → γ0(t) and t → γ1(t) then

lim sup
t→+∞

(d(γ0(t),γ1(t)) < ∞.

Then we have the following characterization.

Proposition 4.5. The following are equivalent
(1) The oriented geodesics γ0 and γ1 are asymptotic
(2) The two geodesics γ0 and γ1 have the same endpoint (in the future)
(3) There exists a parametrization of γ0 and γ1 so that

lim sup
t→+∞

(d(γ0(t),γ1(t)) = 0 .

Proof. Hint: do explicit computation when γ0 is a vertical geodesic going
to infinity. □

Then two oriented geodesics are asymptotic precisely if they have the same
end point at +∞.

4.4. Area and the Gauß-Bonnet formula. The hyperbolic area of a measur-
able set A in Poincaré upper-half plane model is

Area(A) =


A

1
y2 dxdy.
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Proposition 4.6. The hyperbolic area is invariant under isometries.

Proof. This is an exercise on the change of variable formula for the invo-
lution z → −1

z . Then it is obvious for the translations z → z+ a and hyperbolic
isometries z → λz. Finally, conclude using Exercise 2.6. □

Here is another exercise that explains another relation with the distance.

Figure 3. Gauss additivity

Our main result is very famous. If T is a triangle, the angle defect of T is π
minus the sum of its internal angles at the vertices. In Euclidean geometry the
angle defect is zero. For hyperbolic geometry, we have:

Theorem 4.7 (Gauss–Bonnet Formula). The area of a triangle equal its angle
defect.

It turns out that both the Euclidean and hyperbolic result are compatible
when one takes in account the curvature of the space. We will not define the
curvature, but remark it could be define using the angle defect.

Proof. We shall follow Gauss approach in several steps
(1) We first check by a direct computation that the area of an ideal triangle

is π.
(2) Then let A(θ) the area of a 2/3-ideal triangle with angle π−θ, with θ in

[0,π/2]. Gauss observation is A(θ) is an additive monotone function,
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hence a multiple ofθ, henceθby the normalization of the ideal triangle:
A(π) = π. More precisely we show that if θ + π < π, then

A(θ + π) = A(θ) + A(π) .

This additivity is done geometrically when θ + π < π as follows in
Figure 3: the area of the union of the pink and blue triangles – with
internal angles π − θ and π − η respectively – is the area of yellow
triangle, since they are both π minus the area of the purple triangle.
On the other hand, the internal angle of the yellow triangle is

π − (2π − (π − θ) − (π − η)) = π − (θ + η) .

(3) The rest follows: we see a 1/3 ideal triangle as the difference between
two 2/3 ideal triangles. Finally, a finite triangle as the difference be-
tween one 2/3 ideal triangle and the sum of two 1/3 ideal triangles.

□

Exercise 4.1: Show that the area of a right-angled hexagons is 2π and that of
of regular right-angled n-gon is π2 n.

Exercise 4.2: (*) Define a measure just using the angle defect: check which
properties the angle defect should have to prove them.

5. The Poincaré disk model

We conclude this chapter by describing quickly the Poincaré Disk Model,
which is helpful for computations related to balls.

Definition 5.1. The Poincaré Disk Model is given by the disk inR2 of center 0
and radius 1. The boundary at infinity is the boundary of the disk with its projective
cross-ratio which is the restriction of the complex cross-ratio, the geodesics are circles
or lines orthogonal to the boundary.

The Poincaré Disk Model is obtained after taking a complex homography
sending i to 0, 0 to −1 and ∞ to 1, and the real axis to the circle of radius 1
around 0:

ψ(z) =
z − i
z + i

.

It follows by Exercise 2.5 that the Poincaré Disk Model satisfies the axioms of
the hyperbolic plane. We now define the length of a curve c(t) in the Poincaré
disk as

ℓ0(c) ≔
 b

a


ẋ2 + ẏ2

1 − r2 dt ,
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where r2 = c2 + y2. A tedious computation then gives

Proposition 5.2. . The hyperbolic length of a curve c in Poincaré Upper Half
Plane Model is the length of its image in the Poincaré Disk Model:

ℓ(c) = ℓ0(ψ(c)) .

Proof. An alternate proof not using computations, is to show this equality
for all horizontal curves through 0, then for any geodesics, then for any curves.

□

We then have

Corollary 5.3. Balls in the Poincaré Upper Half Plane Model, or in the Poincaré
Disk Model are balls for the Euclidean metric.

Proof. From the proposition just before and the rotational invariance of
the length, we deduce that the hyperbolic ball around 0 are Euclidean balls. It
follows that the hyperbolic balls around i in the upper half plane model are
Euclidean balls (with a different center though), since the homography ψ send
circle to circles. Thus any hyperbolic ball in the upper half plane model is a
Euclidean ball – using the invariance of circles by homographies, and thus the
same holds in the Poincaré Disk Model □

A similar computation show that

Proposition 5.4. . We have

Area(A) =


ψ(A)

1
(1 − r2)2 dxdy .

This leads to the following exercise:

Exercise 5.1:
(1) We will need later on an explicit computation: show that

Area B(x,R) = 4π sinh2
R

2


, (2)

Hint: use Proposition 5.4.
(2) Let x be a point in H2, R a positive number and Bx(R) the ball of radius

R with center x, with respect to the hyperbolic metric. Then

Area B(x,R) ∼
R→0
πR2 , (3)

Area B(x,R) ∼
R→∞

4πeR . (4)
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(3) Here is a related computation. Let C(x,R) the circle which is the
boundary of the ball, then

ℓ (C(x,R)) = 2π sinh(R) =
d

dR
Area B(x,R) .

Hint: use Proposition 5.2 for the first equality.

Exercise 5.2: What is the Euclidean center of the hyperbolic ball centered at i
of radius R?

6. Comments, references and further reading





CHAPTER 3

Hyperbolic surfaces

We recall that a map between metric spaces is an isometry of it preserves
the distance, a map ϕ is a local isometry if for every point x in the source, there
exists a neighborhood U of x, such that ϕ is an isometry from U to ϕ(U).

1. Hyperbolic surfaces and length

1.1. Hyperbolic surfaces. A hyperbolic surface is a metric space M such that
every point in M has a neighborhood isometric to an open set of the hyperbolic
plane.

A hyperbolic surface with totally geodesic boundary is a metric space M such
that every point in M has a neighborhood isometric to an open set of the
hyperbolic plane, or an hyperbolic half plane.

A hyperbolic surface with totally geodesic boundary and right-angles is a metric
space M such that every point in M has a neighborhood isometric to an open set
of the hyperbolic plane, or an hyperbolic half plane, or a right-angled wedge.

To avoid repetition, we call a ball in all cases a ball in the model. We
immediately have,

Proposition 1.1. Let x be a point in a hyperbolic surface S, with boundary.
Assume there exists a distance preserving map ϕ from a neighborhood of x to a ball
in a wedge such that ϕ(x) is in the boundary of ϕ(U) or a corner. Then, for any a
distance preserving map ψ from a neighborhood of x to a ball in a wedge, then ϕ(x) is
in the boundary of ϕ(U) or a corner.

The boundary of a hyperbolic surface is the set of points in S satisfying the
condition of the previous proposition. The boundary of a hyperbolic surface
is made of union of

(1) open geodesic segments,
(2) points (maps in to corner of the wedge)

A hyperbolic surface is closed if it has no boundary and is compact.
A geodesic in a hyperbolic surface is a curve c = [a, b] to S, so that for every

t in [a, b], there exists a neighborhood U of c(t), some positive ε, an isometry
33
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ϕ from U to an open set in the hyperbolic plane, so that ϕ([t − ε, t + ε] is a
geodesic arc.

1.2. The hyperbolic length metric. Given a hyperbolic surface (S, d) with
a metric d, we can find a better metric on it. Let c : [a, b]→ S be a curve in S, we
can first define its hyperbolic length ℓ(c) as follows. We first find a subdivision

a = t0 < t1 < . . . < tn = b,

so that c[ti, ti+1] ⊂ Bi, where Bi is a ball for d isometric (by a map ϕi) to a
hyperbolic ball. Then we define

ℓ(c) =
n−1

i=0

ℓ

ϕi ◦ c|[ti,ti+1]


.

Exercise 1.1: Prove the following tedious facts
(1) The length ℓ(c) does not depend on the subdivision of [a, b].
(2) The length ℓ(c) does not depend on the parametrization of c : if ϕ is a

diffeomorphism from [a, b] to [c, d] then ℓ(c) = ℓ(c ◦ ϕ).
(3) If d and d′ are two locally isometric metrics on S, both locally isometric

to the hyperbolic plane. Then the length for d and the length for d′ are
equal.

This length allows us to define a new metric on S. For any x and y on S we
define the Riemannian distance on S by

d(x, y) = inf{ℓ(c) | c : [0, 1]→ S, c(0) = x, c(1) = y}.
One now has the following proposition

Proposition 1.2. The Riemannian distance is a distance on the hyperbolic surface
(S, d) which is moreover locally isometric to d. Finally two locally isometric d and d′
on S generates the same Riemannian distance.

From now on, we shall always equip a hyperbolic surface with its Rie-
mannian distance. We finally define: a curve c : [a, b]→ S is parametrized by arc
length if for any s and t in [a, b],

ℓ(c|[s, t]) = |t − s|
We then say a curve c : [a, b]→ S is minimizing the length if

d(c(a), c(b)) = |a − b| .
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Proposition 1.3. Let c : [a, b]→ S be a curved parametrized by arc length, then
for all s and t in [a, b], we have the arc-length inequality.

d(c(s), c(t))  |t − s| ,
Moreover, if d(c(s), c(t)) = |t − s|, then for all u and v in [t, s], we have

d(c(u), c(v)) = |u − v| .
Proof. The first property is an immediate consequence of the definition of

the Riemannian distance and the arc length parametrization, while the last one
comes from the triangular inequality: it is enough to prove that if s < u < t,

d(c(u), c(t)) = t − u .

Now

d(c(u), c(t))  d(c(t), c(s) − d(c(s), c(u))  t − s − (u − s) = t − u .

Thus the arc-length inequality gives the result □

1.3. Local isometries. Recall that ϕ : X → Y between two metric spaces
is a local isometry, if for every x in X there exists R so that Φ is an isometry
from B(x,R) to B(ϕ(x),R), and in particular ℓ(c) = ℓ(Φ(c) for any curve. This in
particular implies that of X and Y are length spaces, then

d(ϕ(x),ϕ(y))  d(x, y) . (5)

We deduce the following proposition

Proposition 1.4 (Local–global). If ϕ is a local isometry between two length
spaces which is a bijection, then ϕ preserves the distances.

Proof. Indeed, ϕ−1 is also a local isometry and thus the reverse inequality
to inequality 5 is also satisfied. □

1.4. Geodesics and extension of geodesics. A geodesic is a hyperbolic sur-
face (S, d) is a curve

γ :]a, b[→ S ,
such that if B is a ball in S, isometric by ϕ to a ball in the model, then ϕ(γ|B) is a
geodesic arc. From the similar property in the hyperbolic plane, we have the
following characterization

Proposition 1.5 (Geodesics locally minimize distance). A curve γ =]a, b[→
S, is geodesic if an only the following is true. For any t in ]a, b[, there exist a positive
ε, such that if u and s belong to ]t − ε, t + ε[, we obviously have

d(γ(u),γ(s)) = |s − u| .
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In particular, for any s and u as in the proposition, for any curve c joining s
to u, then

ℓ(c)  |s − u| = ℓ(γ|[s,u]) .
We also have

Proposition 1.6 (Beyond a point). Let γ be a geodesic defined on ]b, a[= I0.
Assume that there exists a sequence {t}m∈N converging to a so that {γ(tm)}m∈N converges
to x in S. Then

Assume first the boundary of S is empty. Then there exists a geodesic γ0 defined
on ]b, c[ with c > a, which coincides with γ0 on I0.

In the general case,
(1) if γ is included in the boundary, then either x is not a corner, in which case γ

can be extended to ]b, c[ with c > a, or x is a corner then γ can be extended to
]b, a].

(2) if γ is not included in the boundary, then either x is not in the boundary, in
which case γ can be extended to b, c[ with c > a, or x is in the boundary then
γ can be extended to ]b, a].

Proof. Let x be the limit of {γ(tm)}m∈N. Let B be a ball round x of radius R,
isometric to a hyperbolic ball. By the distance construction of the distance, that
c(]a−R/4, a[) lies in the ball of radius R: indeed for s in ]a−R/4, a[, there exists
n as large as we want, with d(c(s), c(tn))  R/4. Now the proposition follows
from the similar property in the hyperbolic plane.

□

Similarly, we have

Proposition 1.7 (Extension of geodesics). Let γ0 : I0 → S and γ1 : I1 → S
be two geodesics, where Ii are intervals. Assume there exists a an open interval I in
I0 ∩ I1 such that

γ0|I = γ1|I ,
Then, there exists a geodesic γ defined on I = I0 ∪ I1, such that

γ|I0 = γ0 , γ|I1 = γ1 .

This proposition allows us to make the following definition: a geodesic
γ : I→ S is maximal if for any geodesic γ0 : I0 → S which coincides with γ on a
subinterval of I0 ∩ J, then I0 is included on in I. 1

As an immediate consequence of Proposition 1.7, we have

Proposition 1.8. Any geodesic can be extended to a maximal geodesic. Such a
maximal geodesic is unique.

1In this definition I is no required to be open.
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1.5. Completeness. A hyperbolic surface is complete if, given any maximal
geodesic arc γ defined on I, then if I =] −∞,+∞[.

In other words, thanks to Proposition 1.8, every geodesic arc can be ex-
tended to ] −∞,∞[.

For a hyperbolic surface S with boundary and right-angles, the definition of
completeness is slightly different: S is complete if given any maximal geodesic
arc γ defined on I, then

(1) either γ(I) is included in the boundary, in which case if a is a finite
extremity of I, then γ(a) is a corner.

(2) or there exists a point in γ not in the boundary, then for any finite
extremity a of I, we can extend γ, with γ(a) in the boundary.

Exercise 1.2: Show that a convex polygon (with right-angles) is complete.

Observe that we have as an immediate consequence of Proposition 1.6:

Proposition 1.9. Any compact surface is complete.

We now prove the following result, which is a special case of the important
Hopf–Rinow Theorem in Riemannian geometry and which have the same
proof

Theorem 1.10 (Hopf–Rinow Theorem). Any two points x and y in a complete
hyperbolic surface can be joined by a geodesic γ such furthermore

ℓ(γ) = d(x, y) .

We will first prove a Lemma, valid for non-complete surfaces.

Lemma 1.11 (Aiming). Let x and y be two points in a hyperbolic surface. Let R
so that B(x, 2R) is isometric to a ball in the model. Let

Sx = {w | d(x,w) = R .

Then there exists w in S so that

d(x, y) = d(x,w) + d(w, z) = R + d(w, z) .

Proof. Let {c}m∈N be a sequence of curves from [0, 1] to S joining x to y such
that {ℓ(cm)}m∈N converges to d(x, y). Observe that by the intermediate value
theorem, that for all m,there exists tm, with wm ≔ cm(tm) in Sx. We extract a
subsequence wm converging to some w in S. We now show that w have the
required property.

Indeed, from the definition of the Riemannian distance

ℓ(cm)  d(x,wm) + d(wm, z) .
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Taking the limit when m goes to infinity, gives the inequality

d(x, z)  d(x,w) + d(w, z) ,

which combined with the triangular inequality gives the result. □

Proof of Theorem 1.10. We use the Aiming Lemma 1.11 to find w in Sx
with

d(x, y) = d(x,w) + d(w, y) .

Let then γ : I → S be the maximal geodesic with γ(R) = w. To simplify
the argument, let us first assume that S has no boundary in which case the
completeness assumption means that I =] −∞,∞[.

We then consider

U = {t ∈ I | d(x, y) = t + d(γ(t), y) .

By the definition of γ, U is not empty: U contains R. Let us start with the
sequence of observations that follows from the triangular inequality,

(1) If t is in U, then d(γ(t), x) = t. Indeed, since t  d(γ(t), x), we have

d(x, y)  d(x,γ(t)) + d(γ(t), y) ,

Then the triangular inequality implies that we actually have the equal-
ity

d(x, y) = d(x,γ(t)) + d(γ(t), y) ,

and thus t = d(x,γ(t)).
(2) It then follows that for s  t with t in U, we have by Proposition 1.3

d(γ(s),γ(t)) = t − s .

(3) if t belongs to U, then [0, t] is included in U: indeed for s smaller than
t,

d(x, y) = t + d(γ(t), y) = s + (t − s) + d(γ(t), y)
 d(γ(s), x) + t − s + d(γ(t), y)
 d(γ(s), x) + d(γ(s),γ(t)) + d(γ(t), y)
 d(γ(s), x) + d(γ(s), x)
 d(x, y)

Thus all inequalities above are equalities, then d(γ(s), x) = s and
d(x, y) = s + d(γ(s), x)
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We then consider t0 = sup{t ∈ U | t  d(x, y)}. We want to prove that
t0 = d(x, y). It is enough to prove that U = [0, d(x, y], and thus that U is open,
since U is obviously closed and non-empty by construction.

Let then t in U, with t < d(y, z), z = γ(t), which then satisfies

d(x, y) = d(z, y) + d(z, x) = t + d(z, y) ,

We can use again the Aiming Lemma, and obtain z1 = γ1(R1), for some geodesic
γ1 such that

d(z, y) = R1 + d(z1, y) = d(z1, z) + d(z1, y) ,

It follows that

d(x, z1)  d(x, y)− d(y, z1) = d(x, z)+ d(z, y)− d(z, y)+ d(z, z1) = d(x, z)+ d(z, z1) =

Thus using the triangular equality,

d(x, z1) = d(x, z) + d(z, z1) = t + R1 .

Let c be the curve defined on [0, t+R1] such that c|[0, t] = γ, and for s in [t, t+R1]
c(s) = γ1(s − R1). Then we have

ℓ(c) = t + R1 = d(x, z) + d(z, z1) = d(x, z1) ,

Hence c is length minimizing hence c is a geodesic, coinciding with γ, hence
equal to γ. It follows that z1 = γ(t + R1), hence

d(y,γ(t+R1))+t+R1 = d(y, z1)+d(z, x)+(d(y, z)−d(y, z1)) = d(y, z)+d(z, x) = d(y, x) .

It follows that t + R1 belongs to U and the result follows.
It remains to treat the case of surface with boundary. But a careful reader

can see that the above arguments also work in that case.
□

2. Two constructions of hyperbolic surfaces

2.1. Construction of hyperbolic surfaces by quotient. Let Γ be a subgroup
of the group Iso(H2) of isometries of an hyperbolic plane H2. We say that Γ acts
freely and properly discontinuously on H2 if for every point x in H2, there exists a
neighborhood U of x so that

{γ ∈ Γ | γ(U) ∩U  ∅} = ∅ .
Let consider then the map π = H2 → SΓ ≔ Γ\H2 This is an important way to
construct hyperbolic surfaces. Let us define a metric on SΓ by

dΓ(x, y) ≔ inf{d(x̄, ȳ) | π(x̄) = x , π(ȳ) = y}
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Theorem 2.1 (Quotients are hyperbolic surfaces). Let Γ be a subgroup of
Iso(H2) acting freely and properly discontinuously on H2. Then dΓ gives SΓ the
structure of a complete hyperbolic surface. Moreover

π : H2 → SΓ ,

is a locally isometric map.

Proof. It is enough to define the distance, we define unambiguously

dΓ(π(x),π(y)) = inf{d(γx, ηy) | γ, η ∈ Γ} .
Observe that dΓ satisfies the triangular inequality, and that moreover

dΓ(π(x),π(y))  d(x, y)

The only point to prove now is to show that, given x in H2, there exists an r so
that π d an isometry from

Bx(r) ≔ {z ∈ H2 | d(z, x)) < r}
to

Bπ(x)(r) ≔ {z ∈ SΓ | dΓ(z,π(x))) < r} .
Observe that by inequality (??),

π(Bx(r)) ⊂ Bπ(x)(r) .

Let x in H2, by the condition on Γ, there is a positive R, so that for all y in Bx(R),
γ in Γ \ {id}, then

γ(y)  Bx(R) .

In particular ϕ : y → π(y) is injective from Bx(R) to SΓ. It then follows that if

y , z ∈ Bx

R
2



and γ and η are different elements of Γ Then

d(γ(y), η(z)) >
R
2
.

And thus

d(y, z) = inf

d(γ(y), η(z)) | γ , η ∈ Γ = dΓ


π(y),π(z)


.

Thusϕ is a measure preserving injection from Bx


R
2


to B[x]


R
2


. Surjection ? □

2.2. Construction of hyperbolic surfaces by gluing.
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2.2.1. Gluing two length metric spaces. We can glue two length spaces pro-
vided we have a gluing map that preserves the distances, by defining the
length of any curves as the sum of the length in each part.

Then one checks that the gluing two hyperbolic half-spaces along their
boundary leads to the hyperbolic plane, and gluing two right-angle wedges
leads to the hyperbolic half plane.

Figure 1. Gluing surfaces

2.2.2. Construction of closed surfaces. We can therefore construct hyperbolic
surfaces of area 4πn using 3n-positive real parameters, and 3n-angles – i.e
elements of R/Z. Moreover, the surface is given together with an extra topo-
logical structure namely an decomposition into pair of pants. The construction
run as follows. First, we construct pairs of right-angled hexagons, fixing the
boundary length. Then, gluing two hexagons together we obtain a hyperbolic
pair of pants whose boundary length are prescribed. Then we glue these pair
of pants together using a prescribed identification of the boundaries. We can
isometrically identify each boundary component of length a with R/aZ, in
a canonical way: sending a chosen corner of the previous hexagon to zero.
Then the gluing between two boundary components is determined by one
parameter in R/aZ.

2.3. Questions. Two questions remain
(1) Are all compact surfaces obtained this way: by gluing and quotient?
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(2) When are two surfaces obtained by gluing isometric? When are two
surfaces obtained by quotient isometric?

3. Every complete hyperbolic surface is a quotient

Our goal is to prove the following theorem

Theorem 3.1 (Every hyperbolic surface is a quotient). Every complete con-
nected hyperbolic surface S with possibly boundary and right-angles is the quotient of
a convex polygon P by a subgroup Γ of Iso(H2) acting freely and properly discontin-
uously, and preserving P.

If furthermore S has no boundary then P = H2.

We call P as in the theorem the universal cover of S and Γ the fundamental
group of S. We first give the proof of a corollary.

3.1. Corollary: monodromy group of compact surfaces. We start with a
definition: we say two elements γ and η in Γ are commensurate if there exists
non zero integers p and q such that

γp = ηq .

Proposition 3.2. Assume S with totally geodesic boundary is compact. Then
every element of Γ preserves a unique geodesic. Moreover the following are equivalent:

(1) γ and η in Γ fix a common point in ∂∞H2,
(2) γ and η in Γ are commensurate,
(3) γ and η commute.
(4) γ and η are powers of the same element.

As a classical corollary, we obtain

Corollary 3.3. The fundamental group of a surface S with totally geodesic bound-
ary does not contain a group isomorphic to Z2 and is not abelian.

Proof of corollary 3.3. Thanks to the proposition, we only have to prove
that Γ is different from Z. Assume that Γ = 〈η〉

Let us write
∂P =



i∈I

γi ,

where (γi)i∈I are the geodesic lifts of the boundary components of S. Each of
them is invariant by an element of Γ, hence by η. It follows that ∂P consists in
at most one geodesic. Thus P is H2 or an half-plane. In both cases, Γ\P is not
compact and we obtain our contradiction. □
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Proof. Let us consider the positive function f : x → inf{d(x,γ(x) | γ ∈ Γ}.
This function is Γ-invariant and thus defines a function on S. One can prove
f is continuous using the fact that Γ acts freely and properly discontinuously.
By compactness, it follows that the minimum of f is achieved on P at some x0.
Thus there exists k(Γ) ≔ f (x0) > 0 such that f (x)  k(Γ).

Let γ be an element of Γ. Recall that P is Γ, hence γ, invariant. Assume
by contradiction that γ has a unique fixed point y0 in ∂∞H2. It follows that y0
belongs to ∂∞P by exercise 3.9. Let then c : [0∞[→ S be a geodesic with values
in P, such that c(∞) = y0. Using the upper half plane model so that c is the
imaginary axis. The assumption that the unique fixed point of γ – seen in the
upper half plane model – is∞ implies that that

γ :=


1 t
0 1


,

for some t. Observe now that

lim
t→∞

(d(c(t),γ(c(t)) = 0 .

This contradicts the fact that

d(c(t),γ(c(t)  k(Γ) .

Let us prove the that (1) implies (2). Let γ and η be two elements of Γ fixing
the same point a at infinity. Let γ0 and η0 the geodesics associated to γ and η
be the first point. We may assume (possibly after taking inverses) that

a = γ0(+∞) = η0(+∞)

By the contracting property of Proposition 4.5, we have that (after a translation
on the parametrization)

lim
t→∞

d(γ(t), η(t)) = 0 .

We want first to show that for all t

γ0(t) = η0(t) .

Let α and β be the positive real numbers such that

γ0(t + α) = γ0(t) , η0(t + β) = η0(t).

We can then find diverging sequences of integers {p}m∈N and {q}m∈N with

lim
m→∞
|pmα − qmβ| = 0 .

To prove the existence of these sequences, we just have to remark that Z[p, q]
is a subgroup of R, hence either discrete (in which case p

q is rational and the
assertion 6 is obvious) or dense. In this last case, we can find a sequence of
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pairwise distinct elements of Z[p, q] converging to zero. Such a sequence is of
the form αmp − βmq and the assertion follows.

Let us now use the above fact. It follows that for any t,

lim
m→∞

d(γ0(t + qmα), η0(t + pmβ) = 0

Let γ1 and η1 be the projections of γ0 and η0 on S, the previous limits tell us
that since, for all integers p and q,

d(γ1(t), η1(t))  d(γ0(t + pα), η0(1 + qβ)) ,

We have that γ1(t) = η1(t). Thus there exists an element ξ of Γ, such that for all
t, γ0(t) = ξη0(t). We now take t large enough so that

d(γ0(t), η0(t)) < k(Γ) .

Then for this t large enough,

d(ξ(η0(t), η0(t)) = d(γ0(t), η0(t)) < k(Γ) ,

and by the definition of k(Γ), we have ξ = Id, hence for all t γ0(t) = η0(t).
Using the same sequences {q}m∈N and {p}m∈N as above we have that, letting

x0 = γ0(0) = η0(0), c = γ0 = η0,

d(x0,γ
−pmηqmx0) = d(γpmx0,γ

−pmηqm)
= d(c(pmα), c(qmβ)
 |pmα − qmβ| .

It follows that
lim
m→∞

d(x0,γ
−pmηqm) = 0 ,

Thus, by the fact that Γ acts freely and properly discontinuously on H2, for all
m large enough

γpm = ηqm .

We now prove (3) implies (2). Assume that γ and η commutes. Let γ0 be the
unique geodesic invariant by γ. Then ηγ0 is invariant by ηγη−1, hence by γ. It
follows that γ0 is preserved by η0 and the previous implication tells us that γ
and η are commensurate.

We now prove (2) implies (3). Assume that γ and η are commensurate.
Then they preserve the same geodesic. It follows that γ and η are – as matrices
in PSL2(R) – diagonalizable in the same basis. Hence γ and η commute.

We finally prove that (3) implies (1). Assume that γ and η commutes. By
the implication above, this implies that they preserve the same geodesic c. Let
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A be the subgroup of the element of Γ preserving c. Let us consider the map ϕ
from A to R given by

γ → λwhere c(t + λ) = γc(t) .

We observe that ϕ is an injective morphism. Moreover ϕ has a discrete image
as a consequence of the free and properly discontinuous action of Γ. It follows
that Φ(A) = Z(µ), where µ = ϕ(ξ) for some ξ. Thus every element of A is a
power ξ.

All the remaining implications are obvious. □

3.2. Preliminaries: path of balls. Let c : [a, b] → S be a curve in a hyper-
bolic space, we can then find a

(1) a sequence of open sets {Ui}i∈[1,n] in S, all isometric to balls in H2,
(2) a partition

a = a0 < · · · < ai < ai+1 · · · < an = b ,

with c[ai−1, ai] ⊂ Ui. Let then Vi be the connected component of Ui ∩ Ui+1
containing ai. Such a sequence {Ui}i∈[1,n] will be called a sequence of balls associated
to c.

Given a curve c[a, b] → S, an initial isometry is an isometry from a neigh-
borhood of c(a) o H2.

Proposition 3.4. Given a path of balls {Ui}i∈[1,n], and an initial isometry f , there
exists a unique family of isometries fi of Ui in H2 so that fi coincide with fi+1 on Vi
and f0 coincide with f on a neighborhood of c(a).

We call fn the final isometry.

Proof. This is an immediate consequence of Proposition 3.3. □

We now have

Proposition 3.5. Let f and g be the final isometries for two path of balls associated
to c, associated to the same initial isometry f = g on some neighborhood of c(b).

Thus the final isometry only depends on the initial isometry and the curve.
Then, we say two ball paths, corresponding to two curves c0 and c1 with

fixed extremity i0 and in are homotopic if they can be obtained from each other
after a succession of the following elementary operation: deletion which is just
to remove an index (whenever it is possible) or insertion which is the converse
operation.

As an example one easily sees that two paths of balls for the same curve
are homotopic. More generally we leave as an exercise
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Proposition 3.6. If c0 and c1 are two homotopic, then the corresponding paths of
balls are homotopic.

We then have a generalization of the previous proposition

Proposition 3.7. If c0 and c1 are two homotopic, with the same initial isometry,
then their final isometries coincide.

Proof. This is again a consequence of Proposition 3.3. □

Thus the final isometry only depends on the initial isometry and homotopy
class of the curve.

3.3. Simply connected hyperbolic surfaces. We now prove the following

Theorem 3.8. Let S be a simply connected complete hyperbolic surface then there
exists a local isometry ϕ of S in H2. If furthermore S is complete, then S is isometric
to a convex polygon in H2.

Proof. We fix a base point x0 and an isometry f0 from a neighborhood of x0
to a ball in the hyperbolic plane. If c is any curve from x0 to x, the final isometry
g, starting from f0 gives an isometry from a neighborhood of x to subset of the
hyperbolic plane. Since this final isometry does not depend on the choice of
the path, we define

ϕ(x) ≔ g(x) .

by construction ϕ is a local isometry and this proves the first part.
Now if S is complete, then ϕ is injective: given x and y, we can find a

geodesic c joining x to y by Theorem 1.10. Then ϕ(c) is a geodesic in H2, hence
has distinct extremities. Thus ϕ(x)  ϕ(y).

The image of ϕ is a hyperbolic surface with totally geodesic boundary and
right-angles, thus a convex polygon P. Then ϕ−1 from P to S is also local
isometry. Then ϕ preserves the distance by Proposition 1.4. □

3.4. Covering by convex polygons. Our goal is to show that every hyper-
bolic surface is a quotient, namely Theorem 3.1

Proposition 3.9. Given a complete hyperbolic surface S with geodesic boundary
and right-angles, there exists a convex – possibly non-compact – polygon P in the
hyperbolic plane, and a locally isometric covering ϕ from P to S.

We call P the universal cover of S.
Let us start with a proposition interesting in itself
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Proposition 3.10. Let p : X→ S be a covering. Assume that (S, d) is a hyperbolic
surface. Then there exists a unique hyperbolic surface structure on X such that p is a
local isometry.

Furthermore if S is complete so is X.

Proof. Let c : [0, 1] → X be a curve . Let us define ℓ(c) ≔ ℓ(p(c)). Then for
any x and y we define

d(x, y) ≔ inf{ℓ(c) | c(0) = x , c(1) = y} .
Let B be a ball of radius R in S of center z = p(x) isometric to a ball in the

model, such that

p−1(B) =


y∈p−1z

Uy .

with p an homeomorphism from Uy to B, for all y.
It follows that if c is a curve joining x to w, with p(w) = p(x) and x  w, then

p(c) starts from p(x) and leaves B, in particular ℓ(c) = ℓ(p(c))  R. Thus, we
have that for w different than x, and p(w) = p(x), then d(x,w) > 0.

We can now prove that d is a distance. The only non-obvious property
to prove is that if d(x, y) = 0 then x = y. Assume now d(x, y) = 0. Since
d(p(x), p(y)  d(x, y), we have that p(x) = p(y), but the property above implies
y = x.

Let us now prove p is a local isometry. We use the same x, z and R as above.
Let Vy = p−1(B0), where B0 is the ball of radius R/4 and center z. Assume
We now remark that if w0 and w1 belongs to Vx, if c is a curve of length

less than R/2 joining w0 to w1 in Vx, then p(c) is included in B, and thus by the
lifting property c is included in Ux. Since there exist a curve joining w0 to w1
in B of length strictly less than R/2, it follows that

d(w0,w1) = inf inf{ℓ(c) | c(0) = x , c(1) = y , ℓ(c) < R/2}
= inf inf{ℓ(c) | c(0) = x , c(1) = y , c[0, 1] ⊂ Ux}
= inf inf{ℓ(γ) | γ(0) = p(w0) , c(1) = p(w1) ,γ[0, 1] ⊂ B}
= d(p(w0), p(w1)) . (6)

We have just proved that p is a local isometry.
Observe now that every geodesic X projects to a geodesic in S, conversely

if a curve c projects to a geodesic, then c is a geodesic by the local minimizing
property. By the lifting property, every maximal geodesic in S can thus be
lifted to a geodesic in X. Thus X is complete if S is. □

Obviously this property is true for any length space.
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Proof of Theorem 3.1. Let P be the universal cover of S described in Theo-
rem 0.1 Then by Proposition 3.10, P admits the structure of a hyperbolic surface.
Moreover since p is a local isometry, we see that every element of Γ, defined in
Theorem 0.1, is a local isometry, hence by Proposition 1.4 an isometry. □

Exercise 3.1: (Exponential map)(*) Let S be a complete hyperbolic surface –
without boundary. Let x in S and B(x, 2R) a ball of center x and radius 2R
isometric to a ball in the model. Let

Sx ≔ {z ∈ S | d(z, x) = R} .
For any z in Sx, let cz be the geodesic such that cz(R) = z. We define the
exponential map from

TxS ≔ {0} ∪ (Sx × R>0) ,
to S by

exp(z, t) = cz(t) .
(1) Show that expx is well defined, is continuous and surjective.
(2) (More difficult) show that expx is a local homeomorphism then a cover-

ing: find a proof not using Theorem 3.9 then a proof using Theorem 3.9.
(3) Show that TxS equipped with the hyperbolic metric defined by the

covering is isometric to H2.

4. Compact surfaces and pair of pants

We are now interested in compact hyperbolic surfaces.

Theorem 4.1 (Decomposition into hexagons). Every compact oriented con-
nected hyperbolic surface is of area 4πn and can be obtained be decomposed into
2n hexagons glued as pair of pants. Moreover, this decomposition, the 3n-length of
boundary parameters as well as the 3n gluing parameters, is fixed as soon as we fix 3n
homotopy classes of pairwise non-intersecting simple curves on S.

Two closed hyperbolic surfaces are isometric if and only if we can find a decompo-
sition of each surface into pair of pants, with the same gluing and length parameter

4.1. Curves on hyperbolic surfaces. We give some properties of curves on
complete hyperbolic surfaces with totally geodesic boundary. We refer to the
appendix for the homotopy related definitions.

Theorem 4.2 (Curves and arcs). Let S be a compact surface with totally geodesic
boundary

(1) Given two points p and q in S and a path c from p to q there exists a
unique geodesic γc joining p to q and homotopic to c. Moreover this geodesic
minimizes the length of all curves joining p to q homotopic to c.
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(2) Given a closed curve c, there exists a unique closed geodesic γc freely homo-
topic to c. Moreover the length of γc minimize the length of all curves freely
homotopic to c.

(3) Given a closed arc c joining a boundary component a to a boundary component
b, then there exists a unique geodesic arc γc orthogonal to the boundary and
homotopic to c with respect to a and b. Moreover the length of γc minimize
the length of all arcs homotopic to c relative to a and b.

Proof. Let P the convex polygon and ϕ the covering from P to S from
Theorem 3.1. The first statement is a consequence of our description of the
universal: indeed let p0 be a lift of p in P, c0 be the lift of c starting at p0 and
q0 the end point of c0. By elementary properties of covers (see appendix A),
q0 only depend on the choice of p0 and the homotopy class of c. Thus we take
γc to be the projection of the geodesic from p0 to q0, which lies in P since P is
convex.

For the second statement, we have to use the compactness of S. let c :
[0, 1] → S be a closed curve and c̃ : R → S̃ a lift of c in P. If c is not freely
homotopic to zero, then there exists an element γ ∈ Γ such that for all n ∈N.

c̃(x + n) = γnc̃(x) . (7)

Since S is compact, by Proposition 3.2, γ preserves a unique geodesic γc
whose projection on S we denote by γ0

c . Let T0 the length of γ0
c . Let us choose

a parametrization of c so that c(t + T0) = c(t). It follows from equation that for
all t in R,

f (t) ≔ d(c̃(t),γc(t))  K . (8)

It follows that we can choose a homotopy from c to γ0
c , given by

c(s, t) = p(γt(s f (t)) ,

where γt(s) is the geodesic arc joining c(s) to γc(s), and p is the projection from
P to S.

The third statement about geodesic arc is an adaptation of the previous
argument: Assume that a curve c : [0, 1]→ S joins two boundary components
a and b (which may coincide). Let c0 be a lift of c, a0 the geodesic lifting a
passing through c0(0) and similarly b0 the geodesic lifting b passing through
c0(1). Observe that any curve homotopic to c (relative to a and b) with initial
end point in a0 has a final end-point in b0

Since a and b do not intersect so do a0 and b0. Moreover by Proposition 3.2
a0 and b0 have different point at infinity. It follows that there exists a unique
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curve γc : [0, 1]→ H2 such that

ℓ(γ0
c ) = inf{ℓ(g) | g : [0, 1]→ H2 , g(0) ∈ a0 , g(1) ∈ b0} ,

Moreover γ0
c is a geodesic arc orthogonal to a0 and a1. We take γc to be the

projection of γ0
c on S = Γ\P. □

We have a refinement of the previous construction. We say that two
homeomorphisms ϕ0 and ϕ1 of S are isotopic if there exists a continuous map
Φ : S × [0, 1]→ S such that

(1) For all s in S, ϕ0(s) = Φ(s, 0) and ϕ1(s) = Φ(s, 1).
(2) For all t in [0, 1],

ϕt : s → Φ(s, t) ,

is a homeomorphism.
Next is a crucial definition: a pair of pants is a topological surface homeo-

morphic to D \ D1 ∪ D2, where D is a closed disc in R2, D1 and D2 are open
disks whose closures are disjoint and both included in D.

Theorem 4.3 (embedded curves). (1) Assume that in the last two items of
Theorem 4.2, the curve or arc c are embedded, then the geodesic or arc γ is
embedded.

(2) Assume that ϕ is em embedding of a pair of pants U in S, then ϕ is isotopic to
an embedding ψ such that ψ(U) is a hyperbolic surface with totally geodesic
boundary.

Theorem 4.4. Let S be a compact hyperbolic surface with boundary which is
homeomorphic to a pair of pants. Then there exists two isometric hexagons with right
angles H1 and H2 such that S is isometric to H1∪H2. Moreover, H1 and H2 are unique
up to isometries of H2.

Corollary 4.5. The area of a hyperbolic pair of pants is 4π.

Proof to be added

4.2. Finding topological pair of pants.

Proposition 4.6. Let S be a compact hyperbolic surface. Then S contains a
hyperbolic pair of pants.

Corollary 4.7. Let S be a compact surface, then S contains a pair of pants with
totally geodesic boundary.

Proof to be added
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Proposition 4.8. Let S be a compact hyperbolic surface with a non-empty totally
geodesic boundary. Then either there exists an arc from a boundary component to
another (or the same) boundary component, not homotopic to the boundary component.

Proof to be added

4.3. Proof of Theorem. As another consequence, we obtain

Theorem 4.9. [Gauss-Bonnet formula (bis)] Let S be a compact surface ad-
mitting a hyperbolic structure. Then two pair of pants decomposition have the same
number of pair of pants and this number is even. If χ(S) is this opposite of this number
called the Euler characteristic of S, then any hyperbolic structure on the surface has
area −2πχ(S).

4.4. A complement: Dirichlet fundamental domains. Let S = Γ\P and x
a point of P. The Dirichlet fundamental domain (relative to x) is the subset ∆ of
P given by

∆ = {y ∈ P | for all γ in Γd(x,γ(y)  d(x, y)} .
We leave the following proposition as an exercise:

Exercise 4.1:
(1) A Dirichlet fundamental domain ∆ is convex.
(2) Moreover we have



γ∈Γ
γ∆ = P ,

γ∆ ∩ ∆ = ∅ if γ  Id .

(3) If S is compact then ∆ is a compact polygon.
(4) If P is different from H2, then ∆ intersects ∂P.

5. Comments, references and further reading





Part 2

Dynamics and ergodic theory





CHAPTER 4

Dynamics

In this chapter, Γ will be a discrete subgroup of Iso(H2) so that Γ\H2 is a
compact hyperbolic surface without boundary. We furthermore assume that
Γ lies in the connected component of the identity of Iso(H2), isomorphic to
PSL2(R). The corresponding surface is said to be oriented

1. The action on the boundary at infinity

We begin by studying the action of Γ on the boundary at infinity ∂∞H2 of
H2. Every element of γ corresponds to a closed geodesic and will therefore
preserves exactly two points at infinity {γ−,γ+}.

It then follows, that every γ in Γ has north-south dynamics meaning that the
sequence of iterates of any point x in ∂∞H2 different than γ− converges to γ+,
as in Figure 1.

lim
n→∞

(γn(x)) = γ+.

We now use the north-south dynamics to show three crucial properties of
the action of Γ on the boundary at infinity.

Lemma 1.1 (Minimality). Every orbit of Γ is dense on ∂∞H2.

Proof. Let F be a closed Γ invariant set in ∂∞H2 and E be the convex envelope
of F in H2, that is the intersection of all hyperbolic half spaces containing F.
The set E is a closed convex set which is Γ invariant. Let d be the function on H2

defined as the distance to E. Then d is Γ invariant. However d is unbounded as
we see from taking a geodesic orthogonal to one of the boundary component
of the convex set. This contradicts the compactness of H2/Γ. □

Lemma 1.2 (Density of end points). The set of end points of geodesics {(γ+,γ−) |
γ ∈ Γ}, is dense in ∂∞H2 × ∂∞H2.

Proof. By the previous lemma the set {γ+ | γ ∈ Γ} is dense in ∂∞H2. Let now
(x, y) be pair of points in ∂∞H2 × ∂∞H2, we can therefore find a pair of distinct
points (η−,γ+) associated to elements η and γ. We remark that if two elements
α and β of the group are such that α+ = β+ then α− = β− by Proposition 3.2.

55
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γ−

γ+

Figure 1. North-south dynamics

We therefore assume that all points η±,γ± are distinct. The final remark is
that

lim
n→∞

(γnηn)+ = γ+,

and symmetrically
lim
n→∞

(γnηn)− = η−,

The process is described in Figure 2 Let U be a small neighborhood of γ+.
Since γ+ is different than η− a high power of η will send U to a very small
neighborhood V of η+. Since η+ is different than γ− a high power of γ will
send V to a even smaller neighborhood of γ+. It follows that ξn = γnηn maps
U into itself. Therefore it has a fixed point in U. This point is necessarily the
attractive fixed point of ξn. This is what we wanted to prove.

□

Here is another important consequence of this North-South dynamics.

Lemma 1.3 (Baby hyperbolic stability). Let S be a compact surface. Let ρ1 and
ρ2 be two representations of π1(S) in PSL2(R) which are monodromies of hyperbolic
structures on S. Then the two corresponding actions on ∂∞H2 are conjugate. More
precisely there exists a unique – usually non-smooth – homeomorphism Φ of ∂∞H2 so
that

∀x ∈ ∂∞H2, ∀γ ∈ π1(S), Φ

ρ1(γ) x


= ρ2(γ) Φ(x) .
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γ−

γ+

U

ηn(U)

γnηn(U)

η−

γ−n(V ) η−nγ−n(V )

V

Figure 2. Density of pairs of fixed points

For the moment, we just prove the uniqueness of the conjugation and
post-pone the proof of the existence.

Proof of uniqueness. Let E1 be E2 be the set of end points of closed geodesics
in ∂∞ of respectively ρ1(π1(S)) and ρ(π1(S)).

Our first remark is that Φ satisfies from ρ1(γ)+ to ρ2(γ)+. Indeed, since Φ
conjugate the action it sends attractive fixed points to attractive fixed points.

Then the uniqueness follows from the density of E1. □

One can actually prove that the conjugacy is Hölder, this is the grown up
version of Hyperbolic Stability.

This last lemma leads the an abstract definition of the boundary at infinity
of a surface group.

Definition 1.4. Let S be a closed connected oriented surface of genus greater than
2. The boundary at infinity ∂∞π1(S) of a surface group is a topological circle on which
π1(S) in a way which is conjugate to the action of ρ(π1(S) on ∂∞H2, where ρ is the
monodromy of a hyperbolic structure.

There is a beautiful theorem by Matsumoto which characterizes the action
of π1(S) on ∂∞π1(S).
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Theorem 1.5 (Matsumoto). Let S be a closed surface. Let T be a topological
space homeomorphic to the circle. Assume that π1(S) acts on T, with the following
properties

• each non-trivial element has exactly one attractive and one repulsive fixed
point,
• every orbit is dense

then there is a homeomorphism conjugating the action ofπ1(S) between T and ∂∞π1(S).

2. The unit tangent bundle and flows

2.1. Three points on view on the unit tangent bundle of H2. We choose
once on for all an orientation on ∂∞H2, and thus talk of positively oriented
triples. Then Iso+(H2) is the subgroup of Iso(H2) preserving positively oriented
triples. The group Iso+(H2) is the connected component of the identity of
Iso(H2) and is isomorphic to PSL2(R). We have several possible definitions of
the unit tangent bundle of H2 that we denote UH2 and we will show that they
are equivalent

(1) The set UH2 is the set of arc-length parametrized geodesics.
(2) The set UH2 is the set of pairs (x, y), where x is a point in H2 and y a

point in ∂∞H2.
(3) The set UH2 is the set is the set of positively oriented triples of ∂∞H2

(4) The set of orientation preserving isometries of the upper half plane
model with H2,

(5) The group PSL2(R) (this identification requires a choice).

Let see how these different points of view are related.

• Obviously a point x in an oriented geodesic L, defines uniquely a
parametrization of L, γ : [−∞,∞]→ H2 by having γ(0) = x, γ(−∞) = t−
and γ(−∞) = t−, where L joins t− to t+.
• Given a pair t = (x,L), we consider the triple (t−, t+, t0) of oriented

distinct points in ∂∞H2, where L joins t− to t+, and the geodesic joining
x to t0 is orthogonal to L.
• Given a triple or positively oriented points (t−, t+, t0) there exists a

unique isometry ψ of the upper half plane model with H̄2, with so that
t− = ψ(0), t+ = ψ(+∞) and t0 = ψ(1).
• Conversely given such an isometry ϕ, we consider

(t−, t+, t0) = (ϕ(0),ϕ(∞),ϕ(1)) .
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• Choosing an isometryϕ0 of the upper half plane model with H2. Every
other isometry ϕ defines an element of PSL2(R) by

ϕ → ϕ−1 ◦ ϕ0 .

2.2. Flows and their geometric description. From third point of view on
UH2, we obtain a left action (by post-composition) of Iso(H2) on UH2 as well as
a right action (by pre-composition) of PGL2(R) on UH2. The action of special
subgroups of PGL2(R) has names

(1) The action of the diagonal subgroup ϕt(x) ≔ xat where

at =


e−

t
2 0

0 e
t
2



is called the geodesic flow. We denote A ≔ {at}t∈R.
(2) The action of the upper triangular subgroup : h+t (x) ≔ x n+t , where

n+t =


1 −t
0 1



is called the stable horocyclic flow. We denote N+ ≔ {n+t }t∈R.
(3) The time reversion is given by σ(x) ≔ x J where

J =


0 −1
1 0



(4) the unstable horocyclic flow is given by the action of the lower triangular
group h−t (x) ≔ x n−t ,

n−t =


1 0
t 1



We denote N− ≔ {n−t }t∈R.
Let us consider H2

p the upper half-plane model, then

Proposition 2.1. For any element B of PSL2(R), the right action of PSL2(R) on
UH2

p is given on the point (i,∞), is

(i,∞) B = (B−1(i),B−1(∞) .

Proof. Indeed in the description of UH2
p as the set of oriented isometries

from H2
p to itself on one side, and on H2

p × ∂∞H2
p. We have

(x, y)↔ ϕ ,
if ϕ(i) = x and ϕ(∞) = x. Thus

(i,∞)↔ Id,
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and hence
(i,∞) B↔ Id ◦B = B↔ (B−1(i),B−1(∞)) .

This is what we wanted to □

Exercise 2.1: Compute what is (x, y) B in general. Notice that it is NOT
(B−1(x),B−1(y)).

One immediately sees that

J ◦ ϕt = ϕt ◦ J , J ◦ h+t = h−t ◦ J . (9)

in PGL2(R).
We need to give a geometric interpretation of these flows notably in the

first point of view

Proposition 2.2 (Geometric interpretation). Let us interpret UH2 as the set
of parametrized geodesic

(1) The geodesic flow is given by γ · ϕt (s) = γ(t + s).
(2) the time reversion is given by γ · J(s) = γ(−s).
(3) For the stable horocyclic flow, it is better to use the interpretation of UH2 as

H2×∂∞H2: (x, y) ·h+t = (z, y), where H(t) = z, H(0) = x and H is the unique
orientation compatible arc-length parametrization of the horocycle defined by
y and x.

Let us remark that if ϕ is an isometry between two hyperbolic planes H2
0

and H2
1, then ϕ gives rise to a map ψ from UH2

0 to UH2
1 commuting with the

left action of PSL2(R). We have indeed that (from the point of view (4)) that

ψ(ξ) = ξ ◦ ψ−1 .

Proof. Let us choose a point (x, y) in UH2 = H2 × ∂∞H2. We can choose
an isometry ϕ sending (x, y) to (i,∞) in the upper half plane model. Now we
observe that, using Proposition 2.1 in the second inequality

ϕt((i,∞)) = (i,∞).at = (a−t(i), a−t(∞)) = (iet,∞) .

Thus if we consider the parametrized geodesic γ defined by (ı,∞):

γ(t) = iet ,

we get the result. A similar construction shows that

(i,∞)· ht = (i + t,∞) ,

and the result follows by a similar construction. We leave the reader see for
themselves the time-reversion property. □
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Hence, the geodesic flows and horocycle flows are just the actions of the
one-parameter diagonal and upper triangle groups of matrices in PSL2(R) on
UH2 respectively.

Closed geodesics can – and will – now be interpreted as closed orbits of the
geodesic flow.

Exercise 2.2: Write the action of these flows on T using only the cross-ratio.

2.3. Commuting rule. Observe now that we have the important commut-
ing rule:

ϕt ◦ hs = hets ◦ ϕt , (10)

This relation gives the contraction property explained in figure 3.

φt(y)

y = Hs(x)

φt(x)

x

Figure 3. Commutation rule

Exercise 2.3: Show that the group generated by A, N+ and N− is SL2(R):
(1) Let B be an invertible matrix. Show that you can find a matrix N0 in

N+ so that N0 B has a non zero top right coefficient.
(2) Show then that there is N1 in N− so that N1 N0 B has a zero bottom left

coefficient.
(3) Show then that, N1 N0 B = A N3, where A is in A and N3 in N+
(4) Conclude.

2.3.1. A distance on UH2. We prove the following results

Proposition 2.3. There exists a distance d on UH2, which is invariant by the left
action of Iso(H2).

As we shall see the distance is not invariant by the left action of PSL2(R).
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Proof. We first prove there exists a distance on UH2 invariant under the
left action of Iso(H2). Let us consider two parametrized geodesics γ and η and
define

d(γ, η) ≔ dH2(γ(0), η(0)) + dH2(γ(1), η(1).

Then one easily checks that this defines a distance on UH2 for which Iso(H2)
acts by isometries. □

2.4. The unit tangent bundle of a surface. If nowΓ is a subgroup of Iso(H2)
such that S ≔ Γ\H2 is a hyperbolic surface, we define the unit tangent bundle
US by

US ≔ Γ\UH2 .

We then define a metric on US, by

d(x, y) ≔ inf
γ∈Γ

d(x0,γy0) ,

where x0 and y0 are elements of US that project to x and y respectively. As
before we have the following result:

Proposition 2.4. The projection from UH2 to US is a local isometry.

3. The Anosov property and the Closing Lemma

3.1. The Anosov property. Let US be the unitary tangent bundle of the
surface S, which from the discussion above is a left quotient UH2 by a discrete
group Γ. We therefore have three flows on US and the corresponding foliations

(1) The geodesic flow ϕt
(2) The stable horocycle flow whose orbits we call stable leaves.
(3) The unstable horocycle flow whose whose orbits we call unstable stable

leaves, obtained by interchanging the role of end points.
(4) The central stable leaf is the 2-dimensional leaf which is obtained as the

orbit under the geodesic flow of the stable leaf.
Then the commutation rules (10) translate into the Anosov property of the geo-
desic flow, which we try to depict in Figure 4

(1) Two points on the same stable leaf get closer under a positive action of
the geodesic flow.

(2) Two points on the same unstable leaf get closer under a negative action
of the geodesic flow.

This property is the translation for the geodesic flow of the north-south dy-
namics of the action of the monodromy group.
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x
φt(y)

y

z

φ−t(z)

φ−t(x)

u

φt(u)

Figure 4. Anosov property

3.2. The Closing Lemma. The Anosov property has a crucial consequence.

Lemma 3.1 (Closing Lemma). There exists ε0, such that for any K greater than
1, there exists T0 such that for all ε < ε0 , x and T, with T  T0, satisfying

d(x,ϕT(x)) < ε .

Then there exists y, with d(x, y) < Kε, a positive number s with |s − T|  Kε so that
ϕs(y) = y.

REECRIRE

Proof. We choose a neighborhood U of x and a parametrization of this
neighborhood by ] − ε, ε[3, given by

ψ : (u, v,w) → ϕu ◦H+v ◦H−w(x) ,

Our first step is to prove the following fact:
There exists z such that d(x, z) < α, a positive number s with |s − T|  α so

that there exists u, with |u|  ε and

ϕs(z) = H−u (z). (11)

We can first have
ϕT(x) = ϕu0 ◦H+v0

◦H−w0
(x),

Let us replace T by T − u0 so that

ϕT(x) = H+v0
◦H−w0

(x),

Let also consider the functions η, ξ, and ζ –depending on w0 such that

H+v ◦H−w0
(x) = ϕη(v) ◦H−ζ(v) ◦H+ξ(v)(x)
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Let K be a constant (independent on w0) so that η, ζ and ξ are K-Lipschitz. It
follows that for s, |u|  ε, we have

ϕT(H+s (x) = H+e−TsϕT(x)

= H+e−Ts+v0
H−w0

(x)

= ϕη(e−Ts+v0) ◦H−ζ(e−Ts+v0)) ◦H+ξ(e−Ts+v0))(x) . (12)

Now the map

s → ξ(e−Ts + v0) ,

is a contracting map for T large enough since ζ is K-Lipschitz, hence has a fixed
point v1. Then setting z = H+v1

(x) and replacing T by T − η(e−Tv1 + v0) we have

ϕT(z) = H−w1
(z) , (13)

where w1 = ζ(e−Tv1 + v0). This proves our first assertion.
Then one obtain the Closing Lemma using the same argument but working

backward in time. □

The Closing Lemma implies the density of the reunion of all closed orbits
which is also a consequence of Lemma 1.2.

3.3. The Quasi-Orbit Lemma. We say a sequence of points {(xn,Tn)}0nN
in US ×R is an (ε,T)-pseudo-orbit if

(1) for all n, the distance d(xnϕT(xn−1))  ε,
(2) for all n, the distance Tn  T,

The following follows from a refinement of the arguments used in the
Closing Lemma

Lemma 3.2 (Quasi-Orbit Lemma). For every α, there exists some ε such that
every ε-pseudo orbit is α close to an orbit.

We only sketch the proof. Assume T > 1 to avoid having to take too much
care of the constants. We start by a preliminary Lemma

Lemma 3.3. Let x1, x2, x3 be three points and T1, T2 two numbers such that ϕTi(xi)
is ε close to xi+1.
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Then there exists y and S1, with |S1 − T1|  ε

∀s, 0  s 
T1

2
, d(ϕs(y),ϕs(x1))  e−T/2ε,

∀s,
T1

2
 s  T1, d(ϕs(y),ϕs(x1))  ε,

∀s, S1  s  S1 +
T2

2
, d(ϕs(y),ϕT+s(x2))  ε,

∀s, S1 +
T2

2
 s  S1 + T2, d(ϕs(y),ϕT+s(x2))  e−T/2ε.

Proof. The proof of this assertion now follows from similar ideas to the
proof of the Closing Lemma: we can write

x2 = H−u ◦H+v ◦ ϕT+w(x1),

with |u|, |v|, |w| smaller than ε.
Then we take y = ϕ−T(z) where z = H+v ◦ ϕT+w(x1). The assertion follows

from the contraction property. □

We can now proceed to the proof of the Quasi-Orbit Lemma.

Proof. We give the rough idea. Assume now for simplicity that N = 2p

and let {xn}0nN in US be an (ε,T) pseudo orbit, with all Tn = T. The assertion
above tells us that we can produce a is a (ε(1+e−T), 2T) pseudo orbit {y2n}0nN/2.
Furthermore the orbit arc ϕ[0,T](xi) is (ε(1 + e−T)-close to ϕ[0,2T](y[i/2]).

We just continue the induction for one more step:
We produce an (ε(1 + e−T + e−2T + e−3T), 4T) pseudo orbit {z4n}0nN/4 where

furthermore ϕ[0,T](xi) is (ε(1 + e−T + e−2T + e−3T)-close to ϕ[0,4T](z[i/4].
Continuing the induction, we end up with X0 and XN which a (α,NT)

pseudo-orbit. We ca so that all xi are α close to the orbit of X0, where

α =
ε

1 − e−T .

□

3.4. Hyperbolic stability at last. Now we can come back to the proof of
the Hyperbolic Stability using the Shadow Lemma.

We are going to prove this in the case the corresponding hyperbolic metrics
g and g′ are close enough. The result would then follow using the fact that the
space of hyperbolic metrics is connected.

The proof follows from the following Lemma.
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Lemma 3.4. Let g and g′ two close enough hyperbolic metrics on S. Let γ′ be a
geodesic of g′. Then there exists a unique geodesic γ for g which is at bounded distance
of γ′.

The uniqueness is obvious: two geodesics at a bounded distance coincide
up to a reparametrization.

The conjugacy (check the details) is given by

Ψ(γ′(+∞)) = γ(+∞),

We leave the reader check the details which are easy:
• Ψ is well defined,
• Ψ is continuous.

We now prove the Lemma

Proof. We denote by ϕt the geodesic flow of the first metric and by ϕ′t the
geodesic flow of the second metric. We denote by US and US the unit tangent
bundle for g and g′. Observe that we have a natural map F – linear fiber by
fiber – sending U2S to U1S.

Using F, we now consider ϕ2
t as a flow on U1(S). Our hypothesis implies

that ϕ′1 is ε close to ϕ1.
Then every geodesicγ′ for g′ defines a ε-pseudo orbit ofϕt, which is defined

by
{ϕ′n(γ̇′(0)}n∈N.

By the Quasi-Orbit Lemma, this ε-pseudo orbit is close to a geodesic γ. □

4. Comments, references and further reading



CHAPTER 5

Measures and Ergodic Theory

We give here as baby course on measures and invariant measures properties
of the geodesic flow on surfaces. We refer the avid reader to Martine Babillot
for a more thorough introduction to the subject.

1. Generalities on measure

1.1. Radon measures. Let X be a compact Hausdorff topological space.
A measure µ on Borel sets defines an integration process from the space of
positive measurable functions into R

f →


X
f dµ .

Conversely, by Riesz–Kakutani–Markov Theorem, given any linear functional
f → F( f ), defined on the space of positive compactly supported and continu-
ous functions with values in the positive numbers , there exists a finite measure
µ, such that

F( f ) =


X
f dµ .

Moreover µis unique provided we impose some regularity relations, namely
for any open set U

µ(U) = inf

µ(K) | K ⊂ U , K compact


.

A finite measure µ satisfying these conditions is called a Radon measure. A
measure on X is a probability measure if µ(X) = 1.

A key result is that given a compact space X, the space M(X) of Radon
probability measures on X is weakly compact: given any sequence {µn}n∈N in
M(X), there exists a µ∞ inM(X) and an increasing sequence of integers {pn}n∈N
such that for any continuous function on X, we have



X
f dµn −→

n→∞



X
f dµ∞ .

We have defined Radon measure for compact spaces, the definition extends
to locally compact spaces without difficulties.

67
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1.2. Support of a measure. Let µ be a (Probability Radon ) measure on a
compact topological space X. Then the support of µ is the closed set Supp(µ)
whose complementary is the set



U∈V

U ,

where V := {U | U open, µ(U) = 0}. In other words for every open set V in
Supp(µ), µ(V)  0.

2. Invariant measures

Let G be a group acting on a measure space. We say that a measure µ is
invariant under G if for all elements g in G and measurable subset A of X, we
have

µ(A) = µ(g(A)).
Equivalently, for a compact topological space a Radon measure is invariant if
for all continuous function f and real g in G, we have



X
f dµ =



X
f ◦ g dµ =



X
f ◦ d(g∗µ) .

Exercise 2.1: (*) We consider the action of PSL2(R) on P1(R).
(1) Show that if µ0 is invariant under the group generated by a non trivial

hyperbolic matrix A in PSL2(R), then µ0 is supported on the two fixed
points of A.

(2) Show that there is no PSL2(R)-invariant measure on P1(R).

We state now two important elementary results

2.1. Kakutani–Markov theorem. For 1-parameter flow, we always have
an invariant measure.

Theorem 2.1 (Kakutani–Markov theorexm). Let X be a compact space and
{ϕt}t∈R a flow of homeomorphisms. Then there exists a {ϕt}t∈R invariant measure on
X.

Proof. Let ν be any probability measure on X. Let

νt =
1
t

 t

0
(ϕs)∗ν ds.

Since X is compact, the setM(X) of Radon probability measures on X is weakly
compact. In other words, there exists a probability measure µ on X, a sequence
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or real numbers {tn}n∈N converging to infinity such that for any continuous
function f



X
f dµ = lim

n→∞



X
f dνtn = lim

n→∞

1
tn



X

 tn

0
f ◦ ϕs dµ ds. (14)

Thus in particular for any real number u,


X
f ◦ ϕu dµ = lim

n→∞

1
tn



X

 tn

0
f ◦ ϕs+u dµ ds

= lim
n→∞

1
tn



X

 tn+u

u
f ◦ ϕs dµ ds. (15)

It follows that


X
f ◦ ϕu dµ −



X
f dµ = lim

n→∞

1
tn



X

 u

0
f ◦ ϕs ds −

 tn+u

tn

f ◦ ϕs ds


dµ (16)

since, 

 u

0



X
f ◦ ϕsdµ


ds −

 tn+u

tn



X
f ◦ ϕsdµ


ds

  2u f ∞,

it follows that 

X
f ◦ ϕu dµ −



X
f dµ = 0. (17)

The result follows. □

2.2. Poincaré recurrence theorem. The second result is

Theorem 2.2 (Poincaré recurrence theorem). Let X be a compact topological
space and {ϕt}t∈R a flow of homeomorphisms preserving a Radon probability measure
µ. Let x be an element Supp(µ), then for any neighborhood U of x and positive T,
there exists t > T and y U such that

ϕt(y) ∈ U.

Proof. Let x and U such as in the theorem. We know that µ(U)  0.
Moreover, since µ is invariant by ϕt, for all t µ(ϕt(U))  0. The key observation
is that there exists n  p such that

ϕTn(U) ∩ ϕTp(U)  ∅ . (18)

Indeed otherwise,

1 = µ(X)  µ





n∈N
ϕTn(U))


 =


n∈N
µ

ϕTn(U)


= ∞ .
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Let us assume n > p, then letting q = n − p, we have from equation 18

U ∩ ϕT−q(U)  ∅ .
Let thus y ∈ U∩ϕT−q(U), then by definition ϕTp(y) ∈ U and y ∈ U. The theorem
follows. □

3. Ergodicity

The unit tangent bundle of a compact hyperbolic surface S has a probability
measure µ0 – that we call the Lebesgue measure – which comes from the Haar
measure of UH2 and which is invariant under the geodesic flow, as well as the
horocyclic flows.

We say a probability measure µ is ergodic under a flow {ϕt}t∈R if for all flow
invariant set A, either µ(A) = 0 or µ(A) = 1.

Equivalently, every L2 function, invariant by G, is constant.
We state in these notes without proof two important results, the first one is

relatively easy to prove.

Theorem 3.1 (Ergodic Decomposition Theorem). Let {ϕt}t∈R be a flow acting
on a compact space X. We denote by M(X) the convex set of probability Radon
measures on X, and M0(X) the subset of {ϕt}t∈R invariant measures. Let µ0 be an
element ofM0(X), then there exists a probability measure ν0 onM0(X) supported on
ergodic measures so that

µ0 =



M0(X)
µ dν0(µ).

Proof. We only sketch the construction. The setM0(X) is a convex set in
the dual of C0(X). To be ergodic for a measure translate in being an extremal
point inM(X) – that is a point which is in no open segment included inM0(X).
The result follows from the fact that every point in a compact convex set is
a barycenter (with respect to some measure) of extremal points according to
Krein–Milman Theorem. □

The second one is a deeper result.

Theorem 3.2 (Birkhoff Ergodic Theorem). Let {ϕt}t∈R be a flow acting on a
compact space X. Let µ0 be an ergodic probability Radon measures on X. Let f be
a measurable function. Then there exists a set A of full measure in X so that for all
x ∈ A, we have

lim
t→∞


1
t

 t

0
f (ϕs(x)) ds


=



X
f (x) dµ(x).
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The quantity

M f (x, t) :=
1
t

 t

0
f (ϕs(x)) ds,

is called a Birkhoff sum.
We shall only prove in Theorem 5.4 the much easier Statistical Ergodic L2-

Theorem due to Von Neumann where we further assume that f is in L2(X, µ0).
We also leave as an exercise the following proposition which follows from

Birkhoff ergodic theorem and the ergodic decomposition theorem

Proposition 3.3. Let µ be a measure invariant by a flow {ϕt}t∈R, Let f be a
continuous function. Then there exists a set of µ full measure A an invariant function
M f on A, such that for all x in A,

lim
t→+∞

1
t

 t

0
f ◦ ϕs(x) ds = lim

t→+∞

1
t

 t

0
f ◦ ϕ−s(x) ds =M f (x). (19)

Moreover, if for every f there exists a subset of full measure B ⊂ A on which M f is
constant, then µ is ergodic.

4. Invariant measures by the geodesic flow

The unit tangent bundle of the hyperbolic space carries an invariant mea-
sure:

4.1. The Lebesgue measure. More precisely we have

Proposition 4.1. The unit tangent bundle UH2 possess a measure invariant by
the left action of Iso(H2) and the right action of PSL2(R).

We call this measure the Haar measure or the Lebesgue measure. We will use
freely the following result: assume that ω is a non vanishing volume on a
manifold M, this measure defines a measure µω by



X
f dµω ≔



X
fω ,

where the right-hand side1 is the integration of the form fω on the manifold
M, oriented by ω.

Proof. In order to define a measure, we will first define a volume form on
SL2(R) invariant by the left and right actions of SL2(R) that we consider as a
subset of the vector space of 2×2 matrices. Let s be the Lie algebra of PSL2(R),

1By abuse of language, one uses the same notation for two non-equivalent integration
procedures
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that is the tangent space to SL2(R) at the identity. The vector space s identifies
with the vector space of traceless 2 × 2 matrices.

Let ω0 be a non trivial volume form on s. For instance we may choose

ω0(A,B,C) = Trace([A,B]C) .

Observe that for any g in SL2(R)

ω0(gAg−1, gBg−1, gCg−1) = Trace([A,B]C) . (20)

Observe that the tangent space to SL2(R) at a point g can be interpreted in two
ways:

TgSL2(R) = gs = {gA | A ∈ s} = sg = {bg | A ∈ s} .
We define now a volume form on TgSL2(R) by

ωg(Ag,Bg,Cg) = ω0(A,B,C),

and thus a volume form ω on SL2(R) by

g → ωg .

Let denote the right (respectively left) multiplication by g, Rg (respectively Lg).
We now want to prove that

R∗gω = L∗gω = ω .

or more explicitly for g and h in SL2(R),

ωgh(Agh,Bgh,Cgh) =ωg(Ag,Bg,Cg) , (21)
ωhg(hAg, hBg, hCg) =ωg(Ag,Bg,Cg) . (22)

We now observe that equation (21) derives immediately from the definition of
ω, while for equation (22) we have

ωhg(hAg, hBg, hCg) =ωhg(hAh−1hg, hBh−1hg, hCh−1hg)

=ω0(hAh−1, hBh−1, hCh−1)
=ω0(A,B,C)

The existence of this left and right invariant volume form gives rise to an
left and right invariant measure µ0 on PSL2(R) hence a left and right invariant
measure µ on UH2: more precisely we define for a subset A in UH2,

µ(A) = µ0(Aξ0) ,

where ξ0 is any element of UH2 seen as the set of isometries from the upper
half plane model H2

P to H2. This definition is independent on the choice of ξ0:
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indeed any other element ξ1 of UH2 is equal to ξ0g, and for every subset B of
PSL2(R)

µ0(Bg) = µ0(B) .

The left invariance under the action of Iso(H2) and the right invariance under
the action of PSL2(R) then comes from the left and right in invariance of µ0 by
PSL2(R)

□

Exercise 4.1: The following exercise is needed in the next one: there is no
group homomorphism f from PSL2(R) to R. Recall the commutator of a and
b in a group is [a, b] ≔ aba−1b−1.

(1) by computing the commutator of a diagonal matrix and a unipotent
triangular matrix, show that every unipotent matrix is a commutator,
hence in ker( f ),

(2) by computing the commutator of a lower triangular matrix with a
upper one, show that every diagonal matrix is in ker( f ),

(3) Conclude using exercise 2.3.
(4) Remark: This exercise is much easier when you know that every closed

subgroup of a Lie group, is a Lie group itself.

Exercise 4.2: (*) Here is another construction of the Lebesgue measure: we
identify UH2 with H2×∂∞H2. For each x in H2, the stabilizer Kx of x in Iso+(H2)
is a compact group, isomorphic to S1, acting freely and transitively on ∂∞H2.
It follows that, for every x in H2, there is a unique probability measure νx on
∂∞H2 invariant by Kx. We then define the Radon measure µ0 on UH2 by



UH2
f (x, y) dµ0(x, y) =



H2



∂∞H2
f (x, y) dνx(y)


dσ(x) ,

where σ is the area on the hyperbolic plane.
(1) Show that µ0 is a measure on UH2, invariant by Iso(H2).
(2) Show that µ0 is the unique (up to multiplication) measure on UH2

invariant by Iso(H2) and in the Lebesgue class – using the transitivity
of the action of Iso+(H2) on UH2.

(3) Let A be an element of PSL2(R) acting (on the right on UH2. Show that
A∗µ0 = d(A)µ0, where d : A → d(A) is a morphism of PSL2(R) in R.

(4) Using the fact that there is no non-trivial morphism from PSL2(R) to
R (cf exercise 4.2), show that µ0 is also invariant under the right action
of PSL2(R).
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(5) Observe that for this measure

µ(US) = σ(S) ,

where σ is the hyperbolic area measure.

Exercise 4.3:
(1) Prove that any PSL2(R)-invariant measure on UH2 in the Lebesgue

class is a multiple of the Lebesgue measure.
(2) (**)(Difficult one) Prove that any PSL2(R)-invariant measure on UH2

is a multiple of the Lebesgue measure. Hint: use the fact that any
measure onR invariant under translation is in the Lebesgue measure.

4.2. Other invariant measures. Any closed geodesic γdefines an invariant
measure by the geodesic flow on Γ\UH2. This measure µγ is the unique
invariant probability measure whose support is that closed geodesic and is
sometimes called the Dirac measure supported on the closed geodesic. This
measure is defined as follows: for any continuous function f for any x in γ, we
define 

X
f dµγ =

1
ℓ(γ)

 ℓ(γ)

0
f ◦ ϕs(x) ds.

4.3. Hopf argument. The rest of this paragraph is devoted to a purely
dynamical proof of the following result.

Theorem 4.2. Let S be a finite volume surface. Then the Lebesgue measure is
ergodic with respect to the geodesic flow.

In Paragraph 5.1, we shall give a proof of this result using considerations
on unitary representations of SL2(R) on L2(US, µ) and the fact that the geodesic
flow comes from an action of PSL2(R). However, we feel that another more
general argument is due

We are now giving a proof of the Theorem which can be extended (with
some extra work) to general Anosov flows preserving a volume form, without
assuming the action of a larger group – in the hyperbolic surface case: PSL2(R).

Proof of Theorem 4.3. We shall use a weak consequence of the Anosov
property. We have these three foliationsL+ the stable foliation,L− the unstable
foliation, and L0 the foliation by the orbit of the geodesic flow {ϕt}t∈R. We
denote by L∗x the leaf of L∗ passing through x. These foliations are locally a
product, meaning that we can find for every x a neighborhood U of x so that
we have the identification

U = (L+x ∩U) × (L−x ∩U) × (L0
x ∩U)
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and that in this identification the three foliations come from the product struc-
ture.

Moreover (this is an important feature) these foliations are absolutely con-
tinuous with respect to the Liouville measure. This means that at least locally
we can decompose the Liouville measure λ can be written in the coordinates
that gives the product structure as

λ = λ+ ⊗ λ− ⊗ λ0

This property, called the absolute continuity of the stable and unstable foli-
ations is obvious in our case. In the general case of Anosov flows, this is a
difficult theorem by Anosov. Assuming this theorem, ergodicity follows from
the same scheme of ideas.

We now use Proposition 3.3 and consider the function M f for a continuous
function f . By assumption M f is constant along the leaves of L0. We now
prove that M f is constant along the leaves of L+.

Since US is compact, f is uniformly continuous. Thus f is bounded by K,
and that for every ε there exists α such that

d(u, v)  α =⇒ | f (u) − f (v)|  ε.
Now let x and y belong to A and the same leaf of L+. In particular by

definition, when t > t0

d(ϕt(x),ϕt(y))  α.

It thus follows that considering the Birkhoff sums for t > t0, we get

|M f (x, t) −M f (y, t)


1
t

 t0

0

 f ◦ ϕs(x) − f ◦ ϕs(y)
 ds +

1
t

 t

t0

 f ◦ ϕs(x) − f ◦ ϕs(y)
 ds


K.t0

t
+ ε .

It follows that for all ε
|M f (x) −M f (y)|  ε.

And thus for all x, y in the same leaf of L+ then M f (x) = M f (y). A similar
argument works for L−.

Now we leave as an exercise the proof of the following fact: since A is of
full measure and the foliations are absolutely continuous with respect to the
Liouville measure, locally there exist three sets of full λ∗-measure B∗ in L∗x so
that

B = B+ × B− × B0 ⊂ A.
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Then M f is constant on B. Since B has full measure, this means by Propo-
sition 3.3 that λ is ergodic. □

Actually, you can check that it suffices to use the statistical ergodic Theorem.

5. Ergodicity and mixing: spectral approach

Let G be a topological group acting on a compact space X, preserving a
measure µ, we say that the action of G is mixing if for any measurable sets A
and B, and sequence {gm}m∈N of elements of G leaving any compact set in G,
then

lim
n→∞
µ

A ∩ gn(B)


= µ(A)µ(B) .

In probabilistic terms, the events “belonging to A” and “the gn-image belongs to
B” become independent when n goes to infinity.

We have an alternative way of stating the mixing property: if ψ and ϕ are
L2 functions on X, then for any sequence {gm}m∈N in G leaving any compact we
have

lim
m→∞



X
(ϕ ◦ gm) ψ dµ =



X
ϕ dµ



X
ψ dµ.

Mixing is an important concept that comes in different flavors. What is
given here is the definition of strong mixing of strong 2-mixing; but they are
other types of related notions: weak mixing, topological mixing, strong m-mixing,
exponential mixing...

Just a note, here we introduce mixing for a probability measure, obviously
this definition extends to finite measures. We just have to to introduce µ(X),
and the corresponding property is that for all measurable sets A and B

lim
n→∞
µ

A ∩ gn(B)


=
µ(A)µ(B)
µ(X)

.

Being mixing is stronger than being ergodic.

Proposition 5.1. Every mixing action is ergodic.

Proof. Let ϕ be an invariant L2-function, and g an element of the group.
Then we have the equality



X
(ϕ ◦ g) ϕ dµ =



X
|ϕ|2 dµ .

Assuming mixing we obtain the equality


X
|ϕ|2 dµ =





X
ϕ dµ


2

.
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Thus ϕ is constant: it is enough to check that for function whose integral
over X is zero. Applying that to the characteristic function on a set gives the
result. □

We now prove the following result

Theorem 5.2. The geodesic and horocyclic flows are mixing.

5.1. The L2-approach. We recall that a representation π of a topological
group G on a Hilbert spaceH is unitary and strongly continuous, if

(1) for every g in G, π(g) is a unitary operator ionH ,
(2) and moreover for every f inH the map g → π(g) · f is continuous.

We have the basic example

Proposition 5.3. Assume a topological group G acts by homeomorphisms on
a compact space X preserving a measure µ. Then there is a unitary and strongly
continuous representation π on L2(X, µ) given on a continuous function f by

π(g) f = f ◦ g−1 .

Proof. Recall the the space C0(X) of continuous functions on X is dense in
L2(X, µ). Then for every continuous function h, we have that

h ◦ g−12 =


X
|h ◦ g−1| dµ =



X
|h| dµ = h2 ,

where for the second equality we used that g preserves the measure µ. It
follows by density that if sequence {hm}m∈N in C0(X) converges to h in L2(X, µ),
then {hm ◦ g−1}m∈N is a Cauchy sequence, hence converges to an element that
we define as π(g)h.

By density it follows that π(g) is unitary for any element g of G. To check
the strong continuity we proceed again by density. Let first h be an element
of C0(X), and {gm}m∈N a sequence of element of G converging to g, then it is
a classical fact that h ◦ g−1

m converges in C0(X) – and in particular in L2(X, µ) –
to h ◦ g−1. Given now a general element h of L2(X, µ), we first find a sequence
{hp}p∈N converging to h in L2(X, µ). Then we write

π(g)h − π(gm)h2
 π(g)h − π(g)hp2 + π(g)hp − π(gm)hp2 + π(gm)h − π(gm)hp2
 2h − hp2 + π(g)hp − π(gm)hp2 .

Then we let m going to infinity, to obtain that

lim sup
m→∞

π(g)h − π(gm)h2

 2h − hp2 .
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Since this last inequality is true for all p, we have

lim sup
m→∞

π(g)h − π(gm)h2

= 0 .

Thus the representation is unitary and strongly continuous. □

5.2. The Statistical Ergodic Theorem. As a first utilization of the L2 ap-
proach we have the the Statistical Ergodic Theorem proved by Von Neumann

Theorem 5.4 (Statistical Ergodic Theorem). Let {ϕt}t∈R be a flow acting on a
compact space X. Let µ0 be an ergodic probability Radon measures on X. Let f be an
a function in L2(X, µ). Then there exists a set A of full measure in X so that for all x
in A, we have

lim
t→∞


1
t

 t

0
f (ϕs(x)) ds


=



X
f (x) dµ(x).

Proof. Since the Radon probability measure µ is invariant by {ϕt}t∈R, then
for each ϕt, the operator Ut, which is given by postcompostion by ϕt acts by
isometries on L2(X, µ). To be ergodic means that the there exists a non-zero s,
such that Us that has no invariant vectors in L2

0(X, µ) the subspace of functions
whose integral is zero. It follows that

Id−U−s ,

has a dense image. Indeed

Image(Id−U−s)

⊥
= ker(Id−Us) = {0} .

Let then f be a function in L2
0(X, µ) and let us consider

ft : x → 1
t

 t

0
f ◦ ϕs(x) ds .

Assume first that f = g −U−s(g). Then

1
t

 t

0
Uu( f ) du =

1
t

 t

0
Uu(g) −Uu−sg) du

=
1
t

 0

−s
Uu(g) du −

 t−s

t
Uu(g) du


L2

−→
t→∞

0 .

In general, we write f = limn→∞ fn, where fn belong to the image of Id−Us.
Then 

1
t

 t

0
Uu( f ) du − 1

t

 t

0
Uu( fn) du


2

  f − fn2 .
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Thus for every positive ε, for n large enough,


1
t

 t

0
Uu( f ) du − 1

t

 t

0
Uu( fn) du


2

 ε

But, we have show above that for a fixed n
1
t

 t

0
Uu( fn) du


2

−→
t→∞

0

and thus

lim sup
t→∞


1
t

 t

0
Uu( f ) du


2

 ε .

The result follows by taking ε as small as we want.
Thus { ft}t∈R converges to zero in L2(X, µ), hence it converges point-wise to

zero almost everywhere.
□

Let X be a space equipped with a probability measure µ. Let {ϕt}t∈R be a
flow preserving µ acting on X. Let L2

0(X, µ) be the vector subspace of L2(X, µ)
consisting of functions whose integral is zero. Observe that any measure
preserving mapping f from X to X define a unitary operator A f on L2

0(X, µ) by
A f : g→ g ◦ f . Let Ut = Aϕt .

We now observe the following

Proposition 5.5 (L2 interpretation). The flow {ϕt}t∈R is ergodic if and only if
the one parameter group {Ut}t∈R has no non-trivial invariant vectors on L2

0(X, µ).
The flow {ϕt}t∈R is mixing if and only for any function f and g in L2

0(X, µ) we have

lim
t→∞
〈Ut. f , g〉 = 0.

Thus Theorem 5.2 (as well as the ergodicity of any non-compact closed
subgroup!) follows at once from the following result

Theorem 5.6 (Howe–Moore). Assume that we have a strongly continuous uni-
tary representation π of SL2(R) on a Hilbert space H . Assume that π has no
non-trivial invariant vector, then if {gn}n∈N is a diverging sequence in SL2(R) then
for any u and v inH ,

lim
t→∞
〈π(gn)u, v〉 = 0.

Corollary 5.7. If the group SL2(R) acts ergodically on a space X preserving
probability measure, then every non-compact subgroup acts ergodically and is mixing.

In particular since PSL2(R) acts transitively on US, it acts ergodically and
Theorem 5.2 follows.
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5.3. Proof of Howe–Moore’s Theorem. In the whole proof, we will write
nt ≔ n+t . Our first lemma is the following

Lemma 5.8 (Mautner phenomenon). Let u be an element inH so that {atnu}n∈R
weakly converges to u0, where {tn}n∈R goes to infinity.

Then u0 is invariant under the one parameter group {nt}t∈R.

Recall that un weakly converges to u, if for all z,

lim
n→∞
〈un, z〉 = 〈u, z〉

Proof. We have for any g

| 〈π(ns)u0, v〉 − 〈u0, v〉 | = lim
k→∞

| 〈π(nsatk)u, v〉 − 〈π(atk)u, v〉 |


= lim
k→∞

| 〈π(a−tknsatk)u,π(a−tk)v〉 − 〈u,π(a−tk)v〉 |


 lim
k→∞

π(a−tknsatk)u − u .v = 0,

where the first equality comes from the hypothesis. Since

lim
k→∞

a−tknsatk = lim
k→∞

ne−tk s = 1,

thus for all v, by the definition of the the fact that the representation of PSL2(R)
is unitary and strongly continuous.

| 〈π(ns)u0, v〉 − 〈u0, v〉 | = 0 ,

and the result follows. □

Our second lemma is the following

Lemma 5.9. Let u be an element in H invariant under the one parameter group
{nt}t∈R. Then u is invariant by SL2(R).

Proof. Let u be any vector. Let ϕu be the continuous function on SL2(R)
given by

u → ϕu(g) ≔ 〈π(g)u,u〉 .
Then the following are equivalent for any closed subgroup G of SL2(R)

(1) ϕu is constant on G,
(2) ϕu is G-bi-invariant: for all h in G and g in PSL2(R), then ϕu(hg) =
ϕu(gh) = ϕu(g)

(3) f is π(G)-invariant.
The implications (3) =⇒ (2) =⇒ (1) are obvious. Then (1) implies (3).
Indeed, if we assume (1), the first for all g in G, 〈π(g)u,u〉 = 〈u,u〉 hence

π(g)u − u2 = 2 〈u,u〉 − 〈π(g)u,u〉)2 = 0 .
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Observe that in this last implication, we have used in a crucial manner that
π(g) is a unitary operator.

We can now proceed to the proof of the Lemma. Let f be a N-invariant
vector. Let P be the group generated by N and {at}t∈R.

Since u is invariant by N = {nt}t∈R, it follows form the initial remark that ϕu
is a left and right N invariant function on SL2(R).

Any left and right N invariant function on SL2(R) give rise to a left invariant
N continuous function on SL2(R)/N. However SL2(R)/N together with left
action by SL2(R) is identified with R2 \ {0}: for this identification we identify
SL2(R) as the set of basis (of determinant 1) of R2. Then the left N-orbits are
points on the horizontal axis, and horizontal lines. It follows by continuity
that ϕu is constant on the horizontal axis, which is precisely the image of P.

Similarly, using the remark again, ϕu is now a left and right P invariant
function on SL2(R), hence a P-invariant function on SL2(R)/P = P1(R). Thus
since P has a dense orbit on SL2(R)/P we obtain that ϕu is constant. That is
what we wanted to prove. □

Proof of Howe–Moore Theorem. Let U and V be two vectors inH , {gm}m∈N
be a divergent sequence in SL2(R). We want to prove that

〈π(gm)U,V〉 −→
m→∞

0 .

The sequence of real numbers {〈π(gm)U,V〉}m∈N is bounded by UV, thus
we can extract a subsequence so that it converges to a real number λ.

Observe that any matrix B in PSL2(R) can be written as

B = K0 A K1 ,

where K0 and K1 are rotations (elements of SO(2)) and A is a diagonal matrix2.
Thus, we can write

gm = (k0
m)−1 atmk1

m,

where k0
m and k1

m belongs to SO(2). Thus we can as well assume that {k0
m}m∈N

and {k1
m}m∈N converges to k0 and k1 respectively.

Let u ≔ π(k1)U and v ≔ π(k0)V, we first show that we also have.

〈π(atm)u, v〉 −→
m→∞

λ .

2This decomposition is known in general semi-simple Lie groups as the Cartan or KAK
-decomposition.
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Indeed, letting Um ≔ π(k0
m)U and Vm ≔ π(k0

m)V we have, using unitarity and
Cauchy–Schwarz Inequality,

〈π(atm)u, v〉 − 〈π(gm)U,V〉
 =
〈π(atm)u, v〉 − 〈π(atm)Um,Vm〉




〈π(atm)u, v〉 − 〈π(atm)Um, v〉

 +
〈π(atm)Un, v〉 − 〈π(atm)Um,Vm〉


 v Um −U + Vm − v U
= v Um − u + Vm − v V ,

and we conclude by using the strong continuity of πwhich implies that

Um
L2

−→
m→∞

U and Vm
L2

−→
m→∞

v .

We can now continue the proof: since {π(atm)u}m∈N is bounded, by the weak
compactness theorem, after extracting a subsequence, we can as well assume
that {π(atm)u}m∈N converges weakly to u0.

By the Mautner phenomenon, u0 is invariant by N. By the second lemma
u0 is invariant by SL2(R). Thus u0 = 0 and hence λ = 0 is achieved. □

Exercise 5.1: Prove the existence of the Cartan decomposition for PSL2(R) by
considering the (right)-action of SO(2) and the group of diagonal matrices on
UH2.

5.4. Unique ergodicity and complements. A flow is said to be uniquely
ergodic if is possesses a unique invariant measure. By the ergodic decompo-
sition theorem, such a measure is necessarily ergodic. So equivalently a flow
is to uniquely ergodic if is possesses a unique ergodic invariant measure. Ob-
viously, the geodesic flow is not uniquely ergodic: all closed geodesics define
invariant measures. A deeper result says

Theorem 5.10 (Furstenberg). The horocyclic flow is uniquely ergodic for a finite
volume hyperbolic surface.

All the previous results have extensions in higher dimensions and for
general Anosov flows.

6. Comments, references and further reading



CHAPTER 6

Equidistribution and growth of geodesics

Let S = Γ\H2 be a compact hyperbolic surface, where Γ is a discrete group
of Iso+(H2). We saw that the unit tangent bundle has a probability measure µ0
– that we call the Lebesgue measure – which comes from the Haar measure of
PSL2(R) and which is invariant under the geodesic flow. Every closed geodesic
γ, with period of length ℓ(γ) also defines a geodesic flow invariant probability
measure µγ on US by the formula


f dµγ =

1
ℓ(γ)

 ℓ(γ)

0
f (ϕt(x)) dt .

All these measures are related by the following deep result

Theorem 0.1 (Bowen, Margulis). The closed geodesics are equidistributed
with respect to the Lebesgue measure:

lim
T→∞

1
ΓT





γ∈ΓT

µγ


 = µ0,

where ΓT is the set of closed geodesics of length smaller than T.

As one of the first step in the proof, we will show that ΓT is a finite set.
The following theorem will then count asymptotically the number of closed
geodesics.

Theorem 0.2 (Margulis). Let ΓT be the set of closed geodesics of length smaller
than T. Then

lim
T→∞

2Te−TΓT = 1 .

We have a similar statement for counting points in an orbit, let us introduce
for a point x0 in H2,

Γ0
T ≔ {γ ∈ Γ | d(x0,γ(x0))  T} .

Then
83
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Theorem 0.3 (Margulis). Let x0 be a point in H2. Then

lim
T→∞

Γ0
T

eT =
π

Area(S)
,

where the area of the hyperbolic surface is computed with respect to the hyperbolic area.

To fix the notation,
(1) Let σ be the hyperbolic measure on S.
(2) Let µ0 the Lebesgue measure on US so that µ0(S) = 1.
(3) Let x be a point in H2. Let νx be the probability measure on ∂∞H2 such

that νx is invariant under the stabilizer of x in Iso+(H2).
(4) Let π be the projection from UH2 to H2, and denote similarly by π be

the projection from US to S, as well as p the projection from UH2 to US
and by an abuse of language from H2 to S.

1. Equidistribution of circles

1.1. Equidistribution of circles in the unit bundle and in the surface.
Let C0 be the preimage of x for the projection UH2 → H2, in other words
C0 = {x}×∂∞H2. Let then µ0 the probability measure on US proportional to the
Lebesgue measure.

Theorem 1.1 (Equidistribution of circles I). Let Y be an interval in C0. Let
f be continuous function on US,

1
νx(Y)



Y
f ◦ ϕT dνx −→

T→∞



US
f dµ0 .

One could observe that we could see this as a “mixing property” between a
continuous function and a Radon measure – instead of two L2-functions, with
respect to a measure. However, let us warn the reader that such a general
mixing property is not true in general and require a theory of wavefront.

As a corollary, we have defining for an interval Y in C0, YT the “circle arc at
distance T” in H2,

YT ≔ {z ∈ H2 | d(x, z) = T , ∃y ∈ Y, such that z ∈ [x, y]}
Then, denoting dy the arc-length measure on Y,

Corollary 1.2 (Equidistribution of circles II). Let Y be an interval in C0.
Let f be continuous function on S,

1
ℓ(YT)



YT

f ◦ p dy −→
T→∞

1
Area(S)



S
f dσ ,

where p is the projection from H2 to S.
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Proof. It just follows from the remark that (ϕT)∗νx is proportional to the arc
length measure on YT. □

We could interpret these results as saying the 1-dimensional family of
curves YT becomes equidistributed in the surface as T goes to infinity.

1.2. Yet another description of UH2. For the purpose of the construction
of the next paragraph, we need to express the Lebesgue measure on UH2 in
some coordinates.

Let us consider the group P of triangular matrix in PSL2(R). We then have
a natural parametrization from

Ψ :



R2 → P

(s, t) → a2snt =


e−s t
0 es


.

Observe that this map is a group morphism whenever we define the group
structure of R2 as

(s,u) (t, v) ≔ (s + t, e−sv + etu) .
Then one checks that

Lemma 1.3. The measure λ = etdt dv, is invariant under the left action of P on
itself.

Proof. Indeed for a compactly supported function f


P
f ((s,u)(t, v)) etdtdv =



P
f (s + t, e−sv + etv)) etdtdv =



P
f (t′, v′) et′dt′dv′ ,

where we performed the change of variables (t′, v′) = (s + t, e−sv + etu). □

Let now fix a point u0 in UH2 whose projection in H2 is x and let Kx
be the stabilizer of x and νx its bi-invariant measure (well defined up to a
multiplicative constant). Let consider the left-action of P on UH2 given by

p y ≔ y p−1 .

We leave the reader check the

Lemma 1.4. The left action of Kx × P is transitive on UH2. This action preserves
the Lebesgue measure µ0 on UH2.

Let us consider the orbit map

Ψ0 :


Kx × P → UH2

v → vu0

We have



86 6. EQUIDISTRIBUTION AND GROWTH OF GEODESICS

Lemma 1.5. The push-forward measure

µx ≔ Ψ0
∗ (νx ⊗ λ)

is a multiple of the Lebesgue measure, by a constant independent on x.

Proof. Indeed, both measures are invariant by the left action of Kx × P
and in the same measure class. Since Kx × P acts transitively on UH2, their
Radon–Nikodym derivative is constant. The fact that this constant k(x) – seen
as a function of x – is also constant is a consequence of the equivariance of the
construction under the isometry group of H2: for every g in Iso+(H2),

g∗µx = µ(g(x)) .

Thus k(g(x)) = k(x) and the result follows from the transitivity of the action on
Iso+(H2) on US. □

We choose a multiple ν0
x of νx such that

Ψ0
∗ (ν

0
x ⊗ λ) = µ0 .

1.2.1. Proof of the equidistribution of circles. We use the parametrization Ψ0

describe in the previous paragraph and describe UH2 as Kx × R2. In this
description C0 = Kx × {(0, 0)}.

Let us consider the following open set, which depends on the choice of a
positive number ε

U ≔ Y × ]0, ε[ × ]0, ε[ .
The open set U is some sort of a thickening of C0 and we have

µ0(U) = ν0
x(Y) α (eε − 1) ∼

ε→0
νx(Y) α ε .

Proposition 1.6. When T goes to infinity,


US
( f ◦ ϕT) χU dµ0

US
χUdµ0

−→


US
f dµ0 .

Proof. This is an immediate consequence of mixing. □

Let also consider the two dimensional set

Zε ≔ Y × ]0, ε[ × {0},
that we equip with the measure µ1 ≔ ν0

x ⊗ etdt such that for any continuous
function 

Zε
g dµ1 =



Zε
g(y, t) etdν0

x(y) dt .

As a second crucial proposition, we have
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Proposition 1.7. When T goes to infinity,



Zε

f ◦ ϕT dµ1

µ1(Zε)
−


U
( f0 ◦ ϕT) dµ0

µ0(U)


→ 0.

Proof. We immediately have that µ0(U) = εµ1(Zε). Observe now that
Moreover d(ϕT(k, s, t) − d(ϕT(k, s, 0) converges uniformly to zero by the con-
traction on the stable horospheres for (k, s, t) in U, the uniform continuity of f
yields that

 f ◦ ϕT(k, s, 0) − f ◦ ϕT(k, s, t)
 −→

T→∞
0 ,

this convergence being uniform for (k, s, t) in U when T goes to infinity. Thus
setting for all t in ] − ε, ε[,

Zε(t) ≔ Y × ]0, ε[ × {t},


Zε
g dµ1 =



Zε
g(y, t) etdν0

x(y) dt .

Rephrasing, the uniform continuity of f as given through equation (23), we
have when T grows to infinity, uniformly in t





Zε(t)
f ◦ ϕT dµ1 −



Zε
f ◦ ϕT dµ1

→ 0.

Now it remains to remark that

µ0(U) = εµ1(Zε(t)) = 2εµ1(Zε)

and that by Fubini’s theorem


U
f0 ◦ ϕT dµ0 =

 ε

−ε



Zε(t)
f ◦ ϕT dµ1


dt ,

to conclude the proof of the theorem. □

Finally we have,

Proposition 1.8. Given a continuous function f and any β and then for any ε
with ε  ε0 and any β then




Y

f ◦ ϕT dνx

νx(Y)
−


Zε

f ◦ ϕT dµ1

µ1(Zε)


 β .
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Proof. This is again a consequence of the uniform continuity of f : indeed
there exists a positive α, such that

d(z,w)  α implies | f (z) − f (y)|  β .
Then there exists ε0 such that for all z

|s − t|  ε0 implies d(ϕs(z),ϕt(z))|  α .
These two inequalities implies the result. □

Proof of Theorem 1.1. The result follows from a classic decomposition:



Y

f ◦ ϕT dνx

νx(Y)
−


US
f dµ0







Y

f ◦ ϕT dνx

νx(Y)
−


Zε

f ◦ ϕT dµ1

µ1(Zε)




(A)

+




Zε

f ◦ ϕT dµ1

µ1(Zε)
−


US
( f0 ◦ ϕT) χU dµ0

µ0(U)




(B)

+




US

( f0 ◦ ϕT) χU dµ0

µ0(U)
−


US
f dµ0




(C)

.

Let β be any positive number. We first choose ε small enough so that the term
(A) is smaller than β by Proposition 1.8. Then we choose T large enough so that
the second term (B) is smaller than β (by Proposition 1.7) and the third term
(C) is smaller than β as well (by Proposition 1.6). This concludes the proof. □

2. Counting in the group

Let Γ be the subgroup of PSL2(R) such that S ≔ Γ\H2 is compact. We want
to count asymptotically the number of points in the Γ-orbit of x, that is get an
asymptotics of the following number when T goes to infinity

NT ≔ {γ ∈ Γ | d(γ(x), x)  T} .
Our first goal is to obtain Theorem 0.3, namely that when T goes to infinity

NT ∼
π

Area(S)
eT . (23)
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We will actually treat a more general and related counting problem. Let Y be
an arc in C0 as in the previous paragraph, and let us define

NT,Y ≔ {γ ∈ Γ | ∃y in YT such that d(γ(x), y)  T} .
This amounts geometrically to counting elements of Γ in the “sector” defined
by Y. The refined result is

Theorem 2.1 (Counting points in a sector). Let νx be the Kx invariant prob-
ability measure on ∂∞H2, then

NT,Y ∼ νx(Y)
π

Area(S)
eT , (24)

Proof. Let x0 be a point in S and let f be a bump function, that is a positive
function of integral 1 supported on some ε-neighborhood of x0. We have that

1
ℓ(YT)



YT

f ◦ p dy −→
T→∞

1
Area(S)

,

and we saw in exercise 5.1, that

ℓ(YT) = 2π sinh(T)νx(Y) ∼
T→∞

πeT

Area(S)
νx(Y) ,

And thus


YT

f ◦ p dy ∼
T→∞

πeT

Area(S)
νx(Y) , (25)

It is actually more convenient here to work in the universal cover and that
what we will do now.

Let x so that p(x) = x0 and g a bump function in H2 of integral 1, with respect
to the hyperbolic measure, such that g is supported in an ε-neighborhood of
x0. It follows that

f0 ≔ f ◦ p =


γ∈Γ
g ◦ γ .

For the sake of simplicity, let first treat the case Y = C0, let then

BT = {z ∈ H2 | d(x0, z)  T} .
The following inequality is now obvious

NT−ε 


BT

f0 dσ  NT+ε . (26)
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It follows that

NT−ε 
 T

0



Ct

f0 dy


dt  NT+ε . (27)

From the asymptotics 25, we get that for any positive α there is T0, such that
for T greater than T0, we have

(π − α)
Area(S)

et 


Ct

f0 dy 
(π + α)
Area(S)

et .

Thus we have the lower inequality,

(π − α)
Area(S)

(et − e−t0) − K0  Nt+ε .

and after a change of variable, there is a positive constant K1 such that for T
large enough,

e−ε(π − α)
Area(S)

eT − K1  NT . (28)

Similarly given any α, we have the upper inequality: there exists positive con-
stants K and T0 so that for all t  T0

NT−ε  eT (π + α)
Area(S)

+ K ,

thus after a change of variables there is a positive constant K2 such that for T
large enough,

NT 
eε(π + α)
Area(S)

et + K2 .

It follows that for all positive ε and α, we have

lim sup
T→∞

NT

eT 
1

Area(S)
eε(π + α) ,

lim inf
T→∞

NT,Y

eT 
1

Area(S)
e−ε(π − α) ,

Thus, since this is true for all positive α and ε, we obtain the upper and lower
inequalities for NT

eT :

lim sup
T→∞

NT

eT 
π

Area(S)
, (29)

lim inf
T→∞

NT

eT 
π

Area(S)
. (30)
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These two inequalities definitely imply that

lim
T→∞

NT

eT =
π

Area(S)
, (31)

as required.
Let us now treat the general case. Let Y and Y0 be two open intervals such

that Y0 is a proper subinterval in Y:

Y0 ⊂ Y .

Let similarly

BT,Y = {z ∈ H2 | d(x, z)  T and ∃y ∈ Y, z ∈ [z, y]} .
We have to rethink inequality (26). Since Y0 is a strict subset of Y, we obtain that
given any ε, for T large enough, the ε-neighborhood of Y0

T (in CT) is included
in YT, thus we have to replace inequality (26) by: there exists T0 and k0, such
that for T  T0, we have

NT−ε,Y0 − k0 


BT,Y

f0 dσ  NT+ε,Y . (32)

Since the right inequality has the same nature, the same argument gives a
similar lower inequality as inequality (30),

lim inf
T→∞

NT,Y

eT 
π

Area(S)
νx(Y) . (33)

The upper inequality is a little different from inequality (29). It says that for all
proper subinterval Y0 of Y,

lim sup
T→∞

NT,Y0

eT 
π

Area(S)
νx(Y) , (34)

but since this is true for all Y containing the closure of Y0, we have

lim sup
T→∞

NT,Y0

eT 
π

Area(S)
νx(Y0) . (35)

Apply that last upper inequality to Y0 = Y, we have

lim sup
T→∞

NT,Y

eT 
π

Area(S)
νx(Y) , (36)

and thus combining with inequality (33) we obtain the desired asymptotics:

lim
T→∞

NT,Y

eT =
π

Area(S)
νx(Y) . (37)
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This completes the proof of the theorem. □

3. Equidistribution of geodesics and counting geodesics

Theorem 0.1 and 0.2 are interrelated and we will prove in this section

Theorem 3.1. Let S be a closed hyperbolic surface, let µ0 be the right SL2(R)
invariant probability measure on US. Let Γ(T) be the set of closed geodesics of length
less then T and N(T) the cardinal of Γ(T), then

N(T) ∼
T→∞

eT

T
, (38)

1
N(T)



γ∈Γ(T)

µγ −→
T→∞
µ0 . (39)

We recall that given a closed geodesic γ, the measure µγ is characterized by

µγ(U) =
ℓ(γ ∩U)
ℓ(γ)

.

3.1. Cubes. We will start by the following definition

Definition 3.2. An ε-cube or cube of size ε at x0 in UH2 is an open subset U
of UH2 of the form

U ≔ Ψ

Iε × Iε × Iε


x0 .

where Iε ≔] − 1
2ε,

1
2ε[, x0 is a point in US and

Ψ(s,u, t) = ϕt ◦ h+s ◦ h−u .

We define cubes in US as projections of the similar object in UH2.

We recall that {ϕt}t∈R is the geodesic flow while {h+s }s∈R and {h−u }u∈R are
respectively the stable and unstable horocyclic flows. The following is obvious

Proposition 3.3. There exists some ε0 such that the projection from an ε0-cube
in UH2 to US is an embedding.

All similar cubes have the same volume:

Proposition 3.4. Let U and V be ε-cubes in UH2, then µ0(U) = µ0(V).

Proof. This is the consequence of the transitivity of the action of Iso+(H2)
on UH2 on one hand and the fact that the action of Iso+(H2) commutes with the
action of PSL2(R), and hence for every g in Iso+(H2), the image of the ε-cube
centered at x0 is the ε-cube centered at g(x0). □
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We will finally state the following result as a consequence of Vitali’s cov-
ering argument and some extra work. Let us denote for any N, given K an
ε-cube KN the corresponding Nε-cube. The following lemma is obvious

Proposition 3.5 (Extension from cubes). Let ν be a flow invariant Radon
measure. Assume there exist a positive number ε such that for every cube C of size
less than ε, we have

ν(C)  µ0(C),
where µ0 is the Lebesgue measure. Then ν is a multiple µ0.

We start with two Lemmas whose proof – which involves squeezing a cube
between two balls – is left to the reader. First given an ε-cube C centered at x0,
we denote by CN the corresponding cube of size Nε centered at x0. Then we
have

Lemma 3.6. There exists N0 and ε0 , such that if η  ε, and two η-cubes C1 and
C2 intersects then C2 is included in CN

1

For the sake of simplicity, we then write

C0 ≔ CN0 .

Lemma 3.7. There exist positive constants K0 and ε1 such that if C is of size less
than ε1, then

µ(C0)  K0µ(C) .

Proof of Proposition 3.5. It is enough to prove that ν1 = fµ0 where f is
function: indeed by ergodicity of µ0, f is a constant function.

Thanks to the Radon–Nikodym Theorem, it is enough to show that there
exists a constant K0 such that for every Borel set B:

ν(B)  K0µ0(B) .

Let ε smaller than ε1 and ε2 given in Lemmas 3.6 and 3.7 For any set B, let Bε
be the neighborhood of B given by the reunion of ε-cubes centered on B.

Let finally f (ε) = µ(C) where C is any ε-cube.
By an adaptation of Vitali’s covering argument given any Borel set B, we

can find P disjoints 1
Nε-cubes Ci centered on B such that C0

i covers B. Thus

f
 1
N0
ε


P =
p

i=1

µ(Ci)  µ0(Bε) .

And in particular

P 
1

f


1
N0
ε
µ0(Bε) .
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Then we can write

ν1(B)  ν1(Bε) 
P

i=1

ν1(C0
i )


P

i=1

µ0(C0
i ) = P f (ε)


f (ε)

f


1
N0
ε
µ0(Bε) = K0µ0(Bε) .

Since µ0 is a Radon measure, hence outer regular

µ0(B) = inf
ε>0

(Bε) .

Thus we have
ν(B)  K0µ(B) .

for all Borel sets. □

3.2. Hitting a cube. We now introduce the technical quantities needed for
our proof. Let then for any positive numbers R1 and R2, with R2 > R1

Γ(R1,R2) ≔ {γ closed geodesics | R1  ℓ(γ)  R2} , (40)

N(R1,R2) ≔ Γ(R1,R2) , (41)

µ[R1,R2] ≔


γ∈Γ(R1,R2)

µγ . (42)

Finally to shorten the notation, we denote by I(T, β) the interval centered at T
of length β:

I(T, β) =

T −
β

2
,T +

β

2


,

Given U be an open set and γ a closed geodesic let

n(γ,U) =  {connected components of γ ∩U) ,

Finally, for any positive β, let us define the following counting number.

N(T, β,U) ≔


γ∈Γ(I(T,β))
n(γ,U) (43)
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3.2.1. Reinterpreting the counting number. We will need two reinterpreta-
tions of this counting number The first proposition is easy and will be used
directly in the proof of the Theorem. We have

Proposition 3.8 (Measure reinterpretation). For any positive ε and ε-cube
U, we have

ε
T

N(T, ε,U) ∼
T→∞
µI(T,ε)(U) . (44)

Proof. The proof follows from the definition of the measure µI(T,ε). Indeed

µγ(U) =
ℓ(γ ∩U)
ℓ(γ)

=
ε
ℓ(γ)

n(γ,U) .

It follows that
ε

T + ε2
n(γ,U)  µγ(U) 

ε
T − ε2

n(γ,U) .

Thus
ε

T + ε2
N(T, ε,U)  µI(T,ε)(U) 

ε
T − ε2

N(T, ε,U) .

Hence
ε
T

N(T, ε,U) ∼
T→∞
µI(T,ε)(U) ,

which is what we wanted to prove. □

The second one will be used in the proof of the crucial Lemma

Lemma 3.9 (Intersecting cubes). Let V be an ε-cube in US and U an ε-cube in
UH2 such that p(U) = V and

γ(U) ∩U  ∅ implies γ = Id . (45)

Let
Γ(T, β,U) =


γ ∈ Γ | ∃S ∈ I(T, β) , x0 ∈ U ,ϕS(x0) = γ(x0)


.

Then
N(T, β,V) =  Γ(T, β,U) .

Proof. Let C(T, ε,V) be the set of connected components of the intersection
of V, with all closed geodesics of length in I(T, ε). Let v be an element of
C(T, ε,V), that is a connected component of g∩V, where g is a closed geodesic
of length S in the interval TT(ε). Let x0 be the lift of an element in v, by
definition there exists γ in Γ such that ϕS(x0) = γ(x0). By construction, γ
depends continuously on x0 and thus actually depends only on v. We write
γ = γ(v). Observe that γ(v) belongs to Γ(T, ε,U) by definition.

Thus we have constructed a map C(T, ε)→ Γ(T, ε,U) given by v → γ(v). We
now construct an inverse by the following procedure. Let γ be an element of
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Γ(T, ε,U), then by definition there is x0 in U, S in I(T, ε), such thatϕS(x0) = γ(x0).
Then we observe that, by construction of a cube, the geodesic g starting at x0
is so that U ∩ p is an interval. We take v(γ) to be the projection of that interval.
On then checks that γ→ v(γ) is an inverse of γ→ γ(v). □

3.3. Measure and counting. We now spend some time proving the follow-
ing

Proposition 3.10 (Measure and counting). For any positive ε and ε-cube U,
we have

N(T, ε,U) ∼
T→∞

eTµ(U) . (46)

We will devote section 3.8 to the proof of Proposition 3.10, then prove
Theorem 3.1 in paragraph 3.9.

This is the heart of the construction. It involves both the mixing property
and arguments from the Closing Lemma . W need to go through some prelim-
inaries about horospherical arcs, then prove lower and upper bound for the
integral of a test function.

3.4. Preliminaries on horospherical arcs. Say an horospherical arc Y is an
interval in a unstable leave in UH2. Such a horospherical arc projects to an
horosphere and carries a measure dy coming from the arc length on the pro-
jected horosphere. Given Y an horospherical arc and T a positive number, we
defined YT to be the horospherical arc ϕT(Y).

Let finally p be the projection from UH2 to US.: As a first lemma we have

Lemma 3.11 (Equidistribution of horospheres). For any continuous function
g on US and any horospherical arc Y

1
ℓ(Y)



Y
g ◦ p ◦ ϕT dy ∼

T→∞



US
g dµ0 .

Proof. The proof is a consequence of mixing and is isomorphic to the proof
of equidistribution of sectors (Theorem 1.1) . We will not repeat it here. Behind
the similarity is a a general wave front Lemma (see [?]). □

Our second lemma uses the expansion property and will be used twice in
the sequel

Lemma 3.12 (Images of intervals). Let A and B be respectively η and ζ-cubes
at x0 with η < ζ. Given any positive k0 greater than 1, then there exists T1 such that
the following property holds

• Let H be the (unstable) horosphere through x0.
• Let Y = H ∩ B.
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• Let γ be in Γ.
We now assume there exist y0 in A, T with T > T1, such that ϕT(y0) belongs to γ(A),
then there exists an interval Z in A containing y0, such that

(1) ϕT(Z) is a connected component of ϕT(H) ∩ γ(A)
(2) we have the control:

1
k0

e−Tℓ(Y)  ℓ(Z)  k0e−Tℓ(Y) . (47)

Proof. The proof is left to the reader. □

3.5. The test function. Let us now consider positive constants k and k0
such that

0 < k < k0 < ε .

• an ε-cube Uε at x0, where ε is small enough so that p restricted to Uε is
an embedding. We then consider the horospherical arc Y = h−Iεx0,
• a positive function f no greater than 1, equal to 1 on the k0ε-cube Uk0ε

at x0 and with support in Uε, where k is a fixed constant less than 1.
Observe that

µ0(Ukε) 


UH2
f dµ0  µ0(Uε) .

Let
f0 ≔



γ∈Γ
f ◦ γ = g ◦ p ,

where g is a continuous function on US. It follows that


UH2
f dµ0 =



US
g dµ0 .

Furthermore, we have an immediate corollary of Lemma 3.12

Corollary 3.13. for any K with K > 1, there exists T1 so that for any γ and T
greater than T1,

1
ℓ(Y)



Y
f ◦ γ ◦ ϕT dy  Ke−T (48)

3.6. The lower bound. The lemma of this paragraph is the following

Lemma 3.14. Let k be a positive constant less than 1. Then there exists T2 such
that for T greater than T2 Assume that γ belongs to Γ(T, kε,Ukε), then

1
ℓ(Y)



Y
f ◦ γ−1 ◦ ϕT  ke−T .
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We then have as an immediate corollary using Lemma 3.9

Corollary 3.15 (Lower bound). We have the lower bound: there exists T3 such
that for T greater than T3,

1
ℓ(Y)



Y
g ◦ p ◦ ϕT dy  ke−TN(T, kε,Ukε) .

Proof of Lemma 3.14. Let γ be an element of Γ(T, kε,Ukε). Let W ≔ h+(Iε)Y,
and Wk = W ∩Ukε, Yk = Y ∩Ukε. Since W is transverse to the geodesic flow, it
follows that there exists z0 in Wk, α in I0(kε) such that ϕT(z0) = γ(ϕαz0).

Let us write z0 = h+u (y0) with y in Yk. Then

ϕT(z0) = h+e−TuϕT(y0),

Since ϕT(z0) is in γ(Ukε) it follows that for T large enough, ϕT(y0) is γ(Uk0ε).
We can now apply Lemma 3.12, for A = Uk0ε and B = Uε. Let Z be the

subinterval of Y produced by the lemma. In particular for T large enough

e−T 1
k
ℓ(Y)  ℓ(Z)  ke−Tℓ(Y) , (49)

ϕT(Z) ⊂ Uk0ε (50)

It follows that


Y
f ◦ γ−1 ◦ ϕT dy 



Z
f ◦ γ−1 ◦ ϕT dy = ℓ(Z) .

Thus
1
ℓ(y)



Y
f ◦ γ−1 ◦ ϕT dy  ke−T .

The process is summarized in figure 1 □

3.7. The upper bound. The upper bound involve arguments similar to
those of the Closing Lemma . Let K be now a constant greater than 1,

Lemma 3.16. Let K be any constant greater than 1, then there exists T4 such that
if T greater than T4 and γ in Γ satisfies



Y
f ◦ γ−1 ◦ ϕT dy  0 ,

then γ belongs to Γ(T,Kε,UKε)

As an immediate corollary using Lemma 3.9, we have
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Figure 1. lower bound

Corollary 3.17 (Upper bound). We have the upper bound; there exists T5 such
that for T larger than T5, we have

1
ℓ(Y)



Y
f0 ◦ ϕT dy  Ke−TN(T,Kε,UKε) .

Proof of Lemma 3.16. Let again W = h+(Iε)Y. Let H the horosphere con-
taining Y, let YK = H ∩UKε. Assume that γ is such that



Y
f ◦ γ−1 ◦ ϕT dy  0 .

This implies that there exist y0 in Y, such that f (γ−1ϕT(y0))  0 and thus ϕT(y0)
belongs to γ(Uε).

We apply Lemma 3.12, with A = Uε and B = UKε. Then there exist an
interval Z, containing y0, in YK such that ϕT(Z) is a connected component of
ϕT(H)) ∩ γ(UKε).

Let nowΠ the projection from UKε to YK, namelyΠ(u) is the intersection of
Y with the orbit of u under the group P− generated by {ϕt}t∈R and {h−u }u∈R.

Then the map F : Z→ YK

z → Π(γ−1ϕT(z)) ,

has a fixed point z1 in Z – and in particular in UKε for T large enough: its
inverse is contracting. It follows that

ϕT(L) = γ(L) ,

where L = P−1z1. Since G = γ−1 ◦ ϕT is contracting on L we therefore obtain a
fixed point x0 in L, arbitrarily close to z1 for T large enough and in particular
in UKε.
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We can now conclude: we have S in IT(Kε), x0 in UKε, such that ϕS(x0) =
γ(x0). This completes the proof. The process is summarized in figure 2

Figure 2. upper bound

□

3.8. Proof of Proposition 3.10. We can now put the pieces back together.

Proof of Proposition 3.10. It follows from the previous results that for
constant K greater than 1 and k smaller than 1, for all ε-cube U

lim inf
T→∞


Ke−TN(T,Kε,UK)


 µ0(Uk) . (51)

Since this is true for all k we have

lim inf
T→∞


Ke−TN(T,Kε,UK)


 µ0(U0) . (52)

We now remark there is a function Fε, not depending on the choice of such that

µ0(U) = Fε(K)µ0(UK)

Moreover Fε converges to 1, uniformly in ε when K converges to 1. Thus
noticing that UK is an η-cube with η = Kε. We obtain that for all η cube V,

lim inf
T→∞


e−TN(T, η,V)




1
K

F η
K
µ0(V) . (53)

Hence letting K converge to 1. We obtain

lim inf
T→∞


e−TN(T, η,V)


 µ0(V) . (54)
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A similar argument using the lower bound gives

lim sup
T→∞


e−TN(T, η,V)


 µ0(V) . (55)

These two inequalities give the result. □

3.9. Proof of Theorem 3.1. Our goal is to prove the following proposition
and then Theorem 3.1

Proposition 3.18. we have
T
eTµ[0,T](U) −→

T→∞
µ0(U) . (56)

Proof. Our starting observation is that combining Proposition 3.10 and
Proposition 3.8 yields the following assertion: for every ε-cube U,

µI(T,ε)(U) ∼
T→∞
ε

eT

T
µ0(U) . (57)

Step 1: we first show that for any positive ε, any ε-cube U, and k1 greater than 1,
there exists T6 such that for T  T6,

e−2ε

k2
1

µ0(U) 
T
eTµ[0,T](U)  k2

1e2ε µ0(U) ds . (58)

As a consequence of assertion (57), we have that for every k1, with k1 > 1,
there exists S1 so that for T > S1 − 1, the following inequalities holds

µ0(U)
k1

 T

T−ε

es

s
ds  µI(T,ε)(U)  k1µ0(U)

 T+ε

T

es

s
ds , (59)

where we used the inequalities
 T

T−ε

es

s
 ε

eT

T

 T+ε

T

es

s
ds .

Thus for all positive integer q,

µ0(U)
k1

 S1+qε

S1−ε

es

s
ds  µ[S1,S1+qε](U)  k1µ0(U)

 S1+(q+1)ε

S1

es

s
ds .

Let then p the integer such that

S1 + pε  T  S1 + (p + 1)ε . (60)

The inequalities

µ[S1,S1+(p−1)ε](U)  µ[S1,T](U)  µ[S1,S1+(p+1)ε](U) ,
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thus yield

µ0(U)
k1

 S1+(p−1)ε

S1−ε

es

s
ds  µ[S1,T](U)  k1µ0(U)

 S1+(p+2)ε

S1

es

s
ds ,

and in particular using inequalities (60) again

µ0(U)
k1

 T−2ε

S1−ε

es

s
ds  µ[S1,T](U)  k1µ0(U)

 T+2ε

S1

es

s
ds . (61)

As a consequence, we remark that

µ[S1,T](U) < ∞ ,
lim
T→∞
µ[S1,T](U) = ∞ ,

and thus

µ[S1,T](U) ∼
T→∞
µ[0,T](U) .

Let us now consider the left and right terms of inequality (61). L’hôpital’s rule
gives

 T−2ε

S1−ε

es

s
ds ∼

T→∞
e−2ε eT

T − 2ε
∼

T→∞
e−2ε e

T

T
,

 T+ε

S1

es

s
ds ∼

T→∞
e2ε eT

T + 2ε
∼

T→∞
e2ε e

T

T
.

Thus inequality (61) rereads as: for any positive ε, any ε-cube U and k1 greater
than 1, there exists T6 such that for T  T6,

e−2ε

k2
1

eT

T
µ0(U)  µ[0,T](U)  k2

1e2ε e
T

T
µ0(U) ds .

This concludes the proof of step 1.

Step 2: Let us consider a sequence {Tm}m∈N growing to infinity such that

µm ≔
Tm

eTm
µ[0,Tm] −→

m→∞
ν ,

for some geodesic flow invariant Radon measure ν. Then ν = µ0.

Let now f be a positive function less than 1 and supported on some ε-cube
U. It follows that

f dν = lim
m→∞


f dµm  µm(U)  e2εµ0(U)k2

1 .



3. EQUIDISTRIBUTION OF GEODESICS AND COUNTING GEODESICS 103

Since the previous inequality is true for any k1 greater than 1, we obtain that


f dν  e2εµ0(U) ,

Thus for any compact K inside U,

ν(K)  e2εµ0(U) ,

and since ν is a Radon measure, hence inner regular, for any ε-cube U,

ν(U)  e2εµ0(U) . (62)

Observe this inequality is also true for any cube of size less than ε. Thus
applying Proposition 3.5, we have that ν(B) is a multiple of the Lebesgue
measure µ0 by a constant k:

ν = kµ0 .

The inequality (62) furthermore gives that k  e2ε, and since this is true for all
ε, it follows that

k  1 . (63)

Let us now prove the opposite inequality: let f be a function equal to 1 on U,


f dν  e−2εµ0(U) .

We then obtain, by taking functions furthermore supported on neighborhoods
of Ū,

ν(Ū) = k0µ(Ū)  e−2εµ0(U) .

It then implies that k  e−2ε, and this is is true for all εwe have

k  1 . (64)

Combining inequalities (63) and (64), we have that

ν = µ0 .

This concludes the proof of step 2.

Conclusion: We remark that the inequality (58) of step 1 implies that T
eTµ[0,T]

has bounded total measure independent on T: Let us take a covering of US by
finitely many ε cubes {Ui}i∈{1,...,p} then

T
eTµ[0,T](US) 

p

i=1

 T
eTµ[0,T](Ui)


 k2

1e2εµ0(Ki)  p k2
1 e2ε < ∞ .

The result then follows from the weak compactness of measures of bounded
total measure. □
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Proof of Theorem 3.1. Applying Proposition 3.18 to f = 1, we get

N(T) =


US
dµ[0,T] ∼

T→∞

eT

T



US
dµ0 =

eT

T
,

which is the first part of Theorem 3.1. Secondly, we then have that by the
definition of weak convergence

T
eT



γ∈Γ(T)

µγ −→
T→∞
µ0 ,

and thus combining with the previous assertion this prove the second half of
Theorem 3.1:

1
N(T)



γ∈Γ(T)

µγ −→
T→∞
µ0 .

This completes the proof. □

4. Comments, references and further reading



Part 3

Tourism around hyperbolic surfaces





CHAPTER 7

Discrete subgroups and closed surfaces

1. Monodromies of hyperbolic structures and the Euler class

Every (oriented) hyperbolic surface gives rise to an embedding of the mon-
odromy group ofπ1(S) with discrete image, moreover this group has no torsion.
Indeed, every torsion element of PSL2(R) fixes a point in the hyperbolic plane.

Conversely every torsion free subgroup of PSL2(R) acts properly freely on
the hyperbolic plane and is the monodromy of a – not necessarily compact –
hyperbolic surface. In order to complete the picture, we recall

Lemma 1.1 (Selberg). Every finitely generated linear group possesses a finite
index subgroup without torsion.

We sketch the idea of the proof of Selberg Lemma in Lemma 1.2.
It follows that every faithful representation of the fundamental group of

a surface with discrete image is the monodromy of a hyperbolic structure.
A little extra work shows that if moreover S is compact then ρ(π1(S)\H2 is
homeomorphic to S, so therefore

Proposition 1.2. Every faithful representation of the fundamental group of a
compact surface S with discrete image is the monodromy a hyperbolic structure on S.

Exercise 1.1: (**) Show that this last statement fails for a non-compact surface.

Proposition 1.3 (Borel density Theorem). Every monodromy of a finite vol-
ume hyperbolic surface is Zariski dense.

Proof. We prove it for a compact surface S = Γ\H2. From the description
of hyperbolic surfaces, it follows that we can find two elements in Γ which
generates hyperbolic translations with distinct endpoints. However, the list of
algebraic non trivial subgroups of PSL2(R) is very short: they either preserve
a point in H2 or a point in ∂∞H2. It follows that the Zariski closure of Γ is
PSL2(R). □

1.1. Teichmüller space and space of representations. The Teichmüller space
τ(S) is the space of all representations of π1(S) with discrete image up to

107
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conjugacy. It is diffeomorphic to a ball, we almost proved it ... . Let us
introduce an invariant of representation of π1(S). For that, let us choose a
presentation of π1(S)

π1(S) = 〈a1, b1, . . . , ag, bg |


i=1

g[ai, bi] = 1〉 ,

where [c, d] = cdc−1d−1.
Observe now that PSL2(R)/ SO(2) = H2, hence that PSL2(R) has the homo-

topy type of S1. We therefore have an exact sequence

Z→ PSL2(R)→ PSL2(R)→ 0.

Let us choose a map σ from PSL2(R) to PSL2(R) that splits that sequence, σ
will actually never be continuous, nor a group morphism. Then we have

Proposition 1.4 (Euler Class). Let ρ be a representation of π1(S) to PSL2(R)
The element

e(ρ) =


i=1

g[σ(ρ(ai)), σ(ρ(bi)],

is an element of the center of PSL2(R) which we identify to Z. This number is
independent of the choice of σ, of the presentation of π1(S) and is constant under local
deformations of ρ. The number e(ρ) is called the Euler class of the representation.

Let now χ(S) be the Euler characteristics of S. Then

Theorem 1.5 (Milnor-Wood inequality). Let ρ be a representation of π1(S)
to PSL2(R) Then

|e(ρ)|  |χ(S)|.
We can use the Euler class to distinguish connected connected components

of space of representations. More precisely

Theorem 1.6 (Goldman). The map from the space of connected components
of Hom(π1(S),PSL2(R)) to {χ(S),χ(S) + 1, . . . ,−χ(S)} is a bijection. Moreover,
monodromies of hyperbolic structures are exactly representations such that |e(ρ)| =
|χ(S)|.

It follows from this theorem that we can check whether a representation is
the monodromy of a hyperbolic structure just from a presentation of the group.

2. Comments, references and further reading



CHAPTER 8

Arithmetic surfaces

1. Field extensions

A field K1 containing a field K0 is said to be a field extension of K0. The
degree [K1 : K0] of the field extension is the dimension of K1 seen as a vector
space overK0. When [K1 : K0] is finite, we sayK1 is a finite extension ofK0.

Exercise 1.1:
(1) C is a extension of degree 2 of R, while R is an infinite extension of Q.
(2) Let α0,α1, . . .αp be complex numbers. Let K = Q(α1, . . .αp). Say α0

is algebraically dependent of α1, . . .αp if α0 is a solution of a non trivial
polynomial equation with coefficients inK and algebraically independent
other wise. Prove that if the numbers α0 is algebraically depend from
α1, . . .αp then Q(α0, . . .αp) is a finite degree extension ofK.

(3) (*) Prove that if α0,α1, . . .αp are algebraically independent complex
numbers, then the ring Q[α0, . . .αp] generated by Q and the numbers
(α0,α1, . . .αp) is isomorphic to the polynomial ring Q(X0, . . . ,Xp) over
the variables (X0, . . . ,Xp)

When d = [K1 : K0] is finite, it follows thatK1 \ {0} acting by multiplication
onK1 can be considered as a subgroup of GLd(K0).

More generally if d = [K1 : K0], then we have a group embedding, essen-
tially by replacing coefficients with matrices,

GLn(K1)→ GLdn(K0) . (65)

Here is a useful proposition

Proposition 1.1. Let Γ be a finitely generated subgroup of GLn(R) then Γ is
isomorphic to a subgroup of SLnM


[Z[1/p,X1, . . . ,Xq]


.

We give a sketch of the proof in the following exercise.

Exercise 1.2: Let Γ be a finitely generated subgroup of GLnR)
(1) prove that there exists some numbers α1, . . . ,αq so that

Γ < GLn(Z[α1, . . . ,αq]) .
109
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Hint: consider the coefficients of the generating set of Γ
(2) (*) Using the trick developed in the beginning of the section, show that
Γ embeds in (for some p) in

SLnM


Z[1/p,X1, . . . ,Xq]


.

Hint: Observe that this is obvious when α1, . . . ,αq are algebraically
independent, then use a finite induction to reduce to this case.

As a consequence of the proposition we have the following classical lemmas

Lemma 1.2 (Selberg Lemma). Every finitely generated subgroup of GLn(R) has
a finite index subgroup which has no non trivial elements of finite order.

The next lemma requires a definition: a group Γ of is residually finite if for
every non trivial element γ in Γ, there is a homomorphism f of Γ in a finite
group such that f (γ) is non trivial.

Lemma 1.3 (Residual finiteness). Every finitely generated subgroupΓ of GLn(R)
is residually finite

It is enough indeed to show both Lemmas for SLN


Z[1/p,X1, . . . ,Xq]


.

2. Lattices and arithmetic lattices

We start this section by a definition: we say two subgroups Γ1 and Γ2 in a
group G are commensurable if Γ1 ∩ Γ2 is a subgroup of finite index in both Γ1
and Γ2.

2.1. Lattices. Let us now concern ourselves with lattices in SLn(R), that is
discrete subgroups Γ such that Γ\SLn(R) has a finite volume. When n = 2,
among those are groups Γ such that Γ\SL2(R) is a compact hyperbolic surface.

Exercise 2.1:
(1) Show that every subgroup commensurable to a lattice is a lattice.
(2) (**) Show that a lattice Γ in PSL2(R) that contains no parabolic elements

is cocompact: Γ\PSL2(R) is compact.
(3) Show that a lattice Γ in PSL2(R) that contains no parabolic elements

has a finite index subgroup Γ0 such that Γ\H2 is a hyperbolic surface.

Lattices are large and we have a generalization of Proposition 1.3 by Armand
Borel.

Theorem 2.1 (Borel Density Theorem). Every lattice in SLn(R) is Zariski
dense in SLn(R)

The theorem holds for any semi-simple Lie group.
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2.2. Arithmetic lattice.

Definition 2.2. A subgroup Γ in G = SLn(R), is arithmetic if we have repre-
sentation ρ of G in SLN(R) such that

(1) the group ρ(G) ∩ SLN(Q) is (almost) dense in ρ(G),
(2) the groups ρ(Γ) and ρ(G)∩SLN(Z) are (almost) equal: they have a common

finite index subgroup.

The expression H almost dense in G means that the closure of H contains the
connected component of the identity in G. Obviously any subgroup commen-
surable to an arithmetic lattice is arithmetic. As before the definition can be
extended to any non compact semisimple Lie group G.

The condition (1) is equivalent to (or stated as) ρ is defined over Q.

Theorem 2.3 (Minkowski). The subgroup SLn(Z) is a lattice in SLn(R).

Exercise 2.2: (*) Prove Minkowski Theorem for n = 2.

A beautiful generalization is due to Armand Borel and Harish-Chandra

Theorem 2.4. Any arithmetic subgroup of SLn(R), or of any semi-simple Lie
group, is a lattice.

We then have

Exercise 2.3: (**) The set of arithmetic lattices is countable. (*) There exists non
arithmetic surface subgroups.

As an obvious example SL2(Z) is an arithmetic lattice. Here is a less obvious
construction.

Exercise 2.4:
(1) Show that the map A → det(A) defines a non degenerate quadratic

form q0 of signature (1, 2) on the space M of 2x2 matrices with trace
zero.

(2) Prove that the map from PSL2(R) to SO(q0) given by the conjugation
action of PSL2(R) on M, is an isomorphism.

In other words, PSL2(R) is isomorphic to SO(1, 2)

Let now q be the quadratic form on R3 defined by

q(x, y, z) = x2 + y2 −
√

2z2 ,

and let G be the group SO(q), which is isomorphic to PSL2(R) by the previous
exercise. The following construction is difficult.

Exercise 2.5:
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(1) Prove that SL3(Q) ∩G is dense in G.
(2) Prove that Γ ≔ SL3(Z) ∩G is an arithmetic lattice in G.
(3) (**) Show that Γ contains no parabolic elements.
(4) Show that Γ\H2 is compact.

Let us end this paragraph by a beautiful theorem of Margulis

Theorem 2.5 (MargulisArithmeticityTheorem). Any lattice in SLn(R) with
n  3 is arithmetic.

Again this result is extended to any semi-simple Lie group.

3. Commensurators, arithmeticity and correspondences

3.1. Commensurator group. Let Γ be a lattice in SL(R) S = H2/Γ. The
commensurator group of Γ is

Comm(Γ) ≔ {g ∈ SL(R) | gΓg−1 ∩ Γ is of finite index in Γ}.
One can observe that the commensurator group is indeed a group. We check
for instance that

PSL2(Q) = Comm(PSL2(Z)) .
More generally, by the definition of arithmetic groups the commensurator of
an arithmetic lattice is dense. The following a deep Theorem by Margulis
states the converse.

Theorem 3.1 (Margulis commensurability criterion). A lattice is arithmetic
if and only if its commensurator group is dense.

We will now use this theorem as a non standard definition of arithmetic
lattices.

3.2. Arithmetic hyperbolic surfaces. We now concentrate on surfaces.
Here is another remark. We say a hyperbolic surface is arithmetic if S = Γ\H2,
with Γ arithmetic.

Lemma 3.2. If a surface is not arithmetic, then Γ has finite index in Comm(Γ).

Proof. Let H the closure of Comm(Γ). We first prove that H is discrete: oth-
erwise, every element in Comm(Γ) would fix the Lie algebra of the connected
component of H of the origin. But this defines a Zariski closed condition. By
Borel density theorem, H = PSL2(R) hence S is arithmetic which is a contradic-
tion. It follows that Comm(Γ) is discrete. Then we have a covering map from
PSL2(R)/Γ, which is compact, to PSL2(R)/Comm(Γ). Hence, the fibers of this
map are finite sets which exactly means that Γ has finite index in Comm(Γ). □
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Here is an important and far from obvious consequence of the classification
of arithmetic surfaces.

Proposition 3.3. Given a compact surface S, there are only finitely arithmetic
hyperbolic surfaces homeomorphic to S.

We then have

Corollary 3.4. Give a surface S, there is a number λ(S), such that for every
arithmetic hyperbolic metric g on S, for every closed geodesic γ, then

ℓg(γ)  λ(S)

Here ℓg(γ) is the length of γ with respect to g. It is not very difficult tor
prove the corollary implies the proposition. Here is an interesting exercise. I
actually do not know the solution and would love to hear of one.

Exercise 3.1: (***) Give a proof of Corollary 3.4 only using the characterization
of arithmetic hyperbolic surfaces using Margulis commensurability criterion.

3.3. Hecke correspondences and arithmetic dynamics. The main feature
of arithmetic surfaces are the existence of many correspondences. A finite
correspondence between two sets X and Y is a subset of Z in the product X×Y so
that the preimage of very point in each of the factor is finite and non-empty. In
particular, an element g in the commensurator group of a hyperbolic surface
S gives rise to such a correspondence which is furthermore a local isometry
see Figure 1. Indeed, we consider the map πg of H2 into S × S given by
x→ (π(x),π(gx)) whereπ is the covering map. To say g is in the commensurator
group, is just to say that πg is a covering map of compact image and that its
image is a correspondence Zg. Actually, the correspondence is just determined
by the class of g in Γ\Comm(Γ)/Γ.

Let then furthermore define the degree deg(T) of a correspondence T from S
to itself, as the infimum of the degree of the covering of S involved in defining
the correspondence.

We now define hyperbolic correspondences for hyperbolic surfaces to be cor-
respondences which are local isometries. The dichotomy between arithmetic
surfaces and non-arithmetic surfaces is then the dichotomy between finitely
many and infinitely many hyperbolic self-correspondences.

A self-correspondence gives rise to two types of dynamics. First quantum
dynamics acting on the space of L2 functions on S. So if p1 and p2 are the two
projections – of degree q – of the hyperbolic correspondence Z ⊂ S× S on each
factor, then

Hg( f )(x) ≔
1
q



z∈p1(x)

f (p2(z)),
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x

p2(p−1
1 {x})

p−1
1 {x}

Figure 1. A correspondence

is a self adjoint operator called the Hecke operator of the correspondence.

3.4. The hyperbolic solenoid. Secondly, we can associate classical dynam-
ics. There is a classical dynamical way to turn non-bijective map or more
generally correspondence into a bijective map. So, to settle notation, let Z be
a self-correspondence of a set S and p1 and p2 be the two projections, we say
xRy if p−1

1 (x) intersects p−1
2 (y). Then we consider the set

LZ = { f : Z→ S | f (n) R f (n + 1)} ⊂ SZ.

The shift σ is the map from LZ to itself given by

σ( f )(n) = f (n + 1) .

The shift is now a homeomorphism and its dynamics reflect that of the corre-
spondence.

This construction is not sufficient for our purpose. We indeed would like
to see all correspondences as acting in the same space. Returning to the case
of S being a compact hyperbolic surface, let us first take a look at the spaceLZ
in special case. Let P[n,p] be the map from LZ to Sn−p given by

f → ( f (n), . . . , f (p)).

By construction the image of P[n,p] is a compact surface, which we call S[n,p] in
the product Sn−p and moreover any projection map to a factor – that is P[q] for q
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in [n, p] – is a covering map. We can therefore describeLZ as a “limit” of some
coverings.

We generalize this construction. Let S be a compact hyperbolic surface. The
hyperbolic solenoidS(S) is the “limit” of all coverings of S. Let us give a definition
as a set. The hyperbolic solenoid is the set of sequences {(xn,Sn, pn)}n∈N∗ so that xn
is a point in Sn, pn is a covering from Sn to Sn−1 – where by convention S0 = S –
such that pn(xn) = xn−1 up to the following solenoid equivalence: two sequences
{(x0

n,S0
n, p0

n)}n∈N and {(x1
n,S1

n, p1
n)}n∈N are equivalent if there exists a third one

{(yn,Σn, qn)}n∈N together with covering maps qi
n from Σn to Si

n satisfying the
commuting diagram conditions

qi
n(yn) = xi

n ,

pi
n ◦ qi

n+1 = qi
n ◦ pi

n+1 .

The equivalence is described in Figure 2.

S0
n

S0
n−1

S0
n+1

S1
n−1

S1
n+1Σn

Σn−1

Σn+1

S1
n

Figure 2. Solenoid equivalence

We now give a precise definition that defines the hyperbolic solenoid as a
topological space: Let WS be the 2-dimensional complex, whose vertices are
surfaces which are finite covers of S, oriented edges correspond to covering
between the extremities, and faces correspond to commuting diagrams of
coverings. Let ZS be the universal cover of this complex, and VS be the set of
vertices of this graph, which we consider as surfaces. If e is an edge of VS from
e− to e+, then it gives rise to a covering pe from e− to e+ seen as surfaces. Then
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Definition 3.5 (The hyperbolic solenoid). The hyperbolic solenoid S(S) of
a hyperbolic surface S is

S(S) ≔

(xΣ)Σ∈VS | xΣ ∈ Σ, pe(xe+) = xe−

 ⊂


Σ∈VS

Σ.

In particular, we have a projection

πΣ : S(S)→ Σ
for every finite coverΣ of S. SinceS(S) is a subset of the compact space


Σ∈VS
Σ

it inherits a topology. MoreoverS(S) is compact thank to the following exercise

Exercise 3.2: (*) The set S(S) is a closed subset of

Σ∈VS
Σ.

Alternatively, we can describe the hyperbolic solenoid as a fiber bundle
over S whose structure group is the profinite completion of the fundamental
group of S. The hyperbolic solenoid is the “universal cover for finite covers”,
in the sense that it solves a universal problem for finite covers of S.

Let us me more precise, for an infinite group Γ, let us consider the spaceN
of normal subgroups of Γ of finite index. Denote then for N in N , ΓN ≔ Γ/N
and πN the projection of Γ in ΓN. Let then consider the compact group

Γ0 =


N∈N
ΓN

Observe that we have a natural morphism ϕ from Γ to Γ0 given by

ϕ(γ) ≔


N∈N
πN(γ) .

One sees that this morphism is injective if and only if Γ is residually finite. We
then define the profinite completion of Γ as the compact group

Pro(Γ) = Φ(Γ) .

We immediately observe that the compact group Pro(Γ) is totally disconnected
– since Γ0 is and compact. In particular Pro(Γ) is uncountable and not finitely
generated.

Proposition 3.6 (Universality of the profinite completion). Let g be a
morphism of Γ in a finite group F, then there is a morphism πg of Pro(Γ) in F such
that g = πg ◦ ϕ.

The hyperbolic solenoid and the profinite completion are related by the
following result.

Proposition 3.7 (Principal bundle). The projection πS fromS(S) is a principal
bundle whose structure group is Pro(Γ).
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Exercise 3.3: (*)
(1) Give a proof of the previous proposition: show that if we have a

hyperbolic ball B that embeds in S, then π−1(B) is homeomorphic to

B × Pro(Γ) .

(2) Prove that S(S) is homeomorphic to Γ\ H2 × Pro(Γ)


where the action
of Γ on Pro(Γ) is given by the right action by Φ(Γ) which is a subgroup
of Pro(Γ).

3.5. Isometries of the hyperbolic solenoid. From the description of the
hyperbolic solenoid as a principal bundle with a totally disconnected fiber, it
follows that the leaf through a point x – that is the path-wise connected compo-
nent of x – is a hyperbolic plane – see exercise below..

Then, again from the description of the hyperbolic solenoid as a fiber
bundle, S(S) is a hyperbolic laminated space as in Figure 3: every point has a
neighborhood – called chart – which is homeomorphic to a product of a ball
in H2 with a topological space – in our case totally disconnected – such that
moreover the coordinates changes when we change charts are isometries on
the hyperbolic factors.

A leaf-wise isometry of a hyperbolic laminated space is then a homeomor-
phism preserving the laminated structure which is a local isometry on the
hyperbolic factors.

Figure 3. A small open set in a laminated space

Exercise 3.4: (*) Prove that each hyperbolic leaf of S(S) is simply connected.
Hint: use exercise 3.3.

Now, the fundamental though obvious remark is

Proposition 3.8. if p : Σ1 → Σ0 is a covering, then we have a unique isometry

p̂ : S(Σ1)→ S(Σ0)
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such that πS1 ◦ p = πS0 ◦ p̂. Moreover p̂ is a bijection whose inverse is an isometry.

Proof. Use the fact that one can induce coverings. □

As a consequence, a hyperbolic self- correspondence on a surface S = Γ\H2,
given by an element g of Comm(Γ) and its two covering maps (p1, p2) acts as a
leaf-wise isometry on the hyperbolic solenoid by

Φg = p̂1 ◦ (p̂2)−1 .

Therefore, the hyperbolic solenoid of an arithmetic surface has very rich dy-
namics.

Exercise 3.5:
(1) Prove that the map g → Φg is a group morphism and relate the group

of isometry of S(S) to Comm(Γ). Describe the action of Γ on S(S).
(2) (**) (For those who know). Relate the hyperbolic solenoid for a finite

index torsion free subgroup of PSL2(Z) to the adélic ring.

4. Equidistribution of Hecke points

Let as usual S be a hyperbolic surface associated to an arithmetic hyperbolic
groupΓ in PSL2(R). We saw that every correspondence, which we can associate
to an element g of Comm(Γ), defines a Hecke operator Hg from C0(S) to itself.
We can see it also as acting on measure. If the correspondence is of degree q,
that is given by two local isometries p1 and p2 from a q-cover S1 of S, then given
a probability measure µ on S1, the corresponding measure is Tg(µ) given by

Tg(µ) ≔
1
q

(p1)∗ ◦ p∗2(µ) .

In particular, if we start with a point x in S, denoting by δx the probability
measure supported at x, then Tg(δx) is the probability measure equidistributed
on the set Tg(x) ≔ p1(p−1

2 {x}).
We then have

Theorem 4.1 (Equidistribution of Hecke points). Given a sequence {gi}iN
in Comm(Γ) with {deg(gi)}i∈N growing to infinity then {Tgi(x)}i∈N becomes equidis-
tributed. More precisely, for any x in Γ\H2

Tgi(δx) −→
i→∞
µ0 ,

where µ0 is the probability Lebesgue measure on S, and δx the probability measure
supported at x .
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Observe that the condition {deg(gi)}i∈N growing to infinity, implies that the
lattice Γ is arithmetic: this condition can only be satisfied when Γ has infinite
index in Comm(Γ). That is the reason why the hypothesis that Γ is arithmetic
is not spelled out, even though the Theorem only applies in that case.

This is again part of a long stream of results: it was first noticed and stated
without proof by Marc Burger and Peter Sarnak, as a consequence of Marina
Ratner Theorem, in the special case the the sequence {gi}i∈N converges to an
element not in Comm(Γ), the proof was then given in Dani–Margulis. Then
Alex Eskin and Hee Oh proved it in the generality given here using ergodic
theoretic methods, while Clozel–Ullmo and Clozel–Oh–Ullmo have obtained
crucial information on the rate of convergence using unitary representation
theoretic methods. The result is in general about lattices although we stick
here to the case of PSL2(R).

We give an idea of the proof of Theorem 4.1 following the initial sugges-
tion by Burger–Sarnak in our special case. The proof relies on the following
(immediate) corollary of Ratner’s Theorem that we admit for our purpose– see
the discussion for more details. First let us denote by ∆(PSL2(R)) the diagonal
group in PSL2(R) × PSL2(R)

Proposition 4.2 (Baby Ratner). Let Γ be a subgroup of Iso+(H2) such that
S ≔ Γ\H2 is compact. Let ν be an ergodic probability measure on US × US invariant
under the subgroup ∆(PSL2(R)) in PSL2(R) × PSL2(R). Then ν is

(1) either µ0 ⊗ µ0,
(2) or supported on a closed orbit of ∆(PSL2(R)).

In particular the space of ergodic measures for ∆(PSL2(R)) is countable.
This proposition is true in more generality than for arithmetic groups, and as
an extension to all semi-simple groups.

We shall use a second property which, again, has a more general version
due to Shahar Mozes and Nimish Shah:

Proposition 4.3 (Baby Mozes–Shah). Let Γ be a subgroup of Iso+(H2) such
that S ≔ Γ\H2 is compact. Then the ∆(PSL2(R))-invariant probability measures on
US×US supported on closed orbits of ∆(PSL2(R)) are isolated in the space of ergodic
probability measures.

By isolated, we mean that given a measure ν supported on a closed orbit of
∆(PSL2(R)), then for any positive ε, there is a non negative continuous function
f such that if µ is another measure supported on a closed orbit of ∆(PSL2(R)),
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then


US
f dµ  ε



US
f dν and 0 <



US
f dν .

Proof of Theorem 4.1. Our goal here is to explain how to translate of the
Hecke transform of a measure into a ∆(PSL2(R)) invariant measure on US ×
US, and thus understanding equidistribution as related to a classification of
measures.

Let x be a fixed point in US and Γx the stabilizer of x in PSL2(R) acting on
the left on US. For any topological space X with an action by homeomorphism
of a group F, let us denote by M(X)F the set of probability Radon measures
invariant by F.

The starting point is that we have a homeomorphism Φ fromM(US)Γx to
M(US × US)∆(PSL2(R)). Intuitively we see US as the fiber over x of the product
US × US and we start diffusing a measure ν using the group ∆(PSL2(R)).
Formally we have the following construction: if ν is a measure on US invariant
by Γx, we have a well defined map from

λν : US→M(US) , y → νy

given by νxg = g−1
∗ ν. Conversely any map λ from US to M(US) such that

λ(yg) = g−1
∗ λ(y) is obtained as λ = λν, where ν = λ(x) is in (US)Γx .

Then we define ν0 = Φ(ν) on US × US by


US×US
f (x, y) dν0 =



US



US
f (x, y) dνy


dµ0(x) .

We leave the reader check that the corresponding measure is invariant under
∆(PSL2(R)).

This map has an inverse. Let ν1 be a measure on US × US invariant by
∆(PSL2(R)). Let p1 be the projection on the first factor then (p1)∗(ν) is invariant
by PSL2(R), and thus equal to µ0. We then decompose the measure ν1 as

ν1 =



US
νy(y) dµ0(y) ,

where νy = λ(y)⊗ δy is a measure on US× {y}. Since ν1 is ∆(PSL2(R)) invariant,
it follows that λ(yg) = g−1

∗ λ(y) and thus by the previous observation, we have
λ = λν. It follows that Φ(ν) = ν1.

Let us now go back to correspondences and Hecke transforms. Given
an element a of the commensurator group, a hyperbolic correspondence is
equivalent to giving a closed orbit Sa of ∆(PSL2(R)) in US × US.
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Then, since Sa is a quotient of ∆(PSL2(R)), it carries a unique ∆(PSL2(R))
invariant measure µa and we leave the reader check that for a given x, we have

Φ(Ta(δx)) = µa .

Let us now take a weak limit ν of νi ≔ {Tai(δx)}i∈N. The measure ν is obviously
invariant by ∆(PSL2(R)). By Baby Ratner Proposition 4.2 and the Decomposi-
tion of Ergodic Measures Theorem 3.1, we can find non-zero positive numbers
λ0 and λ1 ,..., λp, with λ1  λ2 such that

∞

i=0

λi = 1

and such that

νi ν
i→∞
= λ0(µ0 ⊗ µ0) +

∞

j=1

λ jµ j ,

where µ j is supported on a closed orbit of ∆(PSL2(R)) associated to elements
g j in Comm(Γ). We want to show that λ1 = 0. It first follows form the previous
expression that

ν = (1 − λ1)σ1 + λ1µ1 ,

where σ1 is a probability measure. Since {deg(ai)}i∈N grows to infinity, there
exists some N0 so that for i  N0,

ai  g1 .

By Proposition 4.3, there is a positive continuous function f , such that for all i
greater than N0



US
f dνi 

λ1

2



US
f dµ1 and 0 <



US
f dµ1 ,

and thus at the limit

(1 − λ1)


US
f dσ1 + λ1



US
f dµ1 

λ1

2



US
f dµ1 .

And we have the contradiction using the fact that f is non negative:

0  (1 − λ1)


US
f dσ1  −

λ1

2



US
f dµ1 < 0 .

It follows thatΦ(ν) = µ0⊗µ0. This implies that ν = µ0. This is what we wanted
to prove. □
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Exercise 4.1: (**) Describe the equidistribution of Hecke points using the
association g → Φg, which associates to an element g in Comm(g) the isometry
Φg of the hyperbolic solenoid S(S) defined in Paragraph 3.5.

5. Correspondences and the Ehrenpreis conjecture

A correspondence is given by a common cover S of S1 and S2 with covering
maps p1 and p2. One may wonder what happens if one can relax the condition
of p1 and p2 being local isometries, in other words that the induced metrics by
p1 and p2 are K-bi-Lipschitz instead of being equal.

The answer, was conjectured as the Ehrenpreis conjecture, and is now a
beautiful theorem of Jeremy Kahn and Vladimir Markovic.

Theorem 5.1 (Kahn–Markovic). For any ε, for any pair of compact hyperbolic
surfaces, there exists a common covering such that the two induced distances are
(1 + ε)-bi-Lipschitz equivalent.

The proof involves Margulis counting results explained in these notes as
well as ergodicity and mixing.

6. Comments, references and further reading



CHAPTER 9

Harmonic functions

1. Harmonic functions

We finally move to the last topic of these notes. We encourage strongly the
reader to have a look at N. Bergeron beautiful set of notes on the Laplacian on
hyperbolic surfaces.

The Laplacian on the hyperbolic plane is the map, defined for any smooth
function f

f → ∆( f ) = −y2


∂2 f
∂x2 +

∂2 f
∂y2


.

Another way to describe the Laplacian is the following: if J is the complex
structure of the hyperbolic plane and ωH2 its area form, then

−d(d f ◦ J) = ∆( f ) ωH2 . (66)

From this last description, of from a verification using the generators of
PSL2(R) given in Exercise 2.6, one sees that if g is an oriented isometry of
H2, then

∆( f ◦ g) =

∆ f
 ◦ g .

1.1. Laplacian on hyperbolic surfaces. It then follows that we can define
the Laplacian on any hyperbolic surface. We could also use directly Equa-
tion 66. Moreover

Proposition 1.1. Given a compact hyperbolic surface S with hyperbolic area µ0
and two smooth functions f and g on S, then



S
g ∆ f dµ0 =



S
f ∆g dµ0 ,



S
f ∆ f dµ0  0 ,

where the last inequality is an equality if and only if f is constant.
123
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Proof. All these inequalities follow from Equation (66) and the Stokes
Formula that yield 

S
g ∆ f dµ0 =



S
dg ∧ d f ◦ J .

□

We say a function f on S is an eigenfunction of the Laplacian of eigenvalue
λ if ∆( f ) = λ f . The multiplicity of the eigenvalue λ is the dimension of the
space of eigenfunctions. Eigenfunctions could also have been defined just
using integration on small discs and balls.

Since S is assumed to be compact a general theorem (the Spectral Theorem)
asserts the following, where we recall that we denote by L2

0(S) the closed space
of functions of zero integral.

Theorem 1.2 (Spectral theorem for the Laplacian). There exists an or-
thonormal Hilbert basis {ϕ}i∈N of L2

0(S) of eigenfunctions of the Laplacian with corre-
sponding eigenvalues {λ}i∈N satisfying

0 < λ1  λ2  · · ·  λn  · · · .
Moreover the collection of eigenvalues less than a constant is finite.

This allows us to define the spectrum of ∆ as the infinite collection of eigen-
values {λ}i∈N.

1.2. The trace formula. The length of closed geodesics and the eigenvalues
of the Laplacian are related by many deep results. Selberg trace formula is
certainly the most striking. Atle Selberg trace formula is a generalization of
Poisson summation formula, it reads

Theorem 1.3 (Selberg-trace version). Let S be a compact hyperbolic surface
and h be an even test function satisfying some restriction. Let {λn} be the set of
eigenfunctions of the Laplacian. Let µ2

n + 1/4 = λn, with either the imaginary part
or the real part of µn is positive. Let G be the set of closed geodesics and ℓ(γ) be the
length of the closed geodesic γ and m(γ) be the multiplicity of γ. Then

+∞

n=0

h(µn) = −χ(S)
2

 +∞

−∞
h(s)s tanh(πs) ds +



γ∈G
Rγĥ(ℓ(γ)),

where

Rγ =
ℓ(γ)

m(γ)2 sinh(ℓ(γ)/2)
, ĥ(s) =

1
2π

 +∞

−∞
h(u)e−ius du.
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We now state it using a slightly non-standard approach due to Pierre Cartier
and André Voros.

Define a primitive geodesic as a closed geodesic that does not cover non-
trivially another one.We need to introduce two generalized zeta functions.

(1) The generalized Hurwitz ζ function reflects the analytic side. It is a
defined as

ζ(s, a) = Tr(∆S + a)−s :=
∞

i=0

1
(λn + a)s ,

where (λn) is the set of eigenvalues repeated with multiplicities.
(2) The Selberg zeta function reflects the dynamical side. Let P be the set of

primitive closed geodesics. Let us define

ZS(s) =


γ∈P

∞

k=0


1 − eℓ(γ)(k+s)


.

Then we have after taking the analytic continuation of these functions.

Theorem 1.4 (Selberg-determinant version). Let S be a compact hyperbolic
surface. Then for any non negative number u,

∂
∂s


s=0
ζS


s,u2 − 1

4


= ψ(u)χ(S)ZS

1
2
+ u

,

where ψ(u) is an explicit function only depending on u, which can be interpreted as
related to a spectral problem on the two-sphere. The left hand side term is usually
interpreted as as the logarithm of a regularized determinant.

Finally we state an much sought after conjecture of Atle Selberg from 1965
with important consequences in number theory

Conjecture 1.5 (Selberg’s 1/4 conjecture). The first eigenvalue of the Lapla-
cian on Γ0(N)\H2 is greater than 1/4.

Here

Γ0(N) ≔


a b
c d


in PSL2(Z) with c divisible by N


.

Selberg obtained the lower bound 3/16, the best lower bound at present is the
lower bound 975/4096 ≃ 0.238 due to Kim–Sarnak.
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2. Quantum chaos

We can now state another famous conjectures for hyperbolic surfaces. The
quantum unique ergodicity conjecture is the quantum pendent of the equidistri-
bution of the orbits of the geodesic flows.

This conjecture due to Peter Sarnak and Steve Rudnick claims the following

Conjecture 2.1 (Quantum unique ergodicity conjecture). Let {ϕn} be a
sequence of eigenfunctions of the Laplacian on a compact hyperbolic surface S, such
that the corresponding eigenvalues go to infinity. Let µ be the probability Lebesgue
measure on S, then

|ϕn|2
S
|ϕn|2 dµ

µ −→
n→∞
µ .

This conjecture is known to be “almost surely true” as proved by Alexan-
der Schnirelman, Steve Zelditch and Yves Colin de Verdière as the Quantum
Ergodicity Theorem in the sense that it converges for a – and then plenty – sub-
sequence of density 1 in the sequence of eigenfunctions. This conjecture has
natural extensions to higher dimensions, non negative curvature other elliptic
problems than on functions. The following breakthrough has been obtained
in the arithmetic context.

Theorem 2.2 (Elon Lindenstrauss). Let S be an arithmetic surface. Then the
quantum unique ergodicity conjecture holds if we furthermore assume the sequence of
eigenfunctions for the Laplacian are Hecke eigenfunctions.

The approach is ergodic and uses the extra dynamics coming from Hecke
correspondences on a space related to the solenoid.

3. Comments, references and further reading



APPENDIX A

Coverings and curves

We recall the following facts from elementary algebraic topology. Let X
be a topological space and Z0 and Z1 two closed subset in X. Recall that two
continuous curves c0 and c1 from [0, 1] to X are

(1) homotopic with extremities x and y, with respect to Z0 and Z1, if there
exists a continuous mapping C from [0, 1] × [0, 1] to X so that for all s,
C(s, 0) = c0(s), C(s, 1) = c1(s), and for all t, C(0, t) ∈ Z0, C(1, t) ∈ Z1.

(2) homotopic with extremities x and y when we consider Z = {x, y}.
(3) when c0 and c1 are both closed, we say they homotopic with base point x,

if they are homotopic with extremities x and x.
(4) we say that two closed curves c0 and c1 are freely homotopic if there

exists a continuous mapping C from [0, 1] × [0, 1] to X so that for all s,
C(0, s) = c0(s) and C(1, s) = c1(s).

Recall also that p : X → Y a continuous surjective map between topological
spaces is a covering if every y in Y has an open neighborhood, such that

p−1(U) =


x∈p−1(y)

Uy ,

with p an homeomorphisms from Ux to U.
The following exercises are classical propositions from basic homotopy

theory. They are not very difficult to prove on their own. Let

Exercise 0.1: Let p : X→ Y be a covering
(1) [Lifting property] Prove that of given any curve c : [0, 1] → Y, given

any x in X, with p(x) = c(0), there exists a unique curve γ[0, 1]→ X, so
that γ(0) = x and c = p ◦ γ. We call γ a lift of c

(2) Prove moreover that if c0 and c1 curves in S with c0(0) = c1(0) as well
c0(1) = c1(1) then c0 are homotopic if and only if γ0(1) = γc0(1), where
γ0 and γ1 are lifts of c0 and c1 respectively with γ0(0) = γ1(1).

The more important result is the following. Let X be a ”nice” topological space,
for instance a metric space, such that every small enough ball is homeomorphic
to a ball in a euclidean space. Then
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Theorem 0.1 (Existence of the universal cover). There exists a covering
p : Y→ X, with Y simply connected. Moreover if Γ is defined by

Γ = {γ ∈ Homeo(Y) | p ◦ γ = p} ,
Then X is homeomorphic to Y/Γ. More precisely there is an homeomorphism ϕ from
Y/Γ to X such that ϕ(Γ· x) = p(x).

The space Y is called the universal cover of X.


