PLATEAU PROBLEMS FOR MAXIMAL SURFACES IN PSEUDO-HYPERBOLIC SPACE

PROBLÈMES DE PLATEAU POUR LES SURFACES MAXIMALES DANS L'ESPACE PSEUDO-HYPERBOLIQUE

FRANÇOIS LABOURIE, JÉRÉMY TOULISSE, AND MICHAEL WOLF

Abstract

We define and prove the existence of unique solutions of an asymptotic Plateau problem for spacelike maximal surfaces in the pseudo-hyperbolic space of signature $(2, n)$: the boundary data is given by loops on the boundary at infinity of the pseudo-hyperbolic space which are limits of positive curves. We also discuss a compact Plateau problem. The required compactness arguments rely on an analysis of the pseudo-holomorphic curves defined by the Gauß lifts of the maximal surfaces.

Abstract

Аbstract. Nous définissons un problème de Plateau asymptotique pour les surfaces maximales de type espace dans l'espace pseudo-hyperbolique de signature $(2, n)$ dont le bord à l'infini est donné par des courbes - dites semi-positives et qui sont limites de courbes positives. Nous montrons l'existence et l'unicité des solutions correspondantes et discutons le problème de Plateau compact correspondant. Les arguments de compacité utilisés requièrent l'analyse de courbes pseudo-holomorphes définies par le relevé de Gauß de surfaces maximales.

Contents

1. Introduction 2
2. Pseudo-hyperbolic geometry 5
3. Graphs, curves and surfaces 16
4. Uniqueness 27
5. Main compactness theorem 30
6. Three specific compactness theorems 42
7. Finite Plateau problem 46
8. Asymptotic Plateau problem: Theorem A 49
Appendix A. Bounded geometry in the pseudo-Riemannian setting 54
Appendix B. A lemma in plane topology 56
Appendix C. Holomorphic curves and Gromov's Schwarz lemma 57
References 68
[^0]
1. Introduction

Our goal is to study Plateau problems in the pseudo-hyperbolic space $\mathbf{H}^{2, n}$, which can be quickly described as the space of negative definite lines in a vector space of signature $(2, n+1)$. As such $\mathbf{H}^{2, n}$ is a complete homogeneous pseudo-Riemannian manifold of signature $(2, n)$ and curvature -1 .

Quite naturally, $\mathbf{H}^{2, n}$ bears many resemblances to the hyperbolic plane, which corresponds to the case $n=0$. In particular, generalising the Klein model, $\mathbf{H}^{2, n}$ may be described as one of the connected component of the complementary to a quadric in the projective space of dimension $n+2$.

This quadric is classically called the Einstein universe and we shall denote it by $\partial_{\infty} \mathbf{H}^{2, n}$ [5]. Analogously to the hyperbolic case, the space $\partial_{\infty} \mathbf{H}^{2, n}$ carries a conformal metric of signature $(1, n)$ and we will consider it as a boundary at infinity of $\mathbf{H}^{2, n}$. Topologically, $\partial_{\infty} \mathbf{H}^{2, n}$ is the quotient of $\mathbf{S}^{1} \times \mathbf{S}^{n}$ by an involution.

From the Lie group perspective, the space $\mathbf{H}^{2, n}$ has $\mathrm{PSO}(2, n+1)$ as a group of isometries and the Einstein space $\partial_{\infty} \mathbf{H}^{2, n}$ is the Shilov boundary of this rank two Hermitian group, that is the unique closed $\operatorname{PSO}(2, n+1)$-orbit in the boundary of the symmetric domain.

Positive triples and positivity in the Shilov boundary [20] play an important role in the theory of Hermitian symmetric spaces; of notable importance are the positive loops. Important examples of these are spacelike curves homotopic to \mathbf{S}^{1} and specifically the positive circles which are boundary at infinity in our compactification to totally geodesic embeddings of hyperbolic planes. Then semi-positive loops are limits of positive loops in some natural sense (see paragraph 2.5.2 for precise definitions).

Surfaces in a pseudo-Riemannian space may have induced metrics of variable signatures. We are interested in this paper in spacelike surfaces in which the induced metric is positive everywhere. Among these are the maximal surfaces which are critical points of the area functional, for variations with compact support, see paragraph 3.3.3 for details. These maximal surfaces are the analogues of minimal surfaces in the Riemannian setting. An important case of those maximal surfaces in $\mathbf{H}^{2, n}$ are, again, the totally geodesic surfaces which are isometric to hyperbolic planes.

We refer to the first two sections of this paper for precise definitions of what we have above described only roughly.

Our main Theorem is the following.
Theorem A (Asymptotic Plateau problem). Any semi-positive loop in $\partial_{\infty} \mathbf{H}^{2, n}$ bounds a unique complete maximal surface in $\mathbf{H}^{2, n}$.

In this paper, a semi-positive loop is not necessarily smooth. Also note that a properly embedded surface might not be complete and so the completeness condition is not vacuous.

On the other hand, we will show in section 3 that complete spacelike surfaces limit on semi-positive loops in $\partial_{\infty} \mathbf{H}^{2, n}$, and so Theorem A may be understood as identifying semi-positivity as the condition on curves in $\partial_{\infty} \mathbf{H}^{2, n}$ that corresponds to complete maximality for surfaces in $\mathbf{H}^{2, n}$.

The uniqueness part of the theorem is strikingly different from the corresponding setting in hyperbolic space where the uniqueness of solutions of the asymptotic Plateau problem fails in general for some quasi-symmetric curves as shown by Anderson, Wang and Huang [3, 46, 29].

As a tool in the theorem above, we also prove the following result, of independent interest, on the Plateau problem with boundary in $\mathbf{H}^{2, n}$. The relevant notion for curves is that of
strongly positive curves, and among those the connected set of deformable ones which are defined in paragraph 3.2.
Theorem B (Plateau problem). Any deformable strongly positive closed curve in $\mathbf{H}^{2, n}$ bounds a unique compact complete maximal surface in $\mathbf{H}^{2, n}$.

One of the original motivations for this paper comes from the "equivariant situation". Recall that $\mathrm{G}:=\mathrm{PSO}(2, n+1)$ is the isometry group of a Hermitian symmetric space M : the maximal compact subgroup of G has an $\mathrm{SO}(2)$ factor which is associated to a line bundle L over M. Thus a representation ρ of the fundamental group of a closed orientable surface S in G carries a Toledo invariant: the Chern class of the pull back of L by any map equivariant under ρ from the universal cover of S to M [45]. The maximal representations are those for which the integral of the Toledo invariant achieves its maximal value. These maximal representations have been extensively studied, from the point of view of Higgs bundles, by Bradlow, García-Prada and Gothen [14] and from the perspective of bounded cohomology, by Burger, Iozzi and Wienhard [16]. In particular, a representation is maximal if and only if it preserves a positive continuous curve [15, 16]. Then Collier, Tholozan and Toulisse have shown that there exists a unique equivariant maximal surface with respect to a maximal representation in $\operatorname{PSO}(2, n+1)$ [21]. This last result, an inspiration for our work, is now a consequence of Theorem A.

We note that maximal surfaces in $\mathbf{H}^{2, n}$ were also considered in a work by Ishihara [31] see also Mealy [37]- and that Yang Li has obtained results for the finite Plateau problems in the Lorentzian case [38], while the codimension one Lorentzian case was studied by Bartnik and Simon in [7]. Yang Li's paper contains many references pertinent to the flat case. Neither paper restricts to two spacelike dimensions.

Another motivation comes from the contemplation of two other rank two groups: $\operatorname{SL}(3, \mathbb{R})$ and $\operatorname{SL}(2, \mathbb{R}) \times \operatorname{SL}(2, \mathbb{R})$, where we notice the latter group is isogenic to $\mathrm{PSO}(2,2)$.

Affine spheres and $\mathrm{SL}(3, \mathbb{R})$: While maximal surfaces are the natural conformal variational problem for $\operatorname{SO}(2, n)$, the analogous problem in the setting of $S L(3, \mathbb{R})$ is that of affine spheres. Cheng and Yau [18], confirming a conjecture due to Calabi, proved that given any properly convex curve in the real projective space, there exists a unique affine sphere in \mathbb{R}^{3} asymptotic to it. That result has consequences for the equivariant situation as well, due independently to Loftin and Labourie [39,34]. Our main Theorem A may be regarded as an analogue of the Cheng-Yau Theorem: both affine spheres and maximal surfaces (for SO(2,3)) are lifted as holomorphic curves - known as cyclic surfaces in [35] - in G / K_{1}, where G is $\operatorname{SL}(3, \mathbb{R})$ in the first case and $\mathrm{SO}(2,3)$ in the second, and K_{1} is a compact torus. Moreover these holomorphic curves finally project as minimal surfaces in the symmetric space of G.
The case $n=1$: The case of $\operatorname{SL}(2, \mathbb{R}) \times \operatorname{SL}(2, \mathbb{R})$ and maximal surfaces in $\mathbf{H}^{2,1}$ has been extensively studied by Bonsante and Schlenker [11] and written only in the specific case of quasi-symmetric boundaries values - see also Tamburelli [42, 43] for further extensions. Our main Theorem A is thus a generalization in higher dimension of one of their main results. Also in the case of $\mathbf{H}^{2,1}$, we note that Bonsante and Seppi [12] have shown the existence, for any $K<-1$, of a unique K-surface extending a semi-positive loop in $\partial_{\infty} \mathbf{H}^{2,1}$.
Lorentzian asymptotic Plateau problem: There is also an interesting analogy with the work of Bonsante, Seppi and Smillie [13] in which they prove that, for every $H>0$, any regular domain D in the ($n+1$)-dimensional Minkowski space contains a unique entire spacelike surface of constant mean curvature H whose domain of dependence is D. Their work corresponds to the non-semisimple Lie group $\mathrm{SO}(n, 1) \ltimes \mathbb{R}^{n, 1}$. The similarities between
the asymptotic behavior of their regular domains and our notion of semi-positive loops in $\partial_{\infty} \mathbf{H}^{2, n}$ are striking, in that both only require a non-degeneracy over 2 or 3 points.

In a subsequent paper [36], the first two authors study the analogue of the Benoist-Hulin result [8] for convex geometry and study quasisymmetric positive curves and the relation with the associated maximal surface. In contrast, Tamburelli and Wolf study the case of "polygonal curves" in the $\mathbf{H}^{2,2}$ case, whose group of isometries is $\mathrm{SO}(2,3)$ which is isogenic to $\operatorname{Sp}(4, \mathbb{R})$ [44]; there they prove results analogous to Dumas-Wolf [23]. One goal in that work is to identify local limiting behavior of degenerating cocompact families of representations.

The proof of Theorem A follows a natural outline. We prove the uniqueness portion by relying on a version of the Omori maximum principle; the bulk of the proof is on the existence question. To that end, we approximate a semi-positive loop on $\partial_{\infty} \mathbf{H}^{2, n}$ by semi-positive graphs in $\mathbf{H}^{2, n}$; as maximal surfaces in our setting are stable, we solve the Plateau problem for these with a continuity method, proving compactness theorems relevant to that situation. We then need to show that these finite approximations converge, limiting on a maximal surface with the required boundary values. Thus, much of our argument comes down to obtaining compactness theorems with control on the boundary values. Some careful analysis of this setting allows us to restrict the scope of our study to disks and semi-disks. Then, the main new idea here is to use the Gauß lift of the surfaces, to an appropriate Grassmannian, which are shown to be pseudo-holomorphic curves. We can then use Schwarz lemmas to obtain
(i) first a compactness theorem under a bound on the second fundamental form,
(ii) then after a rescaling argument using a Bernstein-type theorem in the rescaled limit $\mathbf{E}^{2, n}$ of $\mathbf{H}^{2, n}$, a uniform bound on the second fundamental form.
We would like to thank specifically Andrea Tamburelli for pointing out the use of Omori Theorem in this setting, Alex Moriani, Enrico Trebeschi, Fanny Kassel and the referee for pointing out various mistakes in an earlier version, as well as useful comments by Dominique Hulin, Fanny Kassel, Qiongling Li, John Loftin, Raffe Mazzeo, Anna Wienhard and Tengren Zhang. Helmut Hofer provided crucial references for the pseudo-holomorphic appendix and we would like to thank him specially here.

1.1. Structure of this article.

(i) In section 2, we describe the geometry of the pseudo-hyperbolic space $\mathbf{H}^{2, n}$, and its boundary at infinity, the Einstein universe $\partial_{\infty} \mathbf{H}^{2, n}$. There we carefully define positive and semi-positive curves in $\partial_{\infty} \mathbf{H}^{2, n}$.
(ii) In section 3, we discuss curves and surfaces in $\mathbf{H}^{2, n}$. In particular we introduce maximal surfaces and show that they may be interpreted as holomorphic curves. We also discuss spacelike curves and various notions related to them.
(iii) In section 4, we prove the uniqueness part of our two main theorems.
(iv) In section 5, we prove, using the holomorphic curve interpretation, a crucial compactness theorem for maximal surfaces. We feel this is of some independent interest.
(v) In section 6, we describe different consequences of our main compactness Theorem, whose formulations we will use in the proof of Theorem A.
(vi) In section 7, we prove the Plateau Theorem B by the continuity method, relying on the both the stability of the maximal surface and a compactness consequence from section 6.
(vii) In section 8 we prove the Asymptotic Plateau Theorem A using the Plateau Theorem B, an exhaustion procedure, and the results in section 6 .
(viii) In the Appendices A and C, we describe the notion of bounded geometry and prove the relevant results needed for the holomorphic curve interpretation. We expect that last appendix has some independent interest.

2. Pseudoo-hyperbolic geometry

In this section, we describe the basic geometry of the pseudo-hyperbolic space and its boundary, the Einstein universe. Part of the material covered here can be found in [5, 21, 22]. This section consists mainly of definitions.
2.1. The pseudo-hyperbolic space. In this paper, we will denote by E a vector space equipped with a non-degenerate quadratic form q of signature $(2, n+1)$. The group $O(E)$ of linear transformations of E preserving \mathbf{q} has four connected components, and we will denote by $\mathrm{G}:=\mathrm{SO}_{0}(E)$ the connected component of the identity. The group G is isomorphic to $\mathrm{SO}_{0}(2, n+1)$.

Definition 2.1. The pseudo-hyperbolic space $\mathbf{H}^{2, n}$ is the space of negative definite lines in E, namely

$$
\mathbf{H}^{2, n}:=\mathbf{P}(\{x \in E \mid \mathbf{q}(x)<0\}) \subset \mathbf{P}(E) .
$$

The pseudo-hyperbolic space $\mathbf{H}^{2, n}$ is naturally equipped with a signature $(2, n)$ pseudoRiemannian metric \mathbf{g} of curvature - 1 . The group G acts by isometries on $\mathbf{H}^{2, n}$ and the stabilizer of a point contains a group isomorphic to $\mathrm{SO}_{0}(2, n)$ as an index two subgroup. In particular, $\mathbf{H}^{2, n}$ is a (pseudo-Riemannian) symmetric space of G.
2.1.1. Geodesics and acausal sets. Complete geodesics are intersections of projective lines with $\mathbf{H}^{2, n}$. Any two distinct points (x, y) lie on a unique complete geodesic. We parametrize a geodesic by parallel tangent vectors.

A geodesic γ, which is the intersection of the projective line $\mathbf{P}(F)$ with $\mathbf{H}^{2, n}$, can be of three types:
(i) Spacelike geodesics, when F has signature $(1,1)$, or equivalently $\mathbf{q}(\dot{\gamma})$ is positive.
(ii) Timelike geodesics, when F has signature (0,2), or equivalently $\mathbf{q}(\dot{\gamma})$ is negative.
(iii) Lightlike geodesics, when F is degenerate, or equivalently $\mathbf{q}(\dot{\gamma})=0$.

A geodesic segment is the restriction of a parametrized complete geodesic to the segment [0,1]. Two distinct points (x, y) are extremities of a geodesic segment, which is unique unless the corresponding complete geodesic is timelike (in which case there are exactly two such geodesic segment).

We say the pair of points (x, y) is acausal if they are the extremities of a spacelike geodesic segment γ. We then define its spatial distance as

$$
ð(x, y):=\int_{0}^{1} \sqrt{\mathbf{q}(\dot{\gamma})} \mathrm{d} t
$$

A subset U of $\mathbf{H}^{2, n}$ is acausal if every pair of distinct points in U is acausal.
2.1.2. Hyperbolic planes. A hyperbolic plane H in $\mathbf{H}^{2, n}$ is the intersection of $\mathbf{H}^{2, n}$ with a projective plane $\mathbf{P}(F)$ where F is a three-dimensional linear subspace of signature $(2,1)$. The spatial distance $\begin{array}{r}\text { restricts to the hyperbolic distance on any hyperbolic plane. }\end{array}$

A pointed hyperbolic plane P is a pair (q, H) where H is a hyperbolic plane and $q \in H$. A pointed hyperbolic plane is equivalent to the datum of an orthogonal decomposition $E=L \oplus U \oplus V$ where L is a negative definite line, U a positive definite 2-plane and $V=(L \oplus U)^{\perp}$.
2.1.3. The double cover. In the sequel, we will often work with the space

$$
\mathbf{H}_{+}^{2, n}=\{x \in E, \mathbf{q}(x)=-1\} .
$$

The natural projection $\mathbf{P}: E \backslash\{0\} \rightarrow \mathbf{P}(E)$ restricts to a double cover $\mathbf{H}_{+}^{2, n} \rightarrow \mathbf{H}^{2, n}$.
The tangent space $\mathrm{T}_{x} \mathbf{H}_{+}^{2, n}$ is canonically identified with x^{\perp}. The restriction of \mathbf{q} to $\mathrm{T}_{x} \mathbf{H}_{+}^{2, n}$ equips $\mathbf{H}_{+}^{2, n}$ with the signature ($2, n$) pseudo-Riemannian metric such that the cover $\mathbf{H}_{+}^{2, n} \rightarrow \mathbf{H}^{2, n}$ is a local isometry. We still denote this metric by \mathbf{g}.

Complete geodesics in $\mathbf{H}_{+}^{2, n}$ are connected components of lift of complete geodesics in $\mathbf{H}^{2, n}$. As in $\mathbf{H}^{2, n}$, we parametrize complete geodesics with parallel tangent vectors. A geodesic segment in $\mathbf{H}_{+}^{2, n}$ is the restriction of a (parametrized) complete geodesic to the segment [0,1]. A pair of distinct points (x, y) in $\mathbf{H}_{+}^{2, n}$ is acausal if x and y are joined by a spacelike geodesic segment, and a subset U of $\mathbf{H}_{+}^{2, n}$ is acausal if any pairwise distinct points of U are acausal.

The incidence geometry of $\mathbf{H}_{+}^{2, n}$ is more subtle than the one of $\mathbf{H}^{2, n}$. To describe it, first observe that the preimage of a complete geodesic $[\gamma]$ in $\mathbf{H}^{2, n}$ has 1 connected component if γ is timelike and 2 connected components otherwise. Given two distinct points x and y in $\mathbf{H}_{+}^{2, n}$, we denote by $[x]$ and [y] their respective image image in $\mathbf{H}^{2, n}$.

We distinguish the following cases:
Case 1: when $[x]=[y]$, that is if $x=-y$. Then any complete timelike geodesic in $\mathbf{H}^{2, n}$ passing through $[x]$ lifts to two geodesic segments between x and y. In particular, there are infinitely many geodesic segments between x and y.
Case 2: when $[x] \neq[y]$ and the complete geodesic passing through them is timelike. Then there is a unique geodesic segment between $[x]$ and $[y]$ having a lift with extremities are x and y. In particular, there is a unique geodesic segment between x and y.
Case 3: If $[x] \neq[y]$ and the geodesic γ passing through them is spacelike. Then either x and y lie on the same connected component of the preimage of γ, in which case there is a unique geodesic segment between x and y, or they lie in different connected components in which case there is no geodesic segment between x and y.
Case 4: If $[x] \neq[y]$ and the geodesic γ passing through them is lightlike. Then either x and y lie on the same connected component of the preimage of γ, in which case there is a unique geodesic segment between x and y, or they lie in different connected components in which case there is no geodesic segment between x and y.
The different situations are easily described using the scalar product $\langle x, y\rangle$ of the points x and y associated to the quadratic form \mathbf{q}.

Lemma 2.2. Consider two distinct points x and y in $\mathbf{H}_{+}^{2, n}$.
(i) There is a spacelike geodesic segment between x and y (that is, the pair (x, y) is acausal) if and only if $\langle x, y\rangle<-1$.
(ii) There is a unique timelike geodesic segment between x and y if and only if $|\langle x, y\rangle|<1$.
(iii) There is a lightlike geodesic segment between x and y if and only if $\langle x, y\rangle=-1$.

Three points $\left(x_{1}, x_{2}, x_{3}\right)$ lies in a hyperbolic plane if and only if for any $i \neq j$ we have $\left\langle x_{i}, x_{j}\right\rangle<-1$ and

$$
\begin{equation*}
2\left\langle x_{1}, x_{2}\right\rangle\left\langle x_{1}, x_{3}\right\rangle\left\langle x_{2}, x_{3}\right\rangle+\left\langle x_{1}, x_{2}\right\rangle^{2}+\left\langle x_{1}, x_{3}\right\rangle^{2}+\left\langle x_{2}, x_{3}\right\rangle^{2}<1 . \tag{1}
\end{equation*}
$$

Proof. Items (i), (ii) and (iii) correspond to cases different from Case 1 described above. In particular, the set $\{x, y\}$ spans a 2-plane F in which the matrix of the quadratic form is given by

$$
\left(\begin{array}{ll}
-1 & \langle x, y\rangle \\
\langle x, y\rangle & -1
\end{array}\right)
$$

whose determinant is equal to $\delta:=1-|\langle x, y\rangle|^{2}$.
Item (ii) corresponds to Case 2 described above. In particular, this happens if and only if the plane F has signature $(0,2)$, that is if and only if $\delta>0$ (the case of signature $(2,0)$ is impossible since F contains negative definite vectors).

Item (i) is a particular situation in Case 3, thus a necessary condition is to have $\delta<0$, meaning that $|\langle x, y\rangle|>1$. The two different connected components of the preimage of the geodesic between $[x]$ and $[y]$ are distinguished by the sign of the function $\langle x,$.$\rangle . This sign is$ negative on the connected component containing x.

Item (iii) is a particular situation in Case 4, thus a necessary condition is to have $\delta=0$, meaning that $|\langle x, y\rangle|=1$. Similarly to item (i), the connected component of the preimage of the geodesic between $[x]$ and $[y]$ are distinguished by the sign of the function $\langle x,$.$\rangle .$

For the last statement, observe that $\left(x_{1}, x_{2}, x_{3}\right)$ lie in a hyperbolic plane if and only if for any $i \neq j$ the points x_{i} and x_{j} are joined by a spacelike geodesic segment and the 3-plane P spanned by x_{1}, x_{2} and x_{3} has signature $(2,1)$. Since the subspace of P spanned by x_{1} and x_{2} has signature $(1,1)$, then P has signature $(2,1)$ if and only if $\operatorname{det}\left(\left(\left\langle x_{i}, x_{j}\right\rangle_{1 \leqslant i, j \leqslant 3}\right)<0\right.$ which is equivalent to the condition (1).

Similarly, a (pointed) hyperbolic plane in $\mathbf{H}_{+}^{2, n}$ is a connected component of a lift of a (pointed) hyperbolic plane in $\mathbf{H}^{2, n}$. A pointed hyperbolic plane in $\mathbf{H}_{+}^{2, n}$ thus corresponds to an orthogonal decomposition $E=L \oplus U \oplus V$ where L is an oriented negative definite line, U is a positive definite plane and $V=(L \oplus U)^{\perp}$.
2.2. Pseudo-spheres and horospheres. We describe here the geometry of pseudo-spheres, and (pseudo)-horospheres which are counterparts in pseudo-hyperbolic space of the corresponding hyperbolic notions.
2.2.1. Pseudo-sphere. Let F be an $(n+2)$-dimensional real vector space equipped with a quadratic form \mathbf{q}_{F} of signature $(2, n)$. The p seudo-sphere is

$$
\mathbf{S}^{1, n}:=\left\{x \in F, \mathbf{q}_{F}(x)=1\right\} .
$$

The pseudo-sphere $\mathbf{S}^{1, n}$ is equipped with a pseudo-Riemannian metric $\mathbf{g}_{\mathbf{s}^{1, n}}$ of curvature +1 and signature $(1, n)$. This metric is invariant under the action of the group $\mathrm{SO}_{0}(F)$ which is isomorphic to $\mathrm{SO}_{0}(2, n)$.
2.2.2. Horosphere. Let us return to the basic case where E is equipped with a signature $(2, n+1)$ quadratic form \mathbf{q}. The null-cone of E is

$$
\mathcal{N}(E)=\{v \in E \backslash\{0\}, \mathbf{q}(v)=0\} .
$$

Given a point $v \in \mathcal{N}(E)$, the set $P_{v}=\{x \in E,\langle x, v\rangle=-1\}$ is a (degenerate) affine hyperplane whose direction is v^{\perp}. The corresponding horosphere is

$$
\mathcal{H}(v)=P_{v} \cap \mathbf{H}_{+}^{2, n}
$$

We also refer to the projection of $\mathcal{H}(v)$ in $\mathbf{H}^{2, n}$ as a horosphere (and denote it the same way).
Given a point $u \in \mathcal{H}(v)$, denote by F the linear subspace of E orthogonal to u and v. The restriction $\mathbf{q}_{\mid F}$ of the quadratic form \mathbf{q} to F has signature $(1, n)$. Consider the map

$$
f:\left\{\begin{array}{rll}
F & \longmapsto E, \\
x & \longmapsto u+x-\frac{\mathbf{q}_{F F}(x)}{2} \cdot v .
\end{array}\right.
$$

One easily checks that f is a diffeomorphism between F and $\mathcal{H}(v)$.
Moreover, since $\mathrm{D}_{x} f(h)=h-\langle x, h\rangle \cdot v$ and v is isotropic, the pull-back by f of the induced metric on $\mathcal{H}(v)$ (which is induced by \mathbf{q}) is equal to $\mathbf{q}_{\mid F}$. Thus $\mathcal{H}(v)$ is isometric to the pseudo-Euclidean space $\mathbf{E}^{1, n}$ of signature ($1, n$).
2.2.3. Horospheres as limits of pseudo-spheres. Let x be a point in $\mathbf{H}_{+}^{2, n}$ (the picture is similar in $\left.\mathbf{H}^{2, n}\right)$. Let

$$
\mathrm{T}_{x}^{1} \mathbf{H}_{+}^{2, n}:=\left\{v \in \mathrm{~T}_{x} \mathbf{H}_{+}^{2, n}, \mathbf{q}(v)=1\right\} .
$$

Since the restriction of \mathbf{q} to $\mathrm{T}_{x} \mathbf{H}_{+}^{2, n}$ has signature ($2, n$), the space $\mathrm{T}_{x}^{1} \mathbf{H}_{+}^{2, n}$ is isometric to $\mathbf{S}^{1, n}$ and its metric is $\operatorname{Stab}_{\mathrm{G}}(x)$ invariant. We will thus denote it by $\mathbf{g}_{\mathbf{s}^{1, n}}$.

For ρ positive, the exponential map $\exp _{x}(\rho$.$) restricts to a diffeomorphism between \mathrm{T}_{x}^{1} \mathbf{H}_{+}^{2, n}$ and the hypersurface

$$
\beta(x, \rho):=\left\{y \in \mathbf{H}_{+}^{2, n}, ð(x, y)=\rho\right\} .
$$

Because the restriction of \mathbf{g} to $\beta(x, \rho)$ is also $\operatorname{Stab}_{\mathrm{G}}(x)$-invariant, there exists a positive number $\lambda(\rho)$ such that $\exp (\rho .)^{*} \mathbf{g}=\lambda(\rho) \mathbf{g}_{\mathbf{s}^{1, n}}$. Using the same calculation as in classical hyperbolic geometry, one sees that $\lambda(\rho)=\sinh (\rho)$. As a result, $\beta(x, \rho)$ is an umbilical hypersurface of signature $(1, n)$ whose induced metric has sectional curvature $\sinh ^{-2}(\rho)$.

Let $\left\{\rho_{k}\right\}_{k \in \mathbb{N}}$ be a sequence of positive numbers tending to infinity, and for any k, let x_{k} be a point in $H_{k}:=\beta\left(x, \rho_{k}\right)$. Observe that H_{k}, being a non-degenerate hypersurface, has a canonical normal framing, as in definition A.1. Let g_{k} in G map $\mathrm{T}_{x_{k}} H_{k}$ to a fixed vector space V_{0} in $\mathrm{T}_{x_{0}} \mathbf{H}^{2, n}$. Then $g_{k}\left(H_{k}\right)$ converges to the horosphere passing through x_{0} and tangent to V_{0}. We will need in Proposition 8.2 the fact that this convergence is in the sense of Appendix A.1.2).

2.3. Grassmannians.

2.3.1. Riemannian symmetric space. We summarize some of the properties of the Riemannian symmetric space of G.

Proposition 2.3. The Riemannian symmetric space of G is isometric to the $\operatorname{Grassmannian} \mathrm{Gr}_{2,0}(E)$ of oriented 2-planes in E of signature $(2,0)$.

Proof. The group G acts transitively on $\mathrm{Gr}_{2,0}(E)$ and the stabilizer of a point is isomorphic to $\mathrm{SO}(2) \times \mathrm{SO}(n+1)$ which is a maximal compact subgroup of G . This realizes $\mathrm{Gr}_{2,0}(E)$ as the Riemannian symmetric space of G.

Since the maximal compact subgroup of G contains $S O(2)$ as a factor, $\mathrm{Gr}_{2,0}(E)$ is a Hermitian symmetric space.

The corresponding Kähler structure may be described this way. Let P be a point in $\mathrm{Gr}_{2,0}(E)$:

- the tangent space $\mathrm{T}_{P} \mathrm{Gr}_{2,0}(E)$ at P is identified with $\operatorname{Hom}\left(P, P^{\perp}\right)$. The Riemannian metric $h_{P}(\cdot, \cdot)$ at P is defined for $\varphi \in \operatorname{Hom}\left(P, P^{\perp}\right)$ by

$$
h_{P}(\varphi, \varphi):=-\operatorname{tr}\left(\varphi^{*} \varphi\right),
$$

where $\varphi^{*}: P^{\perp} \rightarrow P$ is the adjoint of φ using \mathbf{q}. Note that since \mathbf{q} is negative definite on P^{\perp}, we have $\operatorname{tr}\left(\varphi^{*} \varphi\right) \leqslant 0$.

- Since the plane P is oriented, it carries a canonical complex structure J : the rotation by angle $\pi / 2$. Precomposition by J defines a complex structure on $\operatorname{Hom}\left(P, P^{\perp}\right)=$ $\mathrm{T}_{P} \mathrm{Gr}_{2,0}(E)$, hence a G-invariant almost complex structure on $\mathrm{Gr}_{2,0}(E)$. This almost complex structure is the complex structure associated to the Hermitian symmetric space $\mathrm{Gr}_{2,0}(E)$.
By a theorem of Harish-Chandra (see for instance [20]), $\mathrm{Gr}_{2,0}(E)$ is biholomorphic to a bounded symmetric domain in \mathbb{C}^{n+1}.

Note that a point P in $\mathrm{Gr}_{2,0}(E)$ gives rise to an orthogonal splitting $E=P \oplus P^{\perp}$. We denote by π_{P} the orthogonal projection from E to P. The following lemma is straightforward.
Lemma 2.4. Given a compact set K in $\mathrm{Gr}_{2,0}(E)$, there exists a constant C, with $C \geqslant 1$ such that for any Q and P in K and $v \in Q$,

$$
C^{-1}\left\|\pi_{P}(v)\right\| \leqslant\|v\| \leqslant\left\|\pi_{P}(v)\right\| .
$$

Proof. The inequality on the right comes from the fact that P^{\perp} is negative definite, so π_{P} is length non decreasing. The inequality on the left comes from the compactness of K.
2.3.2. Grassmannian of a pseudo-Riemannian space. In this paragraph (M, g) will be a pseudoRiemannian manifold of signature $(2, n)$.

The Grassmannian $\mathcal{G}(M)$ of positive definite 2-planes in M is the fiber bundle $\pi: \mathcal{G}(M) \rightarrow M$ whose fiber over a point $x \in M$ is the Riemannian symmetric space $\mathrm{Gr}_{2,0}\left(\mathrm{~T}_{x} M\right)$.

Observe that, $\pi: \mathcal{G}(M) \rightarrow M$ has a horizontal distribution given by the parallel transport, giving a splitting

$$
\mathrm{T}_{(x, P)} \mathcal{G}(M)=\mathrm{T}_{x} M \oplus \operatorname{Hom}\left(P, P^{\perp}\right)=P \oplus P^{\perp} \oplus \operatorname{Hom}\left(P, P^{\perp}\right) .
$$

This splitting allows us to define the canonical Riemannian metric g on $\mathcal{G}(M)$ given at a point $(x, P) \in \mathcal{G}(M)$ by

$$
g:=\left(\left.g^{0}\right|_{P},-\left.g^{0}\right|_{P^{\perp}}, h_{P}\right),
$$

where h_{P} is the Riemannian metric on the fiber described above, and g^{0} is the metric on $\mathrm{T}_{x} M$. Let us also define for all positive λ, the renormalized metric

$$
g_{\lambda}:=\left(\left.\frac{1}{\lambda} g^{0}\right|_{P,}-\left.\frac{1}{\lambda} g^{0}\right|_{P^{\perp}}, h_{P}\right) .
$$

2.3.3. The Grassmannian of $\mathbf{H}^{2, n}$. When $M=\mathbf{H}^{2, n}$, we have already remarked in paragraph 2.1.2 that a point in $\mathcal{G}\left(\mathbf{H}^{2, n}\right)$ is identified with an orthogonal splitting $E=L \oplus U \oplus V$ where L is a negative definite line, U a positive definite plane and $V=(L \oplus U)^{\perp}$. The exponential map thus naturally identifies $\mathcal{G}\left(\mathbf{H}^{2, n}\right)$ with the space of pointed hyperbolic planes in $\mathbf{H}^{2, n}$. We will later on freely use this identification.

Up to an index two subgroup, the stabilizer of a point (q, P) in $\mathcal{G}\left(\mathbf{H}^{2, n}\right)$ is isomorphic to $\mathrm{SO}(2) \times \mathrm{SO}(n)$. The projection

$$
\left\{\begin{array}{lll}
\mathcal{G}\left(\mathbf{H}^{2, n}\right) & \longrightarrow & \mathrm{Gr}_{2,0}(E), \\
L \oplus U \oplus V & \longmapsto & U .
\end{array}\right.
$$

is a G-equivariant proper Riemannian submersion when $\mathcal{G}\left(\mathbf{H}^{2, n}\right)$ is equipped with the canonical Riemannian metric.

Similarly, a point in $\mathcal{G}\left(\mathbf{H}_{+}^{2, n}\right)$ corresponds to a pointed hyperbolic plane in $\mathbf{H}_{+}^{2, n}$.
2.3.4. A geometric transition. Let λ be a positive number. We denote by $\mathbf{H}_{\lambda}^{2, n}$ the space $\mathbf{H}^{2, n}$ equipped with the metric $\mathbf{g}_{\lambda}=\frac{1}{\lambda} \mathbf{g}$ where \mathbf{g} is the metric on $\mathbf{H}^{2, n}$. Then we have

Proposition 2.5. (i) The Riemaniann manifold $\mathcal{G}\left(\mathbf{H}_{\lambda}^{2, n}\right)$ is isometric to $\mathcal{G}\left(\mathbf{H}^{2, n}\right)$ equipped with the normalized metric g_{λ}.
(ii) When λ tends to 0 the Riemaniann manifold $\mathcal{G}\left(\mathbf{H}_{\lambda}^{2, n}\right)$ converges in the sense of Appendix A.1.2 to $\mathcal{G}\left(\mathbf{E}^{2, n}\right)$ where $\mathbf{E}^{2, n}$ is pseudo-Euclidean space of signature $(2, n)$.

Observe that, even if the notion of convergence of Riemannian manifolds described in Appendix A.1.2 requires the choice of a point, since the manifolds $\mathcal{G}\left(\mathbf{H}_{\lambda}^{2, n}\right)$ and $\mathcal{G}\left(\mathbf{E}^{2, n}\right)$ are homogeneous, this choice is not needed here. We might write the first item in terms of our notation as stating that the two metric spaces $\left(\mathcal{G}\left(\mathbf{H}^{2, n}, \mathbf{g}_{\lambda}\right), g\right)$ and $\left(\mathcal{G}\left(\mathbf{H}^{2, n}, \mathbf{g}\right), g_{\lambda}\right)$ are isometric.

Proof. The first statement comes from the fact that the metric on $\operatorname{Hom}\left(P, P^{\perp}\right)$ is a conformal invariant. The second statement is standard.

We will call $\mathcal{G}\left(\mathbf{H}_{\lambda}^{2, n}\right)$ the renormalized Grassmannian.
2.4. Einstein universe. The Einstein universe is the boundary of $\mathbf{H}^{2, n}$ in $\mathbf{P}(E)$:

$$
\partial_{\infty} \mathbf{H}^{2, n}:=\{x \in \mathbf{P}(E), \mathbf{q}(x)=0\} .
$$

Associated is a compactification:

$$
\overline{\mathbf{H}}^{2, n}:=\mathbf{H}^{2, n} \cup \partial_{\infty} \mathbf{H}^{2, n} .
$$

The group G acts transitively on $\partial_{\infty} \mathbf{H}^{2, n}$ and the stabilizer of a point in $\partial_{\infty} \mathbf{H}^{2, n}$ is a maximal parabolic subgroup. As for $\mathbf{H}^{2, n}$, we will often discuss the double cover of the boundary at infinity as well as the associated compactification

$$
\begin{aligned}
\partial_{\infty} \mathbf{H}_{+}^{2, n} & :=\left\{x \in \mathbf{P}_{+}(E), \mathbf{q}(x)=0\right\}, \\
\overline{\mathbf{H}}_{+}^{2, n} & :=\mathbf{H}_{+}^{2, n} \cup \partial_{\infty} \mathbf{H}_{+}^{2, n},
\end{aligned}
$$

where $\mathbf{P}_{+}(E)=(E \backslash\{0\}) / \mathbb{R}_{+}$is the set of rays in E. We will consider $\partial_{\infty} \mathbf{H}_{+}^{2, n}$ as the boundary of $\mathbf{H}_{+}^{2, n}$.

2.4.1. Photons, circles and lightcone. Let us first define some subsets of $\partial_{\infty} \mathbf{H}^{2, n}$.

(i) A photon or lightlike line in $\partial_{\infty} \mathbf{H}^{2, n}$ is the projectivization of an isotropic 2-plane in E.
(ii) A spacelike circle (respectively timelike) is the intersection of $\partial_{\infty} \mathbf{H}^{2, n}$ with the projectivisation of a subspace of signature $(2,1)$ (respectively $(1,2)$). Equivalently, a spacelike circle is the boundary of a hyperbolic plane in $\mathbf{H}^{2, n}$.
Observe that two distinct points in $\partial_{\infty} \mathbf{H}^{2, n}$ lie either on a photon or span a non-degenerate 2-plane in E. In the second case, we say that x and y are transverse.
2.4.2. Conformal structure. The tangent space $\mathrm{T}_{x} \partial_{\infty} \mathbf{H}^{2, n}$ is identified with the space $\operatorname{Hom}\left(x, x^{\perp} / x\right)$. The vector space x^{\perp} / x inherits a signature $(1, n)$ quadratic form from \mathbf{q} and E, providing $\mathrm{T}_{x} \partial_{\infty} \mathbf{H}^{2, n}$ with a conformal class of quadratic form. As a result, $\partial_{\infty} \mathbf{H}^{2, n}$ is naturally equipped with a conformal structure [$g_{\text {Ein }}$] of signature $(1, n)$.

The conformal structure then allows for the definition of timelike and lightlike vectors and curves in $\partial_{\infty} \mathbf{H}^{2, n}$. For instance, photons are lightlike curves, while the spacelike and timelike circles are respectively spacelike and timelike curves in $\partial_{\infty} \mathbf{H}^{2, n}$ in terms of the conformal structure.
2.4.3. Product structure. Let P be a pointed hyperbolic plane in $\mathbf{H}_{+}^{2, n}$, which as usual corresponds to an orthogonal splitting $E=L \oplus U \oplus V$ where U is a positive definite 2plane, V is definite negative and L an oriented negative definite line. Let $W=L \oplus V$ and denote by $\langle., .\rangle_{U}$ and $\langle., .\rangle_{W}$ the positive definite scalar product induced by $\pm \mathbf{q}$ on U and W respectively. Then any isotropic ray $x \in \partial_{\infty} \mathbf{H}_{+}^{2, n}$ contains a unique point $(u, w) \in U \oplus W$ with $\langle u, u\rangle_{U}=\langle w, w\rangle_{W}=1$. This gives a diffeomorphism

$$
\partial_{\infty} \mathbf{H}_{+}^{2, n} \cong \mathbf{S}^{1} \times \mathbf{S}^{n}
$$

where $\mathbf{S}^{1} \subset U$ and $\mathbf{S}^{n} \subset W$ are the unit spheres. In this coordinate system, the conformal metric of $\partial_{\infty} \mathbf{H}_{+}^{2, n}$ is given by

$$
\left[g_{\mathrm{Ein}}\right]=\left[g_{\mathbf{S}^{1}} \oplus-g_{\mathbf{S}^{n}}\right]
$$

where $g_{\mathbf{S}^{i}}$ is the canonical metric on \mathbf{S}^{i} of curvature 1 (see [24, Section 2.1]).
2.5. Positivity. We now discuss the important notion of positivity in the pseudo-hyperbolic setting.
2.5.1. Positive triples. Let τ be a triple of pairwise distinct points in the compactification $\overline{\mathbf{H}}^{2, n}$ (or in $\overline{\mathbf{H}}_{+}^{2, n}$). We call τ a positive triple if it spans a space of signature $(2,1)$. It will be called a negative triple if it spans a space of signature $(1,2)$. The positive triple is at infinity if all three points belong to $\partial_{\infty} \mathbf{H}^{2, n}$ (or in $\partial_{\infty} \mathbf{H}_{+}^{2, n}$).

Positive triples are (possibly ideal) vertices of hyperbolic triangles in $\mathbf{H}^{2, n}$. Given a positive triple τ, we will denote by b_{τ} the barycenter of the hyperbolic triangle spanned by τ.

We warn the reader that the terminology positive triples, though standard, may be confusing: being a positive triple is invariant under all permutations.
2.5.2. Semi-positive loops. We now define the notion of (semi-)positive loops in the compactification $\overline{\mathbf{H}}^{2, n}$. The definition for $\overline{\mathbf{H}}_{+}^{2, n}$ is similar.
Definition 2.6. Let Λ be a subset of $\overline{\mathbf{H}}^{2, n}$ homeomorphic to a circle.
(i) Λ is a positive loop if any triple of points in Λ is positive.
(ii) Λ is a semi-positive loop if it does not contain any negative triple, and if Λ contains at least one positive triple.

The next lemma concerns the special case of semi-positive loops in $\partial_{\infty} \mathbf{H}^{2, n}$. Recall that photons and transverse points are defined in Paragraph 2.4.1.

Lemma 2.7. Let Λ be a topological circle in $\partial_{\infty} \mathbf{H}^{2, n}$ that does not contain any negative triple. Then Λ is a semi-positive loop if and only if it is different from a photon.

Proof. If Λ is a photon, it does not contain any positive triple and so is not a semi-positive loop.

Conversely, let us assume that Λ does not contain any positive triple. We want to show that Λ is a photon. If Λ is not a photon, then we can find two transverse points x, y in Λ. Denote by U_{x} and U_{y} the open set of points in Λ that are transverse to x and to y respectively. Observe that U_{x} is contained in a photon, and the same is true for y. In fact, if not, we could find 2 points $z, t \in U_{x}$ such that x, z, t are pairwise transverse. In particular the triple (x, z, t) is positive.

We now claim that $\Lambda \backslash\left(U_{x} \cup U_{y}\right)$ contains at most 2 points. In fact, the complement of $U_{x} \cup U_{y}$ is contained in $(x \oplus y)^{\perp}$ which has signature $(1, n)$. So any triple of pairwise distinct points in $(x \oplus y)^{\perp}$ must be negative ($\mathbb{R}^{1, n}$ does not contain any isotropic 2-plane), so $\Lambda \backslash\left(U_{x} \cup U_{y}\right)$ cannot contain more than two points.

This implies that Λ is contained in the union of two non disjoint photons $\phi_{1} \cup \phi_{2}$. Since two photons intersect at most in one point, $\phi_{1} \cup \phi_{2}$ is homeomorphic to the wedge sum of two circles. The only topological circles embedded in the wedge sum of two circles is consist of one of the circles. This implies that Λ is equal to ϕ_{1} or ϕ_{2} contradicting the existence of a pair of transverse points.

We have the following
Lemma 2.8. Let Λ be a semi-positive loop in $\overline{\mathbf{H}}^{2, n}, \tau$ a positive triple in Λ and b a point in the interior of the hyperbolic triangle with vertices τ. Then b^{\perp} is disjoint from Λ. In particular, the pre-image of Λ in $\overline{\mathbf{H}}_{+}^{2, n}$ has two connected components.
Proof. Consider $\tau=\left(z_{1}, z_{2}, z_{3}\right)$ and b as in the proposition. Choose a lift of b in $\mathbf{H}_{+}^{2, n}$, and lift z_{1}, z_{2} and z_{3} to vectors in the affine hyperplane $\{x \in E,\langle x, b\rangle=-1\}$ (we denote the lift with the same letters). Since b is in the interior of the triangle with vertices z_{1}, z_{2} and z_{3}, there exists $t_{1}, t_{2}, t_{3}>0$ such that $b=\sum_{i=1}^{3} t_{i} z_{i}$.

First observe that we have $\left\langle z_{i}, z_{j}\right\rangle<0$ for any $i \neq j$. In fact, the 3-plane $P=\operatorname{span}\left\{z_{1}, z_{2}, z_{3}\right\}$ splits as $P=\mathbb{R} \cdot b \oplus b^{\perp}$ with b^{\perp} positive definite. Since $z_{i} \in F$ we can write $z_{i}=b+x_{i}$ with $x_{i} \in b^{\perp}$ and the condition $\left\langle z_{i}, z_{i}\right\rangle \leqslant 0$ gives $\left\langle x_{i}, x_{i}\right\rangle \leqslant 1$. The fact that $\left\langle z_{i}, z_{j}\right\rangle<0$ then follows from Cauchy-Schwarz inequality together with the fact that $z_{i} \neq z_{j}$.

Consider now a vector $x \in E$ which lifts a point in Λ. We first claim that there exists at least one z_{i} such that $\left\langle x, z_{i}\right\rangle \neq 0$. In fact, if not, x would belong to the space H orthogonal to $\operatorname{span}\left\{z_{1}, z_{2}, z_{3}\right\}$. Since H has signature $(0, n), x$ would be negative definite and so the space spanned by z_{1}, z_{2} and x would have signature $(1,2)$. This is impossible by semi-positivity.

Then we claim that there is no pair (i, j) such that $\left\langle x, z_{i}\right\rangle<0$ and $\left\langle x, z_{j}\right\rangle>0$. In fact, if this were the case, the matrix of \mathbf{q} in the basis $\left(z_{i}, z_{j}, x\right)$ would have the form

$$
\left(\begin{array}{ccc}
-\varepsilon_{1} & -\alpha & -\beta \\
-\alpha & -\varepsilon_{2} & \gamma \\
-\beta & \gamma & -\varepsilon_{3}
\end{array}\right)
$$

where $\varepsilon_{i} \geqslant 0$ and $\alpha, \beta, \gamma>0$. The determinant of such matrix is

$$
\Delta=-\varepsilon_{1} \varepsilon_{2} \varepsilon_{3}+2 \alpha \beta \gamma+\varepsilon_{3} \alpha^{2}+\varepsilon_{2} \beta^{2}+\varepsilon_{1} \gamma^{2}
$$

Since $\operatorname{span}\left\{z_{1}, z_{2}\right\}$ has signature $(1,1)$, we have $\varepsilon_{1} \varepsilon_{2}-\alpha^{2}<0$. In particular $\Delta>0$ and $\operatorname{span}\left\{z_{1}, z_{2}, x\right\}$ has signature (1,2), contradicting semi-positivity.

We thus find $\langle x, b\rangle=\sum t_{i}\left\langle x, z_{i}\right\rangle \neq 0$ and Λ is disjoint from b^{\perp}. As a result, Λ is contained in the affine chart $\mathbf{P}(E) \backslash \mathbf{P}\left(b^{\perp}\right)$ and its preimage in $\mathbf{P}_{+}(E)$ has two connected components, determined by the sign of the linear form $\langle b,$.$\rangle .$

Lemma 2.9. Let Λ be a semi-positive loop in $\overline{\mathbf{H}}^{2, n}$. Then
(i) If Λ is contained in $\mathbf{H}^{2, n}$ and x is a point in Λ, then Λ is disjoint from x^{\perp}.
(ii) If Λ is contained in $\partial_{\infty} \mathbf{H}^{2, n}$, then any point in Λ is contained in a positive triple of Λ.

Proof. The first item is obvious: if $y \in \Lambda$ is orthogonal to x, then since in this case we restrict to $y \in \mathbf{H}^{2, n}$, we see that $x \oplus y$ has signature $(0,2)$ contradicting semi-positivity.

From the second item, observe that a triple (x, y, z) in $\Lambda \subset \partial_{\infty} \mathbf{H}^{2, n}$ is not positive if and only if $\langle x, y\rangle\langle x, z\rangle\langle y, z\rangle=0$. Denote by U_{x} the set of points y in Λ transverse to x, that is so that $\langle x, y\rangle \neq 0$. The set U_{x} is open and non-empty since from the previous lemma, $\left\langle z_{i}, x\right\rangle \neq 0$ for a positive triple $\left(z_{1}, z_{2}, z_{3}\right)$. We just have to find a pair of points y and z in U_{x} which are transverse to each other (as well as to x). This can always be done unless U_{x} is contained in a photon ϕ.

We claim that this is not possible. In fact, if U_{x} is different from $\Lambda \backslash\{x\}$, then its boundary in Λ would contain at least two points, and these points would be in $\phi \cap x^{\perp}$ which is a single point. If $U_{x}=\Lambda \backslash\{x\}$, then $\{x\}=\phi \cap x^{\perp}$ and $\Lambda=\phi$, which does not contain any positive triple.

This lemma has the following corollary.
Corollary 2.10. Let Λ be a semi-positive loop contained either in $\partial_{\infty} \mathbf{H}^{2, n}$ or in $\mathbf{H}^{2, n}$ and Λ_{+}be a connected component of its preimage in $\overline{\mathbf{H}}_{+}^{2, n}$. For any two points x and y in Λ_{+}, we have $\langle x, y\rangle \leqslant 0$.

Proof. If Λ is contained in $\mathbf{H}^{2, n}$, the first item of the previous lemma implies that if $x \in \Lambda_{+}$, the linear function $\langle x,$.$\rangle never vanishes. By connectedness of \Lambda$, the sign of $\langle x,$.$\rangle is constant$ and must be negative because $\langle x, x\rangle=-1$.

Now assume that Λ is contained in $\partial_{\infty} \mathbf{H}^{2, n}$ and let z_{1}, z_{2} and z_{3} be vectors in E lifting a positive triple τ in Λ_{+}whose barycenter lifts to $b=z_{1}+z_{2}+z_{3}$. As remarked in the proof of Lemma 2.8, $\left\langle z_{i}, z_{j}\right\rangle<0$ for $i \neq j$ and for any $x \in \Lambda_{+}$the sign of $\left\langle x, z_{i}\right\rangle$ is independent of i among those z_{i} with $\left\langle x, z_{i}\right\rangle \neq 0$. Because $\langle b, x\rangle=\sum_{i}\left\langle z_{i}, x\right\rangle<0$, this sign must be negative. This prove the result when x is contained in a positive triple, and then for every x by the second item of the previous lemma.

We now consider the special case of semi-positive loops in $\partial_{\infty} \mathbf{H}_{+}^{2, n}$. Observe that a loop in $\partial_{\infty} \mathbf{H}_{+}^{2, n}$ is semi-positive if and only if its projection to $\partial_{\infty} \mathbf{H}^{2, n}$ is semi-positive.

The $2-1$ cover $\partial_{\infty} \mathbf{H}_{+}^{2, n} \rightarrow \partial_{\infty} \mathbf{H}^{2, n}$ is nontrivial on each photon in $\partial_{\infty} \mathbf{H}^{2, n}$. In particular, any photon in $\partial_{\infty} \mathbf{H}^{2, n}$ lifts to a photon segment between two antipodal points in $\partial_{\infty} \mathbf{H}_{+}^{2, n}$. We call a biphoton in $\partial_{\infty} \mathbf{H}_{+}^{2, n}$ a topological circle consisting of two photons segment between antipodal points and whose projection to $\partial_{\infty} \mathbf{H}^{2, n}$ consists different photons (in particular, a biphoton is not semi-positive).

We call a map f between metric spaces strictly contracting whenever $d(f(x), f(y))<d(x, y)$ for x, y distinct.

Proposition 2.11. Let Λ be a loop in $\partial_{\infty} \mathbf{H}_{+}^{2, n}$ and consider a splitting $\partial_{\infty} \mathbf{H}_{+}^{2, n} \cong \mathbf{S}^{1} \times \mathbf{S}^{n}$ associated to a pointed hyperbolic plane.
(i) The loop Λ is semi-positive if and only if it is the graph of a 1-Lipschitz map from \mathbf{S}^{1} to \mathbf{S}^{n} and not a biphoton, nor a photon.
(ii) The loop Λ is positive if and only if it is the graph of a strictly contracting map from \mathbf{S}^{1} to \mathbf{S}^{n}.

The proposition will follow from the following

Lemma 2.12. Let $\tau=\left(z_{1}, z_{2}, z_{3}\right)$ be a triple in $\partial_{\infty} \mathbf{H}_{+}^{2, n}$ and consider a splitting $\partial_{\infty} \mathbf{H}_{+}^{2, n} \cong \mathbf{S}^{1} \times \mathbf{S}^{n}$ associated to a pointed hyperbolic plane. Write $z_{i}=\left(u_{i}, w_{i}\right)$ in this splitting.
(i) We have $\left\langle z_{i}, z_{j}\right\rangle \leqslant 0$ for all pairs (i, j) if and only if τ is not negative and $d_{\mathbf{S}^{1}}\left(u_{i}, u_{j}\right) \geqslant$ $d_{s^{n}}\left(w_{i}, w_{j}\right)$ for every pair (i, j).
(ii) We have $\left\langle z_{i}, z_{j}\right\rangle<0$ for every $i \neq j$ if and only if τ is positive and $d_{\mathbf{S}^{1}}\left(u_{i}, u_{j}\right)>d_{\mathbf{S}^{n}}\left(w_{i}, w_{j}\right)$ for any $i \neq j$.
Proof. The determinant of the matrix with coefficients $\left\langle z_{i}, z_{j}\right\rangle$ is given by $2\left\langle z_{1}, z_{2}\right\rangle\left\langle z_{1}, z_{3}\right\rangle\left\langle z_{2}, z_{3}\right\rangle$, so the condition on the sign of $\left\langle z_{i}, z_{j}\right\rangle$ implies the positivity or the the non-negativity of τ.

For the condition on the distances, we use the same notation as in Subsection 2.4.3. In particular

$$
\left\langle z_{i}, z_{j}\right\rangle=\left\langle u_{i}, u_{j}\right\rangle_{U}-\left\langle w_{i}, w_{j}\right\rangle_{W} .
$$

For item (i), the condition $\left\langle z_{i}, z_{j}\right\rangle \leqslant 0$ is thus equivalent to

$$
\left\langle u_{i}, u_{j}\right\rangle_{u} \leqslant\left\langle w_{i}, w_{j}\right\rangle_{W} \leqslant 1 .
$$

Using the formula $\langle x, y\rangle=\cos \left(d_{\mathbf{S}^{k}}(x, y)\right)$, the previous equation holds if and only if

$$
d_{\mathbf{S}^{1}}\left(u_{1}, u_{2}\right) \geqslant d_{\mathbf{S}^{n}}\left(w_{1}, w_{2}\right),
$$

and item (i) follows. For item (ii), we replace the non-strict inequalities with strict inequalities.

Proof of Proposition 2.11. By Corollary 2.10, if Λ is semi-positive, then $\langle x, y\rangle \leqslant 0$ for any pair of points in Λ. In fact, Λ is a component of the pre-image of its projection to $\mathbf{P}(E)$.

By the previous Lemma, the projection of Λ to the first factor in $\partial_{\infty} \mathbf{H}_{+}^{2, n} \cong \mathbf{S}^{1} \times \mathbf{S}^{n}$ must be injective and Λ is the graph of a 1-Lipschitz map from $\mathbf{S}^{1} \rightarrow \mathbf{S}^{n}$. Conversely, if f is a 1-Lipschitz map, by lemma 2.12 then the image of f does not contain negative triple: if we had a negative triple $\left(z_{1}, z_{2}, z_{3}\right)$ then at least one of the product $\left\langle z_{i}, z_{j}\right\rangle$ is positive. The result then follows from Lemma 2.7. The second item follows from Lemma 2.12 (ii).

We now give three important corollaries.
Corollary 2.13. Let Λ be a semi-positive loop in $\partial_{\infty} \mathbf{H}_{+}^{2, n}$. If Λ contains two points x and y on a photon, then it contains the segment of photon between x and y.

Proof. The semi-positive loop Λ is the graph of a 1-Lipschitz map $f: \mathbf{S}^{1} \rightarrow \mathbf{S}^{n}$ by Proposition 2.11. The points x and y correspond to points $(u, f(u))$ and $(v, f(v))$ with $d_{\mathbf{S}^{1}}(u, v)=d_{\mathbf{S}^{n}}(f(u), f(v))$.

We first observe that x and y cannot be antipodal: in fact, the pair (x, y) is antipodal if and only if the pairs (u, v) and $(f(u), f(v))$ are. Since f is 1-Lipschitz, it must maps the two arcs between u and v to two geodesic arcs between $f(u)$ and $f(v)$. The graph of such a map is either a photon or a biphoton and is thus not semi-positive.

In particular, there is a unique shortest arc segment $[u, v]$ between u and v in \mathbf{S}^{1} and f maps $[u, v]$ isometrically to an arc of geodesic in \mathbf{S}^{n}. The graph of $\left.f\right|_{[u, v]}$ is the segment of photon between x and y.

Proposition 2.11 also provides for a nice topology on the set of semi-positive loops in $\partial_{\infty} \mathbf{H}^{2, n}$: we say that a sequence $\left\{\Lambda_{k}\right\}_{k \in \mathbb{N}}$ converges to Λ_{0} if for any splitting $\partial_{\infty} \mathbf{H}_{+}^{2, n} \cong \mathbf{S}^{1} \times \mathbf{S}^{n}$, the sequence $\left\{f_{k}\right\}_{k \in \mathbb{N}}$ converges C^{0} to f_{0} where $\Lambda_{k}=\operatorname{graph}\left(f_{k}\right)$ and $\Lambda_{0}=\operatorname{graph}\left(f_{0}\right)$.

We have the following
Corollary 2.14. Every semi-positive loop is a limit of smooth spacelike positive loops.

Proof. Fix a splitting $\partial_{\infty} \mathbf{H}_{+}^{2, n} \cong \mathbf{S}^{1} \times \mathbf{S}^{n}$. By Proposition 2.11, the loop Λ is the graph of a 1-Lipschitz map $f: \mathbf{S}^{1} \rightarrow \mathbf{S}^{n}$, and so its image is contained in a closed hemisphere H of \mathbf{S}^{n}.

For $t \in[0,2]$, consider the geodesic isotopy $\phi_{t}: H \rightarrow H$ with the property that for any x, the path $\left(\phi_{t}(x)\right)_{t \in[0,2]}$ is the (constant speed) geodesic starting at x and ending at the center of the hemisphere. Such an isotopy is contracting for $t>0$ and $d_{\mathbf{S}^{n}}\left(x, \phi_{t}(x)\right) \leqslant t$ (because H has radius $\frac{\pi}{2}<2$).

Thus for any $\varepsilon>0$ there is a $\delta>0$, such that the map $f_{\varepsilon}:=\phi_{\varepsilon} \circ f$ is ($1-2 \delta$)-Lipschitz and is at a distance at most ε from f. Thus, by density, there is a ($1-\delta$)-Lipschitz smooth map g at a distance at most 2ε from f_{ε}. Thus g is at distance at most ε from f and its graph is a smooth positive loop.
2.5.3. Convex hulls. We want to define the convex hull of a semi-positive loop in $\overline{\mathbf{H}}^{2, n}$. Note that the convex hull of a subset Λ of $\mathbf{P}(E)$ is in general not well-defined: one first needs to lift Λ to $\mathbf{P}_{+}(E)$, define the convex hull of the lifted cone as the intersection of all the closed half-spaces containing it, and then project down. The drawback of this construction is that it will in general depend on the lifted cone.

In our case, Lemma 2.8 implies that the convex hull of a semi-positive loop Λ in $\overline{\mathbf{H}}^{2, n}$ is well-defined and will be denoted by $C \mathcal{H}(\Lambda)$. It has the following properties:

Proposition 2.15. Let Λ be a semi-positive loop contained either in $\partial_{\infty} \mathbf{H}^{2, n}$ or in $\mathbf{H}^{2, n}$, and let $\Lambda_{+} a$ connected component of its pre-image in $\mathbf{P}_{+}(E)$. Then
(i) The convex hull $C \mathcal{H}(\Lambda)$ is contained in $\overline{\mathbf{H}}^{2, n}$.
(ii) Let p be in the interior of $C \mathcal{H}\left(\Lambda_{+}\right)$and q in $C \mathcal{H}\left(\Lambda_{+}\right)$, then $\langle p, q\rangle<0$.
(iii) Assume Λ is a positive loop in $\partial_{\infty} \mathbf{H}^{2, n}$. If p is a point of $\mathbf{H}_{+}^{2, n}$ lying in $C \mathcal{H}\left(\Lambda_{+}\right)$and q is a point in Λ_{+}, then $\langle p, q\rangle<0$.
(iv) Let p be in the interior of $C \mathcal{H}(\Lambda)$, then the set Λ is disjoint from p^{\perp}.
(v) If Λ is contained in $\partial_{\infty} \mathbf{H}^{2, n}$ and p is in the interior of $C \mathcal{H}(\Lambda)$, then any geodesic ray from p to a point in Λ is spacelike.
(vi) If Λ is contained in $\partial_{\infty} \mathbf{H}^{2, n}$, then the intersection of $C \mathcal{H}(\Lambda)$ with $\partial_{\infty} \mathbf{H}^{2, n}$ is equal to Λ.

Proof of (i) Any $p \in C \mathcal{H}(\Lambda)$ can be lifted to a vector in E of the form $p_{0}=\sum_{i=1}^{k} t_{i} x_{i}$ where $t_{i}>0$ and the x_{i} are lifts of points in Λ_{+}(actually, from a classical result of Carathéodory [17], one can take $k=\operatorname{dim}(E)+2)$. From Corollary 2.10 we get that $\mathbf{q}\left(p_{0}\right) \leqslant 0$.

Proof of (ii) For any vector x lifting a point in Λ_{+}, the linear form $\langle x,$.$\rangle is non-positive on \Lambda_{+}$ by Corollary 2.10. Since p is in the interior of $C \mathcal{H}(\Lambda)$, we have $\langle x, p\rangle<0$. Finally, any point $q \in C \mathcal{H}\left(\Lambda_{+}\right)$lifts to a vector of the form $\sum_{i=1}^{k} t_{i} x_{i}$ with $t_{i}>0$ and $x_{i} \in \Lambda_{+}$.
Proof of (iii) The vector p has the form $p=\sum_{i=1}^{m} t_{i} x_{i}$ with x_{i} (lift of rays) in Λ_{+}and $t_{i}>0$. For any vector q lifting a point in Λ_{+}, we have $\langle p, q\rangle=\sum_{i=1}^{m} t_{i}\left\langle x_{i}, q\right\rangle \leqslant 0$ with equality if and only if $\left\langle x_{i}, q\right\rangle=0$ for each i. But since Λ is positive, the only vector in Λ whose scalar product with q is 0 is q itself. Since p lies in $\mathbf{H}_{+}^{2, n}$, we get $\langle p, q\rangle<0$.
Proof of (iv) As $\Lambda_{+} \subset C \mathcal{H}\left(\Lambda_{+}\right)$, this follows from item (ii).
Proof of (v) Let x be a vector in E lifting a point in Λ_{+}. By item (ii), the linear form $\langle x,$.$\rangle is$ negative on Λ_{+}and so strictly negative on the interior of $\mathcal{C H}\left(\Lambda_{+}\right)$. The result follows.

Proof of (vi) Let p be a vector in E lifting a point in $C \mathcal{H}(\Lambda) \cap \partial_{\infty} \mathbf{H}^{2, n}$. Then p can be written $\sum_{i=1}^{k} t_{i} x_{i}$ with $t_{i}>0$ and $x_{i} \in \Lambda_{+}$. The condition $\langle p, p\rangle=0$ thus implies that, either $k=1$ and
$p=x_{1}$, or that all the x_{i} lie on a common photon. In this case p lies on a segment of photon which must be contained in Λ by Corollary 2.13.

3. Graphs, curves and surfaces

In this section, we study the differential geometric aspects of curves and surfaces in $\mathbf{H}^{2, n}$. We define the notion of maximal surface and prove some important properties.
3.1. Spacelike submanifolds in pseudo-hyperbolic spaces. Recall that \mathbf{g} denotes the pseudo-Riemannian metric of $\mathbf{H}^{2, n}$.

Definition 3.1 (Spacelike and acausal).
(i) A submanifold M of $\mathbf{H}^{2, n}$ is spacelike if the restriction of \mathbf{g} to M is Riemannian. Such a submanifold is either a curve or a surface.
(ii) A spacelike submanifold M of $\mathbf{H}^{2, n}$ is acausal, if every pair of distinct points in M is acausal.
3.1.1. Warped-product structure. Let $\mathbf{P}=(q, H)$ in $\mathbf{H}_{+}^{2, n}$ be a pointed hyperbolic plane, associated to the orthogonal decomposition $E=q \oplus U \oplus V$ where
(i) q is an oriented negative definite line,
(ii) U is a positive definite plane, with induced norm $\|$.$\| , so that q \oplus U$ defines H.

Let $\mathbf{D}^{2} \subset U$ be the unit (open) disk and $\mathbf{S}^{n} \subset W:=q+V$ be the unit sphere. The following is proved in [21, Proposition 3.5].

Proposition 3.2. The map

$$
\Psi:\left\{\begin{array}{rl}
\mathbf{D} \times \mathbf{S}^{n} & \longrightarrow \mathbf{H}_{+}^{2, n}, \tag{2}\\
(u, w) & \longmapsto
\end{array} \frac{2}{1-\|u\|^{2}} u, \frac{1+\|u\|^{2}}{1-\|u\|^{2}} w\right), ~ \$
$$

is a diffeomorphism. Moreover, if \mathbf{g} is the metric on $\mathbf{H}_{+}^{2, n}$, then

$$
\begin{equation*}
\Psi^{*} g=\frac{4}{\left(1-\|u\|^{2}\right)^{2}} g_{\mathbf{D}}-\left(\frac{1+\|u\|^{2}}{1-\|u\|^{2}}\right)^{2} g_{\mathbf{S}^{n}} \tag{3}
\end{equation*}
$$

where $g_{\mathbf{D}}$ and $g_{\mathbf{S}^{n}}$ are respectively the flat Euclidean metric on the disk and the round metric on the sphere.

Observe that the parametrization $\mathbf{H}_{+}^{2, n} \cong \mathbf{D} \times \mathbf{S}^{n}$ extends smoothly to a parametrization of $\mathbf{H}_{+}^{2, n} \cup \partial_{\infty} \mathbf{H}_{+}^{2, n}$ by $\overline{\mathbf{D}} \times \mathbf{S}^{n}$.

The diffeomorphism Ψ is called the warped diffeomorphism and said to define the warped product structure on $\mathbf{H}_{+}^{2, n}$.

If the preimage of q under Ψ is $(0, v)$, the preimage of H is $\mathbf{D} \times\{v\}$.
For any w in \mathbf{S}^{n}, the image of $((0, w), \mathbf{D} \times\{w\})$ is a pointed hyperbolic plane that we call parallel to P. These pointed disks correspond exactly to the set of pointed hyperbolic planes whose projection to $\mathrm{Gr}_{2,0}(E)$ is U.

The following nice fact was pointed out to us by the referee:
Lemma 3.3. Let Ψ be as in Proposition 3.2. Identifying \mathbf{D} with an hemisphere of \mathbf{S}^{2} using the stereographic projection, the metric $\Psi^{*} g$ is conformal to the metric $g_{\mathbf{S}^{2}}-g_{\mathbf{S}^{n}}$.

Proof. Consider the function f from $\mathbf{D} \times \mathbf{S}^{n}$ to \mathbb{R} sending (u, v) to $\left(\frac{1-\|u\|^{2}}{1+\|u\|^{2}}\right)^{2}$. We obtain that the metric $f \cdot \Psi^{*} \mathrm{~g}$ is equal to

$$
\frac{4}{\left(1+\|u\|^{2}\right)^{2}} g_{\mathrm{D}}-g_{\mathbf{S}^{n}} .
$$

The result then follows from the fact that $\frac{4}{\left.(1+\| \| \|)^{2}\right)^{2}} g_{\mathrm{D}}$ is the expression of the spherical metric on an hemisphere of \mathbf{S}^{2} in a chart given by the stereographic projection.

Definition 3.4 (Warped projection). The warped projection is the map

$$
\pi_{\mathrm{P}}: \mathbf{H}_{+}^{2, n} \longrightarrow H
$$

corresponding (via Ψ) to the projection from $\mathbf{D} \times \mathbf{S}^{n}$ to $\mathbf{D} \times\{v\}$ and mapping (u, w) to (u, v).
A timelike sphere is the fiber of π p above q, for some pointed hyperbolic plane $\mathrm{P}=(q, H)$. It is the intersection of $\mathbf{H}_{+}^{2, n}$ with the subspace W of E of signature $(0, n+1)$.

Note that, given a pointed hyperbolic plane $\mathrm{P}=(q, H)$ with warped projection π_{p}, the preimage by π_{P} of a point different from q is not totally gedesic, since its induced metric does not have curvature -1 .

We then have a fundamental property of $\mathbf{H}_{+}^{2, n}$:
Lemma 3.5 (Projection increases length). The warped projection increases the length of spacelike curves. Moreover if x_{1} and x_{2} are two distinct points in the same fiber, then $\left\langle x_{1}, x_{2}\right\rangle>-1$.
Proof. The fact that the warped projection is length-increasing is a direct consequence of equation (3).

If x_{1} and x_{2} project onto the same point, then $\Psi^{-1}\left(x_{i}\right)=\left(u, w_{i}\right) \in \mathbf{D} \times \mathbf{S}^{n}$ for $i=1,2$. Using the expression of Ψ, we see that

$$
\begin{equation*}
\left\langle x_{1}, x_{2}\right\rangle=\frac{4\|u\|^{2}}{\left(1-\|u\|^{2}\right)^{2}}-\left(\frac{1+\|u\|^{2}}{1-\|u\|^{2}}\right)^{2}\left\langle w_{1}, w_{2}\right\rangle_{W}, \tag{4}
\end{equation*}
$$

where $\langle\ldots,\rangle_{W}$ is the positive definite scalar product induced by $-\mathbf{q}$ on $W=q \oplus V$. Since $w_{i} \in \mathbf{S}^{n}$, we have $\left\langle w_{1}, w_{2}\right\rangle_{W}<1$, thus

$$
\begin{equation*}
\left\langle x_{1}, x_{2}\right\rangle>\frac{4\|u\|^{2}}{\left(1-\|u\|^{2}\right)^{2}}-\left(\frac{1+\|u\|^{2}}{1-\|u\|^{2}}\right)^{2}=-1 . \tag{5}
\end{equation*}
$$

This concludes the proof.
3.1.2. Spacelike graphs. From now on, all our surfaces are assumed to be connected and smooth up to their boundaries.

Definition 3.6. (i) A spacelike submanifold M of $\mathbf{H}_{+}^{2, n}$ is a graph if for any pointed hyperbolic plane, the restriction of the corresponding warped projection is a diffeomorphism onto its image.
(ii) If moreover this diffeomorphism is surjective, M is an entire graph.

Observe that a spacelike graph is always embedded. We now use the definitions of paragraph 2.1.1. As in Lemma 3.3, we identify \mathbf{D} with an hemisphere B of \mathbf{S}^{2} using the stereographical projection.
Proposition 3.7. Let M be a connected spacelike submanifold of $\mathbf{H}_{+}^{2, n}$.
(i) If M is acausal then it is a graph.
(ii) If M is a graph, then it is the graph of a 1-Lipschitz map from a subset U of B to \mathbf{S}^{n}, in any warped product.

Proof of (i) Given a pointed hyperbolic plane P , the corresponding warped projection π_{P} restricts to a local diffeomorphism on M. It follows from Lemma 2.2 that, since M is acausal, we have $\langle x, y\rangle \geqslant-1$ for any pair $x, y \in M$. Lemma 3.5 then implies that the restriction of π_{P} to M is injective and thus a diffeomorphism on its image.
Proof of (ii) Tangent vectors to the graph of f at $(x, f(x))$ have the form ($u, \mathrm{D} f_{x}(u)$), where $u \in \mathbf{T}_{x} \mathbf{D}$. Using Lemma 3.3, one sees that $\left(u, \mathrm{D} f_{x}(u)\right)$ is spacelike if and only if

$$
\|u\|^{2}-\left\|\mathrm{D} f_{x}(u)\right\|^{2}>0
$$

where the norms are computed using the sperical metrics on B and \mathbf{S}^{n}. It implies

$$
\begin{equation*}
\left\|\mathrm{D} f_{x}\right\|<1 \tag{6}
\end{equation*}
$$

Lemma 3.8. Let S be a connected spacelike acausal surface and P a pointed hyperbolic plane with associated warped projection π_{p}. The restriction of π_{p} from S to $\pi_{\mathrm{p}}(S)$ increases the induced path distances.
Proof. Let $\alpha=\pi_{\mathrm{P}}(a)$ and $\beta=\pi_{\mathrm{P}}(b)$ be points in $\pi_{\mathrm{P}}(S)$ with $a, b \in S$. For any path γ between α and β in $\pi_{\mathrm{P}}(S)$, its preimage by π_{P} in S is a curve between a and b whose length is less that the one of γ by Lemma 3.5. Taking the infimum over all path between α and β yields the result.

We have several different notions of boundary:
Definition 3.9 (Boundaries of acausal surfaces). Let S be an acausal surface in $\mathbf{H}^{2, n}$.
(i) The total boundary Λ of S is $\bar{S} \backslash \operatorname{int}(S)$, where \bar{S} is the closure of S in $\overline{\mathbf{H}}^{2, n}$ and $\operatorname{int}(S)$ is its interior.
(ii) The finite boundary of S, denoted by ∂S, is the intersection of Λ with S.
(iii) The asymptotic boundary of S, denoted by $\partial_{\infty} S$, is the intersection of Λ with $\partial_{\infty} \mathbf{H}^{2, n}$.
(iv) The free boundary of S (or frontier), denoted by $\operatorname{Fr}(S)$ is the complement of $\partial S \cup \partial_{\infty} S$ in Λ.
We will use the same notation for the corresponding objects in $\mathbf{H}_{+}^{2, n}$. Note that if the induced metric on S is metrically complete, then $\operatorname{Fr}(S)=\emptyset$. If moreover S is a manifold without boundary, then $\Lambda=\partial_{\infty} S$.

Given a acausal surface S with induced metric d_{I}, for any point x in S, define $d_{I}(x, \operatorname{Fr}(S))$ as the supremum over all R so that the closed ball of radius R and center x is complete. We also define the pseudo-distance to the frontier as

$$
ð(x, \operatorname{Fr}(U)):=\inf \{ð(x, z) \mid z \in \operatorname{Fr}(U)\} .
$$

Proposition 3.10 (Boundary of acausal surfaces). Let S be a closed spacelike surface with boundary in $\mathbf{H}_{+}^{2, n}$. Assume that ∂S is connected and is a a graph, then S is a graph.
Proof. Let π be a warped projection on a hyperbolic plane H. By assumption $\pi(\partial S)$ is a circle γ embedded in H. By compactness of $S, f(x):=\sharp\left(\pi^{-1}(x)\right)$ is locally constant on each of the connected component of $H \backslash \gamma$. It follows (by compactness) that $f=0$ on the unbounded component of $H \backslash \gamma$. This implies that $\pi^{-1} \gamma=\partial S$. Hence that $f=1$ in the (interior) neighborhood of γ. Thus $f=1$ in the bounded connected component of $H \backslash \gamma$.

Finally, we describe entire spacelike graphs.
Proposition 3.11 (Entire spacelike graph). Let S be a simply connected spacelike surface without boundary.
(i) If S is properly immersed or if its induced metric is complete, then S is an entire graph.
(ii) If S is an entire graph, then it is acausal.
(iii) If S is an entire graph, then it intersects any timelike sphere exactly once.
(iv) If S is an entire graph, then its asymptotic boundary $\partial_{\infty} S$ is a semi-positive loop.

Proof of (i) When the induced metric g_{I} on S is geodesically complete, the argument comes from [21, Proposition 3.15]. In that case, the warped projection π_{p} on a pointed hyperbolic plane P is length-increasing. In particular we have

$$
\pi_{\mathrm{P}}^{*} g_{\mathbf{H}^{2}} \geqslant g_{\mathrm{I}} .
$$

It follows that $\pi_{\mathrm{P}}^{*} g_{\mathbf{H}^{2}}$ is also complete. As a result, the restriction of $\pi \mathrm{p}$ to S is a proper immersion, hence a covering, and so a diffeomorphism since S is simply connected.

If S is properly immersed, the result follows from the fact that the warped projection is proper, so its restriction to S is a covering.
Proof of (ii) This was proved in [21, Lemma 3.7].
Proof of (iii) Given a timelike sphere Σ in $\mathbf{H}_{+}^{2, n}$ and a point $q \in \Sigma$, the orthogonal of Σ at q defines a pointed hyperbolic plane P such that $\Sigma=\pi_{\mathrm{P}}^{-1}(q)$. S is then the graph of a map f and so $\Sigma \cap S=(0, f(0))$.
Proof of (iv) From Proposition 3.7, S is the graph of a 1-Lipschitz map from an hemisphere B in \mathbf{S}^{2} to \mathbf{S}^{n}. Such a map extends to a 1-Lipschitz map from the equator \mathbf{S}^{1} to \mathbf{S}^{n}. By Proposition 2.11, its graph $\partial_{\infty} S$ is semi-positive unless it is a photon or a biphoton.

To prove that $\partial_{\infty} S$ is not a photon nor a biphoton, observe that from item (ii) the geodesic from any point x in S to any point y in $\partial_{\infty} S$ is spacelike. In particular, $\partial_{\infty} S$ is disjoint from the hyperplane x^{\perp}. Given ϕ a photon or a biphoton, ϕ contains a pair of antipodal points (a, b). Either a and b are contained in x^{\perp} or they lie in different connected components of $E \backslash x^{\perp}$. In both cases, ϕ intersect x^{\perp}. Thus $\partial_{\infty} S$ is semi-positive.
Remark 3.12. We return briefly to Definition 3.6. If for a spacelike submanifold of $\mathbf{H}_{+}^{2, n}$, there is at least one pointed hyperbolic plane for which the warped projection is a diffeomorphism onto its image, then the proof of (ii) above shows that the submanifold is acausal. Then Proposition 3.7 implies that the submanifold is a graph over every pointed hyperbolic plane and is thus, by Definition 3.6, a spacelike graph.

Recall that $\mathrm{T}_{x} f$ denotes the tangent map of f at x.
Proposition 3.13. Let $\mathrm{Q}=(q, Q)$ and $\mathrm{P}=(p, P)$ be pointed hyperbolic planes. Let φ_{P} be the restriction of the warped projection π_{P} to Q . Assume that

$$
d_{\mathcal{G}}\left(\mathrm{T}_{p} P, \mathrm{~T}_{q} Q\right)<R .
$$

Then
(i) For each such positive constant R, there exists a positive constant c so that

$$
\left\|\mathrm{T}_{q} \varphi_{\mathrm{P}}\right\| \leqslant c,
$$

(ii) For any b larger than 1 , there exists such a positive constant R so that

$$
b^{-1} \leqslant\left\|\mathrm{~T}_{q} \varphi_{\mathrm{P}}\right\| \leqslant b .
$$

Proof. Since hyperbolic planes have complete induced metrics, for any P and Q as in the proposition, φ_{P} is a global diffeomorphism and so $\left\|\mathrm{T}_{q} \varphi_{\mathrm{P}}\right\|>0$. The result then follows from the fact that $\mathcal{G}\left(\mathbf{H}^{2, n}\right)$ is locally compact and that $\varphi_{\mathrm{P}}=$ Id when $\mathrm{P}=\mathrm{Q}$.
3.2. Strongly positive curves. Recall from 2.3.4 that $\mathbf{H}_{\lambda}^{2, n}$ is the space $\mathbf{H}^{2, n}$ equipped with the metric $\mathbf{g}_{\lambda}=\frac{1}{\lambda} \mathbf{g}$.

For a curve γ and $x \in \gamma$, the osculating plane, denoted $\mathrm{T}_{x}^{(2)} \gamma$ is (given a parametrization of γ so that $\gamma\left(t_{0}\right)=x$) the vector space generated by $\dot{\gamma}$ and $\nabla_{\dot{\gamma}} \dot{\gamma}$. The osculating plane is independent of the parametrization. We introduce the following properties of curves in $\mathbf{H}^{2, n}$ which are further refinements of being spacelike and positive.

Definition 3.14 (Strongly positive curves). A smooth curve γ in $\mathbf{H}_{\lambda}^{2, n}$ is strongly positive if
(i) the curve γ positive,
(ii) for every point x in γ, the osculating plane $\mathrm{T}_{x}^{(2)} \gamma$ has dimension 2 and is spacelike.
(iii) for any pair of disjoint points x and y in γ, the totally geodesic space containing x, y and the tangent vectors in $\mathrm{T}_{y} \gamma$ is spacelike.

It is important to remark that since the lift of a connected positive curve to $\mathbf{H}_{+}^{2, n}$ has two connected components, we can use any of these to make sense of warped projection, graphs and so on. This fact will be used in the sequel.
3.2.1. Unpinched curves. Given an acausal curve γ in $\mathbf{H}^{2, n}$, we can define two distances on γ : the (extrinsic) spatial distance $ð$ (see paragraph 2.1.1) and the distance d_{γ} along γ. The following notion is a comparison between those two.

Definition 3.15 (Unpinched curves). An acausal curve γ is called unpinched (or δ-unpinched) if there exists $\delta>0$ such that for all x, y in γ,

$$
\frac{\partial(x, y)}{d_{\gamma}(x, y)} \leqslant \frac{1}{2} \Longrightarrow \partial(x, y)>\delta .
$$

A sequence $\left\{\gamma_{k}\right\}_{k \in \mathbb{N}}$ is uniformly unpinched if there is a $\delta>0$ such that any γ_{k} is δ-unpinched.
Observe also that if γ is δ-unpinched in $\mathbf{H}_{\lambda}^{2, n}$, it is also δ unpinched for $\mathbf{H}_{\mu}^{2, n}$ for $\mu \leqslant \lambda$.
3.2.2. Angular width. Given a curve γ, we denote by $\gamma^{(3)}$ the set of pairwise distinct triples of points in γ and by $\mathrm{Gr}_{2,1}(E)$ the set of hyperbolic planes in $\mathbf{H}^{2, n}$. Assume γ is strongly positive and consider the map

$$
\Phi_{\gamma}: \begin{cases}\gamma^{(3)} & \longrightarrow \mathrm{Gr}_{2,1}(E) \\ (x, y, z) & \longmapsto x \oplus y \oplus z\end{cases}
$$

Since γ is smooth, we have

$$
\lim _{\substack{x_{1}, x_{2} \rightarrow x \\ x_{1} \neq x_{2}}}\left(x_{1} \oplus x_{2}\right)=x \oplus \mathrm{~T}_{x \gamma}, \lim _{\substack{x_{1}, x_{2}, x_{3} \rightarrow x \\ x_{1} \neq x_{2} \neq x_{3}}}\left(x_{1} \oplus x_{2} \oplus x_{3}\right)=x \oplus \mathrm{~T}_{x}^{(2)} \gamma .
$$

In particular, Φ_{γ} extends to a continuous map $\bar{\Phi}_{\gamma}: \gamma^{3} \rightarrow \operatorname{Gr}_{2,1}(E)$ where for $x \neq y$ we have

$$
\bar{\Phi}_{\gamma}(x, y, y)=x \oplus y \oplus \mathrm{~T}_{y \gamma}, \quad \bar{\Phi}_{\gamma}(x, x, x)=x \oplus \mathrm{~T}_{x}^{(2)} \gamma .
$$

Let γ be a strongly positive curve in $\mathbf{H}^{2, n}$. Let x_{0} be a point in γ. Consider the codimension 2 subspace $F:=\left(x_{0} \oplus \mathrm{~T}_{x_{0}} \gamma\right)^{\perp}$ of E. Observe that F has signature $(1, n)$. The projectivization of the orthogonal projection from E to F defines a map

$$
\pi_{0}: \mathbf{P}(E) \backslash \mathbf{P}\left(F^{\perp}\right) \rightarrow \mathbf{P}(F) .
$$

We have
Proposition 3.16. Let γ, x_{0}, and π_{0} be as above, and let y be a point in $\overline{\mathbf{H}}^{2, n}$. If $V:=x_{0} \oplus y \oplus \mathrm{~T}_{x_{0}} \gamma$ has signature $(2,1)$, then $\pi_{0}(y)$ is a spacelike line in F.
Proof. The vector $\pi_{0}(y)$ is in the orthogonal in V of the space W generated by x_{0} and $\mathrm{T}_{x_{0}} \gamma$; but W has signature $(1,1)$, thus $\pi_{0}(y)$ is spacelike.

According to this proposition, π_{0} maps points in $\gamma \backslash\left\{x_{0}\right\}$ to positive definite lines in F. If we identify the set of positive definite lines in F with the n-dimensional hyperbolic space \mathbf{H}^{n}, we obtain a curve $\pi_{x_{0}}(\gamma) \subset \mathbf{H}^{n}$ that we call the angular projection of γ at x_{0}.

Definition 3.17 (Angular width). The angular width of a compact strongly positive curve γ is

$$
w(\gamma):=\sup \left\{\operatorname{diam}\left(\pi_{x_{0}}(\gamma)\right) \mid x_{0} \in \gamma\right\}
$$

where the diameter is computed in \mathbf{H}^{n}.
Proposition 3.18 (Angular width and spacelike surfaces). Let γ be strongly positive curve in $\mathbf{H}_{+}^{2, n}$. Let S be a spacelike surface with $\partial S \subset \gamma$. Assume that S is included in the convex hull of γ. Then for all points y in ∂S, we have

$$
d\left(\mathrm{~T}_{y} S, \mathrm{~T}_{y}^{(2)} \gamma\right) \leqslant w(\gamma)
$$

Proof. Let γ, x_{0}, and π_{0} be as above. Since π_{0} is a linear map and thus preserves convex hulls, $\pi_{0}(S)$ is included in the convex hull of $\pi_{0}(\gamma)$. Let c be a curve in S starting from x_{0} that is orthogonal to ∂S. We parametrize c by arc length so that $c(0)=x_{0}$. Observe first that

$$
\lim _{s \rightarrow 0} \pi_{0}(c(s))=\pi_{0}(\dot{c}(0))
$$

It follows that $\dot{c}(0)$ belongs to the convex hull (in $\left.\mathbf{H}^{2, n}\right)$ of $\pi_{0}(\gamma)$. Similarly

$$
\lim _{s \rightarrow 0} \pi_{0}(\gamma(s))=\pi_{0}\left(n_{0}\right)
$$

where n_{0} and $T_{x_{0}} \gamma$ generates $\mathrm{T}^{(2)} \gamma$. It follows that

$$
d_{\mathcal{G}}\left(\mathrm{T}_{x_{0}} S, \mathrm{~T}_{x_{0}}^{(2)} \gamma\right)=d_{\mathbf{H}^{n}}\left(\dot{c}(0), n_{0}\right) \leqslant w(\gamma)
$$

This concludes the proof.
3.2.3. Deformation of strongly positive curves. We now introduce the class of curves for which we prove a finite Plateau problem.

Definition 3.19. A deformation of a strongly positive curve γ in $\mathbf{H}^{2, n}$ is an isotopy $\left\{\gamma_{t}\right\}_{t \in[0,1]}$ with $\gamma=\gamma_{1}$ such that
(i) every curve γ_{t} is strongly positive,
(ii) the curve γ_{0} lies in a hyperbolic plane.

A strongly positive curve admitting a deformation is called deformable.
Observe that by compactness of the isotopy, if $\left\{\gamma_{t}\right\}_{t \in[0,1]}$ is a deformation, the angular width $w\left(\gamma_{t}\right)$ is uniformly bounded.

3.3. Maximal surfaces.

3.3.1. Second fundamental form. Consider a spacelike embedding $u: S \hookrightarrow M$, where (M, \mathbf{g}) is a pseudo-Riemannian manifold of signature $(2, n)$ and S a surface. The pull-back bundle $u^{*} T M$ splits orthogonally as

$$
u^{*} \mathrm{~T} M=\mathrm{T} S \oplus \mathrm{~N} S,
$$

where the normal bundle $N S$ is the orthogonal of the tangent bundle TS. We denote their induced metric by g_{I} and g_{N} respectively. Observe that g_{I} is positive definite, while g_{N} is negative definite.

We recall that second fundamental form II, which is a symmetric 2-tensor on S with values in N, and the shape operator B which is a 1-form on S with values in $\operatorname{Hom}(N S, T S)$ are given by

$$
g_{\mathrm{I}}(Y, B(X) \xi)=g_{N}(\mathrm{II}(X, Y), \xi)=\mathbf{g}\left(\nabla_{X} Y, \xi\right),
$$

where X and Y are vector fields along S, ξ is a section of the normal bundle and ∇ the Levi-Civita connection on M. For instance the second fundamental I_{0} form on $\mathrm{T}_{x} \mathbf{H}^{2, n}$, where we see $\mathbf{H}^{2, n}$ locally isometrically embedded in E is given by

$$
\mathrm{I}_{0}(u, u)=\mathbf{g}(u, u) x .
$$

Thus if γ is a geodesic in $\Sigma \subset \mathbf{H}^{2, n} \subset E$, we have

$$
\begin{equation*}
\left.\frac{\mathrm{d}^{2}}{\mathrm{dt}^{2}}\right|_{t=s} \gamma(t)=\mathrm{II}(u, u)+\mathbf{g}(u, u) x . \tag{7}
\end{equation*}
$$

The norm of the second fundamental form II is

$$
\begin{equation*}
\|\mathrm{II}\|^{2}:=-\max _{|v|=1} \sum_{i=1,2} \mathbf{g}\left(\mathrm{II}\left(v, e_{i}\right), \mathrm{II}\left(v, e_{i}\right)\right), \tag{8}
\end{equation*}
$$

where $\left(e_{1}, e_{2}\right)$ is an orthonormal basis of $\mathrm{T}_{x} S$.
If M_{Λ} denotes the manifold M equipped with the metric $\mathbf{g}_{\lambda}=\frac{1}{\lambda} \mathbf{g}$, we have the following:
Lemma 3.20. Let S be a spacelike surface in M, with fundamental form II. The second fundamental form II_{λ} of S in M_{λ} satisfies $\left\|\mathrm{II}_{\lambda}\right\|^{2}=\lambda\|\mathrm{II}\|^{2}$.

Proof. Observe that a unit vector with respect to \mathbf{g}_{λ} has the form $\sqrt{\lambda} v$, where v is a unit vector for \mathbf{g}. The result then follows from tracking the effect of the subsequent substitutions in (8), after observing that the Levi-Civita connection is a conformal invariant.

Definition 3.21. The mean curvature is the normal vector field

$$
\mathrm{H}:=\operatorname{tr}_{g_{\mathrm{I}}}(\mathrm{II})=\mathrm{II}\left(e_{1}, e_{1}\right)+\mathrm{II}\left(e_{2}, e_{2}\right) .
$$

3.3.2. Variation of the area. Given a spacelike embedding $u: S \hookrightarrow M$, one can define the area functional, associating to any compact set K in S the number

$$
\mathcal{A}_{K}(u):=\int_{K} \operatorname{dvol}_{g_{1}}
$$

where $\mathrm{dvol}_{g_{1}}$ is the volume form of g_{I}. The following is classical, but we include the proof for the sake of notation.

Lemma 3.22. A spacelike surface $u_{0}: S \hookrightarrow M$ is a critical point of the area functional if and only if $\mathrm{H}=0$.

Proof. Let ξ be a normal vector field with compact support. Let $\left\{u_{t}\right\}_{t \in(-\varepsilon, \varepsilon)}$ be a smooth deformation of u_{0} so that $t \rightarrow u_{t}(x)$ are geodesics with initial tangent vector ξ. For ε small enough, the image $u_{t}(S)$ is spacelike. We respectively denote by g_{t}, B_{t} and II_{t} the induced metric, shape operator and second fundamental form of u_{t}.

Let G and ∇ be respectively the pull-back of the metric and connection of M by $U:(t, x) \rightarrow$ $u_{t}(x)$. The metric G restricts to g_{t} on $S \times\{t\}$. We have

$$
\partial_{t} G(X, Y)=G\left(\nabla_{\xi} X, Y\right)+G\left(X, \nabla_{\xi} Y\right)=G\left(\nabla_{X} \xi, Y\right)+G\left(X, \nabla_{Y} \xi\right)
$$

Thus, restricting to $S \times\{0\}$, we obtain

$$
\begin{equation*}
\dot{g}_{0}(X, Y):=\frac{d}{d t} g_{t=0} g_{t}(X, Y)=-2 g_{0}\left(B_{0}(X) \xi, Y\right)=-2 g_{N}\left(\mathrm{II}_{0}(X, Y), \xi\right) \tag{9}
\end{equation*}
$$

In particular, if $\left(e_{1}, e_{2}\right)$ is an orthonormal framing of $\left(\mathrm{TS}, g_{0}\right)$, and $\left(e^{1}, e^{2}\right)$ its dual, we have

$$
\operatorname{dvol}_{g_{t}}=\operatorname{det}\left(\operatorname{Id}-2 t\left(g_{N}\left(\mathrm{II}_{0}\left(e_{i}, e_{j}\right), \xi\right)\right)_{i, j=1,2}+o(t)\right) e^{1} \wedge e^{2}
$$

It follows that

$$
\begin{equation*}
\operatorname{dvol}_{g_{t}}=-2 g_{N}(\mathrm{H}, \xi) \operatorname{dvol}_{g_{0}} \tag{10}
\end{equation*}
$$

Thus $\dot{\mathcal{A}}_{K}\left(u_{0}\right)=-2 \int_{K} g_{N}(\mathrm{H}, \xi) \mathrm{dvol}_{g_{0}}$ and the result follows.
We now compute the second variation of the area functional.
Proposition 3.23. Given a spacelike surface $u_{0}: S \hookrightarrow M$ with $\mathrm{H}=0$, a non-zero normal deformation along $\xi \in \Omega^{0}(S, N S)$ and $K \subset S$ a compact subset, we have

$$
\ddot{\mathcal{A}}_{K}\left(u_{0}\right)=\int_{K} W(\xi) \mathrm{dvol}_{g_{0}}
$$

where $W(\xi)=2 \operatorname{tr}_{g_{0}}\left(Q_{\xi}\right)$ for the symmetric tensor Q_{ξ} given by

$$
Q_{\xi}(X, Y)=g_{0}\left(\left(R_{0}(\xi, X) \xi, Y\right)-g_{0}\left(B_{0}(X) \xi, B_{0}(Y) \xi\right)+g_{N}\left(\nabla_{X}^{N} \xi, \nabla_{Y}^{N} \xi\right)\right.
$$

Here R_{0} is the Riemann curvature tensor of $u_{0}^{*} D$ and D the Levi-Civita connection of M.
Proof. We use the same notation as the previous proof. By equation (10) when $\mathrm{H}=0$, we have

$$
\stackrel{\ddot{\mathrm{vvol}}}{g_{0}}=-2 g_{N}\left(\nabla_{\xi} \mathrm{H}, \xi\right) \mathrm{dvol}_{g_{0}}=W(\xi) \mathrm{dvol}_{g_{0}}
$$

where $W(\xi)=2 \operatorname{tr}_{g_{0}}\left(Q_{\xi}\right)$ for the symmetric tensor Q_{ξ} defined by

$$
Q_{\xi}(X, Y)=-g_{0}\left(\nabla_{\xi} B_{0}(X) \xi, Y\right)
$$

Our goal is to compute $Q_{\xi}(X, Y)$.
One the one hand, we have

$$
\begin{aligned}
\partial_{t} G\left(\nabla_{X} \xi, Y\right) & =G\left(\nabla_{\xi} \nabla_{X} \xi, Y\right)+G\left(\nabla_{X} \xi, \nabla_{\xi} Y\right) \\
& =G\left(\nabla_{\xi} \nabla_{X} \xi, Y\right)+G\left(\nabla_{X} \xi, \nabla_{Y} \xi\right) \\
& =G(R(\xi, X) \xi, Y)+G\left(\nabla_{X} \nabla_{\xi} \xi, Y\right)+G\left(\nabla_{[\xi, X]} \xi, Y\right)+G\left(\nabla_{X} \xi, \nabla_{Y} \xi\right) \\
& =G(R(\xi, X) \xi, Y)+G\left(\nabla_{X} \xi, \nabla_{Y} \xi\right),
\end{aligned}
$$

where $R(a, b) c=\nabla_{a} \nabla_{b} c-\nabla_{b} \nabla_{a} c-\nabla_{[a, b]} c$.
Restricting to $S \times\{0\}$, we obtain

$$
\frac{d}{d t} g_{t=0} g_{t}\left(-B_{t}(X) \xi, Y\right)=R_{0}(\xi, X, \xi, Y)+g_{0}\left(B_{0}(X) \xi, B_{0}(Y) \xi\right)+g_{N}\left(\nabla_{X}^{N} \xi, \nabla_{Y}^{N} \xi\right)
$$

On the other hand, using equation (9), we thus get

$$
\begin{aligned}
\left.\frac{d}{d t}\right|_{t=0} g_{t}\left(-B_{t}(X) \xi, Y\right) & =\dot{g}_{0}\left(-B_{0}(X) \xi, Y\right)+g_{0}\left(-\nabla_{\xi} B_{0}(X) \xi, Y\right) \\
& =2 g_{0}\left(B_{0}(X) \xi, B_{0}(Y) \xi\right)+Q_{\xi}(X, Y)
\end{aligned}
$$

This gives

$$
\begin{equation*}
Q_{\xi}(X, Y)=R_{0}(\xi, X, \xi, Y)-g_{0}\left(B_{0}(X) \xi, B_{0}(Y) \xi\right)+g_{N}\left(\nabla_{X}^{N} \xi, \nabla_{Y}^{N} \xi\right) \tag{11}
\end{equation*}
$$

Corollary 3.24. If $u: S \hookrightarrow \mathbf{H}^{2, n}$ is a spacelike surface with $\mathbf{H}=0$, and let ξ be a non-zero normal deformation supported on a compact $K \subset S$. Then the second variation of the area satisfies

$$
\ddot{\mathcal{A}}_{K}(u) \leqslant 4 \int_{K} g_{N}(\xi, \xi) \mathrm{dvol}_{g_{0}}<0
$$

Proof. Because $\mathbf{H}^{2, n}$ has curvature -1, we have

$$
g_{0}\left(R_{0}(\xi, X) \xi, Y\right)=g_{N}(\xi, \xi) g_{0}(X, Y)
$$

Thus, we obtain

$$
\operatorname{tr}_{g_{0}}\left(Q_{\xi}\right)=2 g_{N}(\xi, \xi)+R
$$

where $R=\operatorname{tr}_{g_{0}}\left(-g_{0}\left(B_{0}(.) \xi, B_{0}(.) \xi\right)+g_{N}\left(\nabla_{.}^{N} \xi, \nabla_{.}^{N} \xi\right)\right) \leqslant 0$. This concludes the proof.
3.3.3. Maximal surfaces. Corollary 3.24 motivates the following definition

Definition 3.25. A spacelike immersion from a surface S to M is a maximal surface if $\mathrm{H}=0$.
In the sequel, we will denote by Σ a maximal surface, and S any surface.
Corollary 3.24 implies the stability of maximal surfaces in $\mathbf{H}^{2, n}$ and $\mathbf{H}_{+}^{2, n}$: given a maximal surface u, there is no non-zero compactly supported normal deformation with $\ddot{\mathcal{A}}(u)=0$.

Calculating the tangential part of the curvature tensor of ∇, one obtains the following
Proposition 3.26. If Σ is a maximal surface in M and P is a tangent plane to Σ equipped with an orthonormal frame (e_{1}, e_{2}), then we have

$$
K_{\Sigma}(P)=K_{M}(P)-q_{N}\left(\operatorname{II}\left(e_{1}, e_{1}\right)\right)-q_{N}\left(\operatorname{II}\left(e_{1}, e_{2}\right)\right)
$$

where K_{Σ} and K_{M} are the sectional curvatures of Σ and M, respectively, and q_{N} is the (negative definite) quadratic form on N.

In particular if $M=\mathbf{H}^{2, n}$, since q_{N} is negative definite, $K_{\Sigma} \geqslant-1$.
3.3.4. Convex hull. Recall from paragraph 2.5 .3 that any semi-positive loop in $\overline{\mathbf{H}}^{2, n}$ has a well-defined convex hull. The following was proved in [21, Proposition 3.26] for the asymptotic boundary case. The proof is the same in our case, but we include it for the sake of completness.

Proposition 3.27. If Σ is a maximal surface in $\mathbf{H}^{2, n}$ whose total boundary Λ (see Definition 3.9) is a semi-positive loop, then Σ is contained in the convex hull of Λ.

Proof. Consider a connected component Σ_{0} of the preimage of Σ in $\mathbf{H}_{+}^{2, n}$, and let φ_{0} be a linear form on E which is positive on Λ and denote by φ its restriction to Σ. Now, γ be a
geodesic on Σ that we consider as a curve in E, with $\dot{\gamma}(0)=u$, then using equation (7) in the last equality

$$
\left.\operatorname{Hess}_{x} \varphi(u, u)=\left.\frac{\mathrm{d}^{2}}{\mathrm{dt}^{2}}\right|_{t=0} \varphi(\gamma(t))=\varphi_{0}\left(\left.\frac{\mathrm{~d}^{2}}{\mathrm{dt}^{2}}\right|_{t=0} \gamma(t)\right)\right)=\mathbf{q}(u) \varphi(x)+\varphi_{0}(\mathrm{II}(u, u)),
$$

where II is the second fundamental form of Σ and $\operatorname{Hess}_{x} \phi$ is the Hessian of φ at x. Taking the trace yields

$$
\Delta \varphi=2 \varphi
$$

The classical maximum principle thus implies that φ is positive on Σ and so Σ is contained in the convex hull of Λ.
3.4. Gauß lift and holomorphic curves. Recall from Subsection 2.3 that the Grassmannian $\mathcal{G}(M)$ of positive definite 2-planes in M is the fiber bundle over M whose fiber over x is the Riemannian symmetric space $\operatorname{Gr}_{2,0}\left(\mathrm{~T}_{x} M\right)$. The tangent space of $\mathcal{G}(M)$ at (x, P) splits as

$$
\mathrm{T}_{(x, P)} \mathcal{G}(M)=\mathrm{T}_{x} M \oplus \operatorname{Hom}\left(P, P^{\perp}\right)=P \oplus P^{\perp} \oplus \operatorname{Hom}\left(P, P^{\perp}\right)
$$

Furthermore, the canonical Riemannian metric g on $\mathcal{G}(M)$ is given by

$$
g=\left(g_{\mid P^{\prime}},-g_{\mid P^{\perp}}, h_{P}\right),
$$

where h_{P} is the Riemannian metric on the fiber defined in paragraph 2.3.1.
Given a spacelike surface $u: S \hookrightarrow M$, we define its Gauß lift by

$$
\Gamma:\left\{\begin{array}{rll}
S & \longrightarrow & \mathcal{G}(M) \\
x & \longmapsto & \left(u(x), \mathrm{T} u\left(\mathrm{~T}_{x} S\right)\right) .
\end{array}\right.
$$

One easily checks that in the splitting describe above, $\mathrm{T} \Gamma=(\mathrm{T} u, \mathrm{II})$ where $\mathrm{II} \in \Omega^{1}(S, \operatorname{Hom}(\mathrm{~T} S, \mathrm{~N} S))$ is the second fundamental form.

We denote by $g_{\text {II }}$ and $d_{\text {II }}$ the induced metric and distance respectively on S by Γ.
Proposition 3.28. For any spacelike surface we have

$$
g_{\mathrm{II}}=g_{\mathrm{I}}+Q \leqslant\left(1+\|\mathrm{II}\|^{2}\right) g_{\mathrm{I}}
$$

where $Q(x, y)=-\operatorname{tr}_{g_{\mathrm{I}}}\left(g_{N}(\mathrm{II}(x,),. \mathrm{II}(y,)).\right)$
Proof. As noted above, $\mathrm{T} \Gamma=(\mathrm{T} u, \mathrm{II}) \in \Omega^{1}(S, \mathrm{~T} S \oplus \operatorname{Hom}(\mathrm{~T} s, \mathrm{~N} S))$. The first term in the expression of $\Gamma^{*} g$ is clear, so we just have to explain the second one. We recall from subsection 2.3.1 the bilinear form $h_{P}(\varphi, \psi)=-\operatorname{tr}\left(\varphi^{*} \psi\right)$ where $\varphi, \psi \in \mathrm{T}_{P} \mathrm{Gr}_{2,0}(E)$ and $\varphi^{*}: P^{\perp} \rightarrow P$ is the adjoint of φ using the induced scalar product. In particular, the second term is given by $h_{P}(\operatorname{II}(x,) .\mathrm{II}(y,))=.-\operatorname{tr}_{g_{\mathrm{I}}}\left(\mathrm{II}^{*}(x,) .\mathrm{II}(y,).\right)$.

Using $\mathrm{II}^{*}=B$, and taking an orthonormal framing $\left(e_{1}, e_{2}\right)$ of $\left(\mathrm{T} S, g_{\mathrm{I}}\right)$, the second term may then be written as

$$
-\sum_{i=1,2} g_{\mathrm{I}}\left(B(x) \mathrm{II}\left(y, e_{i}\right), e_{i}\right)=\sum_{i=1,2}-g_{N}\left(\mathrm{II}\left(x, e_{i}\right), \mathrm{II}\left(y, e_{i}\right)\right)=Q(x, y)
$$

This proves the result.
Given a point x on a spacelike acausal surface \sum in $\mathbf{H}^{2, n}$, we can define three Riemannian metrics on Σ : the metric $g_{\text {I }}$ induced by the metric on $\mathbf{H}^{2, n}$, the metric $g_{\text {II }}$ induced by the Gauß lift and the metric $g_{H}^{x}:=\pi_{x}^{*} g_{H}$ where π_{x} is the warped projection on the pointed hyperbolic plane (x, H) tangent to Σ at x, and g_{H} is the hyperbolic Riemannian metric on H.
Corollary 3.29. Let S be a spacelike surface whose second fundamental form is uniformly bounded by M,
(i) the Riemannian tensors $g_{\mathrm{I}}, g_{\mathrm{II}}$ are uniformly equivalent, with a constant only depending on M.
(ii) For any R, the metrics g_{I} and g_{H}^{x} are uniformly equivalent on the ball of center x and radius R with respect to g_{I} with a constant only depending on M and R. Moreover the projection π_{x} from S equipped with d_{I} and d_{II} is Lipschitz.

Proof. By the previous proposition, the bound on the norm of II_{Σ} implies that g_{I} and g_{II} are biLipschitz. Moreover, the Gauß lift of a ball B_{R} with respect to g_{I} in $\mathcal{G}\left(\mathbf{H}_{+}^{2, n}\right)$ is contained in the closed ball of center $\mathrm{T}_{x} S$ and radius $R(1+M)$. In particular, the restriction of the warped projection π_{x} to B_{R} is infinitesimally biLipschitz by Proposition 3.13. This shows that g_{I} and g_{H}^{x} are uniformly equivalent.
Corollary 3.30. If S is a properly immersed spacelike surface without boundary whose second fundamental form is uniformly bounded, then $\left(S, g_{\mathrm{I}}\right)$ is complete.
Proof. If S is properly immersed, it is thus a global graph over each of its tangent planes. Thus by the previous corollary, for each x in S, the ball of radius 1 with center x with respect to g_{I} is complete, since the ball of radius 1 with center x with respect to g_{H}^{x} is complete. This shows that $\left(S, g_{\mathrm{I}}\right)$ is complete.
3.4.1. Holonomic distribution. Using the splitting

$$
\begin{equation*}
\mathrm{T}_{(x, P)} \mathcal{G}(M)=\mathrm{T}_{x} M \oplus \operatorname{Hom}\left(P, P^{\perp}\right) \tag{12}
\end{equation*}
$$

where $\mathrm{T}_{x} M$ is the horizontal distribution we define the holonomic distribution \mathcal{D} on $\mathcal{G}(M)$ by

$$
\begin{equation*}
\mathcal{D}_{(x, P)}:=P \oplus \operatorname{Hom}\left(P, P^{\perp}\right) . \tag{13}
\end{equation*}
$$

The following is straightforward.
Lemma 3.31. The Gauß lift of a spacelike surface in M is tangent to the holonomic distribution.
3.4.2. Almost complex structure and holomorphic Gauß lift. The holonomic distribution \mathcal{D} carries a natural almost-complex structure J defined by taking the rotation i of angle $\frac{\pi}{2}$ on P and the pre-composition by i on $\operatorname{Hom}\left(P, P^{\perp}\right)$:

$$
\begin{equation*}
J(u, A)=(i u, A \circ i) . \tag{14}
\end{equation*}
$$

The following is classical (see [32]).
Proposition 3.32. A spacelike surface $u: S \hookrightarrow M$ is maximal if and only if its Gauß lift $\Gamma: S \rightarrow \mathcal{G}(M)$ is J-holomorphic when S is equipped with the complex structure j induced by g_{I}.
Proof. Considering the splitting $u^{*} \mathrm{~T} M=\mathrm{T} S \oplus \mathrm{~N} S$, we get $\Gamma^{*} \mathcal{D}=\mathrm{T} S \oplus \operatorname{Hom}(\mathrm{~T} S, \mathrm{~N} S$), where \mathcal{D} is the distribution on $\mathcal{G}(M)$ defined in (13). In particular, $\mathrm{T} \Gamma \in \Omega^{1}(S, \mathrm{~T} S \oplus \operatorname{Hom}(\mathrm{~T} S, \mathrm{~N} S))$ is identified with (T u, II).

The first factor is clearly J-holomorphic. For the second factor, it follows from the observation that a map $\varphi: \mathrm{T}_{x} S \rightarrow \operatorname{Hom}\left(\mathrm{~T}_{x} S, \mathrm{~N}_{x} S\right)$ satisfies $\varphi \circ j=J \circ \varphi$ if and only if φ is symmetric and trace-less.

Definition 3.33 (Boundary condition). Let γ be a strongly positive curve (Definition 3.14).
(i) The boundary condition associated to γ is the immersed submanifold

$$
\begin{equation*}
W(\gamma):=\left\{(x, P) \in \mathcal{G}\left(\mathbf{H}^{2, n}\right) \mid x \in \gamma, \mathbf{T}_{x} \gamma \subset P\right\} . \tag{15}
\end{equation*}
$$

(ii) For any positive number K, the local boundary condition, is the open subset of $W(\gamma)$

$$
\begin{equation*}
W_{K}(\gamma):=\left\{(x, P) \in W(\gamma) \mid d\left(P, \mathrm{~T}_{x}^{(2)} \gamma\right)<K\right\} \tag{16}
\end{equation*}
$$

We have
Proposition 3.34. Let γ be a strongly positive curve of regularity $C^{k, \alpha}$.
(i) $W(\gamma)$ is a submanifold of regularity $C^{k-1, \alpha}$ tangent to the holonomic distribution.
(ii) $\mathrm{TW}(\gamma)$ is a totally real subspace of half the dimension of the holonomic distribution.
(iii) Finally, let ω be the orthogonal projection from $\mathbf{T} \mathcal{G}\left(\mathbf{H}^{2, n}\right)$ to the horizontal distribution, then if (x, P) belongs to $W(\gamma)$, we have $\omega\left(\mathrm{T}_{P} W(\gamma)\right)=\mathrm{T}_{x} \gamma$.

Proof. The first item is obvious. The last item follows from the definition of $W(\gamma)$. Let (x, P) be in $W(\gamma)$. Using the splitting (12),

$$
\mathrm{T}_{(x, P)} W(\gamma)=\mathrm{T}_{x} \gamma \oplus\left\{A \in \operatorname{Hom}\left(P, P^{\perp}\right) \mid \mathrm{T}_{x} \gamma \subset \operatorname{ker}(A)\right\}
$$

It follows from the definition (13), that $\mathrm{T}_{(x, P)} W(\gamma) \subset \mathcal{D}_{(x, P)}$. Moreover the definition (14) of the almost complex structure J implies that

$$
\mathrm{T}_{(x, P)} W(\gamma) \oplus \int \mathrm{T}_{(x, P)} W(\gamma)=\mathcal{D}_{(x, P)}
$$

This completes the proof.

4. Uniqueness

This section is devoted to the proof of the following result.
Theorem 4.1 (Uniqueness). Let Σ be a complete maximal surface in $\mathbf{H}^{2, n}$ whose total boundary Λ is either finite and positive or asymptotic (see Definition 3.9). Then Σ is the unique complete maximal surface bounded by Λ.

This statement was proved in [21, Theorem 3.21] in the case of a cocompact group action on Σ, and the proof relies on a maximum principle. We will adapt this maximum principle here to the non-compact case using a weak version of Omori's maximum principle. Such an adaptation was made in the case of $\mathbf{H}^{2,2}$ for polygonal surfaces in [44] and suggested to us by the first author of that work.

We work by contradiction. Suppose there exists two maximal surfaces Σ_{1} and Σ_{2} sharing a common boundary, denoted by Λ. By Proposition 3.27, both surfaces are contained in the convex hull $\mathcal{H} \mathcal{H}(\Lambda)$ of Λ. Lift of $\mathcal{C H}(\Lambda)$ to $\mathbf{H}_{+}^{2, n}$ and recall that the scalar product of any pair of points in this lift is negative by Proposition 2.15, item (ii). This defines a lift of Σ_{1} and Σ_{2} in $\mathbf{H}_{+}^{2, n}$ that we denote the same way.

Consider the function

$$
B:\left\{\begin{array}{lll}
\Sigma_{1} \times \Sigma_{2} & \longrightarrow & \mathbb{R} \\
(x, y) & \longmapsto & \langle x, y\rangle
\end{array}\right.
$$

We remark that since B is negative everywhere, B is bounded from above.
4.1. Lower bound on the Hessian. We prove the following estimate.

Lemma 4.2. Let $p=(x, y)$ be a point in $\Sigma_{1} \times \Sigma_{2}$. Then there exists, two unit vectors u_{0} and v_{0} in $\mathrm{T}_{x} \Sigma_{1}$ and $\mathrm{T}_{y} \Sigma_{2}$ respectively such that, for $w_{0}=\left(u_{0}, v_{0}\right)$, we have

$$
\begin{equation*}
\operatorname{Hess}_{p} B\left(w_{0}, w_{0}\right) \geqslant 2 B(p)+2 \tag{17}
\end{equation*}
$$

We first compute the Hessian of B.
Lemma 4.3. The Hessian of B at a point $p=(x, y)$ in $\Sigma_{1} \times \Sigma_{2}$ in the direction $w=(u, v) \in T_{x} \Sigma_{1} \times T_{y} \Sigma_{2}$ is given by

$$
\operatorname{Hess}_{p} B(w, w)=(\boldsymbol{q}(u)+\boldsymbol{q}(v)) B(p)+2\langle u, v\rangle+\left\langle\mathrm{I}_{1}(u, u), y\right\rangle+\left\langle x, \mathrm{II}_{2}(v, v)\right\rangle
$$

Where I_{i} is the second fundamental form of \sum_{i}.

Proof. Let γ_{1} be a geodesic in Σ_{1} with $\dot{\gamma}_{1}(0)=u$, while γ_{2} is a geodesic in Σ_{2} with $\dot{\gamma}_{2}(0)=v$, then, using equation (7) in the last equality

$$
\begin{aligned}
\operatorname{Hess}_{p} B(w, w) & =\left.\frac{\mathrm{d}^{2}}{\mathrm{~d} t^{2}}\right|_{t=0}\left\langle\gamma_{1}(t), \gamma_{2}(t)\right\rangle \\
& =\left\langle\left.\frac{\mathrm{d}^{2}}{\mathrm{~d} t^{2}}\right|_{t=0} \gamma_{1}(t), y\right\rangle+2\langle u, v\rangle+\left\langle x,\left.\frac{\mathrm{~d}^{2}}{\mathrm{~d} t^{2}}\right|_{t=0} \gamma_{2}(t)\right\rangle \\
& =\left\langle\mathbf{q}(u) x+\mathrm{I}_{1}(u, u), y\right\rangle+2\langle u, v\rangle+\left\langle x, \mathbf{q}(v) y+\mathrm{I}_{2}(v, v)\right\rangle
\end{aligned}
$$

and the result follows.
Proof of Lemma 4.2. Since the surfaces Σ_{1} and Σ_{2} are maximal, the quadratic forms $\left\langle\mathrm{II}_{1}(.,), y.\right\rangle$ and $\left\langle x, \mathrm{II}_{2}(.,).\right\rangle$ have opposite eigenvalues $\pm \lambda_{1}$ and $\pm \lambda_{2}$ respectively. Thus at given point $p=(x, y) \in \Sigma_{1} \times \Sigma_{2}$, up to switching Σ_{1} and Σ_{2}, we may assume $\lambda_{1} \geqslant \lambda_{2} \geqslant 0$. Observe then that for any unit vector v in $v \in \mathrm{~T}_{y} \Sigma_{2}$ we have

$$
\left\langle x, \mathrm{II}_{2}(v, v)\right\rangle \geqslant-\lambda_{2} \geqslant-\lambda_{1} .
$$

Now let us choose a unit vector $u_{0} \in \mathrm{~T}_{x} \Sigma_{1}$ such that $\left\langle\mathrm{II}_{1}\left(u_{0}, u_{0}\right), y\right\rangle=\lambda_{1}$. Let $w=(u, v)$, then we obtain from lemma 4.3 that for any unit v in $\mathrm{T}_{y} \Sigma_{2}$,
$\operatorname{Hess}_{p} B\left(\left(u_{0}, v\right),\left(u_{0}, v\right)\right)=2 B(p)+2\left\langle u_{0}, v\right\rangle+\left\langle\mathrm{II}_{1}\left(u_{0}, u_{0}\right), y\right\rangle+\left\langle x, \mathrm{II}_{2}(v, v) \geqslant 2 B(p)+2\left\langle u_{0}, v\right\rangle\right.$.
It is now enough in order to conlude the proof of the lemma to find a unit vector v_{0} such that $\left\langle u_{0}, v_{0}\right\rangle \geqslant 1$.

Let π be the orthogonal projection from E to $T_{x} \Sigma_{1}$. Since the kernel of π is negative definite, we have $\mathbf{q}(a) \leqslant \mathbf{q}(\pi(a))$ for any $a \in E$. Because $\mathrm{T}_{y} \Sigma_{2}$ is positive definite, it follows that the restriction of π to $\mathrm{T}_{y} \Sigma_{2}$ is a linear isomorphism. Let v_{1} to be the unique vector such that $\pi\left(v_{1}\right)=u_{0}$ and observe that $0<\mathbf{q}\left(v_{1}\right) \leqslant \mathbf{q}\left(u_{0}\right)=1$. Finally, let v_{0} the unit vector defined by $v_{0}={\sqrt{\mathbf{q}\left(v_{1}\right)}}^{-1} v_{1}$. Then

The result now follows.
4.2. A maximum principle. The following is a weaker version of Omori's maximum principle [41].

Proposition 4.4 (Maximum Principle). Let M be a complete Riemannian manifold without boundary whose sectional curvature is bounded from below. Let f be a function of M satisfying the following:
(i) The function f is of class C^{2}.
(ii) There are positive constants A, Λ so that, if $f(x)>A$, then there is a non-zero vector v in $\mathrm{T}_{x} \mathrm{M}$ such that

$$
\operatorname{Hess}_{x} f(v, v) \geqslant \Lambda\|v\|^{2}
$$

Then either f is bounded by A, or f is unbounded.
We will denote by $B\left(x_{0}, r\right)$ the ball in M of center x_{0} and radius r, and $d_{x_{0}}$ the function distance to x_{0}. Recall the classical Hessian comparison theorem (see for instance [9, Chapter 1]).

Proposition 4.5 (Hessian comparison principle). Let M be a complete Riemannian manifold whose sectional curvature is bounded below. There exists positive constants ε and λ such that for every point x_{0} in M, and any vector $v \in T_{x} M$ with x in $B\left(x_{0}, \varepsilon\right)$, we have

$$
\operatorname{Hess}_{x} d_{x_{0}}^{2}(v, v) \leqslant \lambda\|v\|^{2},
$$

Proof of Proposition 4.4. Let ε be as in Proposition 4.5 and A and Λ as in the statement of the proposition. Let $\kappa>0$ so that for every x, we have the following inequality for every z in $B(x, \varepsilon)$,

$$
\kappa \operatorname{Hess}_{z} d_{y}^{2}(v, v) \leqslant \frac{\Lambda}{2}\|v\|^{2},
$$

To prove the proposition, it is enough to show that if there exists x_{0}, with $f\left(x_{0}\right)>A$, then there exists y with $f(y) \geqslant f\left(x_{0}\right)+\kappa \varepsilon$. Choose x_{0} so that $f\left(x_{0}\right)>A$. Let now y achieve the maximum of $g:=f-\kappa d_{x_{0}}$ on the ball $B\left(x_{0}, \varepsilon\right)$. Observe that at this maximum, the inequality $g(y) \geqslant g\left(x_{0}\right)$ reads

$$
\begin{equation*}
f(y) \geqslant f\left(x_{0}\right)+\kappa d^{2}\left(x_{0}, y\right) \tag{18}
\end{equation*}
$$

In particular, $f(y) \geqslant f\left(x_{0}\right)>A$. Thus there exists v so that $\operatorname{Hess}_{y} f(v, v)>\Lambda\|v\|^{2}$, hence

$$
\operatorname{Hess}_{y} g(v, v)=\operatorname{Hess}_{y} f(v, v)-\kappa \operatorname{Hess}_{y} d_{x_{0}}^{2}(v, v) \geqslant \frac{\Lambda}{2}\|v\|^{2}>0
$$

Hence y cannnot be a point in the interior of $B\left(x_{0}, \varepsilon\right)$. Thus $d\left(x_{0}, y\right)=\varepsilon$. The inequality (18) now reads

$$
f(y) \geqslant f\left(x_{0}\right)+\kappa \varepsilon^{2} .
$$

This concludes the proof.

4.3. Proof of Theorem 4.1. We will combine two lemmas.

Lemma 4.6. For any x in Σ_{1}, the supremum M_{x} of B on $\{x\} \times \Sigma_{2}$ is greater or equal to -1 , with equality if and only if x belongs to Σ_{2}.

Proof. Consider a pointed hyperbolic plane $\mathbf{P}=(x, H)$ tangent to Σ_{1} at a point x in the interior of Σ_{1}. In the non-compact case, both surfaces are graphs above the entire \mathbf{P} while in the compact case, they are graphs above the compact domain bounded by the image of the warped projection of their common boundary.

In particular, the fiber above x of the warped projection on \mathbf{P} is a totally geodesic timelike sphere that intersects Σ_{2} in a unique point y; furthermore, the geodesic passing through x and y is timelike. This gives

$$
B(x, y)=\frac{1}{2}(\langle x, x\rangle+\langle y, y\rangle-\langle x-y, x-y\rangle) \geqslant-1
$$

with equality if and only if $y=x$.
Assume conversely that x belongs to both Σ_{1} and Σ_{2}. . Then, for all y in Σ_{2}, the arc $[x, y]$ is spacelike since Σ_{2} is achronal. Thus

$$
B(x, y)=\frac{1}{2}(\langle x, x\rangle+\langle y, y\rangle-\langle x-y, x-y\rangle) \leqslant-1=B(x, x) .
$$

This concludes the proof.
We now prove
Lemma 4.7. The supremum M of B on $\Sigma_{1} \times \Sigma_{2}$ is equal to -1 .

Proof. We first consider the compact case. Let m be the point where the function B achieves its maximum M on $\Sigma_{1} \times \Sigma_{2}$.
(i) Assume first that $m=(x, y)$ where x and y belong to the interior of Σ_{1} and Σ_{2} respectively. At such a point m, the Hessian of B is non-positive. Then Lemma 4.2 says

$$
M=B(m) \leqslant-1
$$

(ii) Assume now that $m=(x, y)$ where (say) x belongs to $\partial \Sigma_{1}$ (the case where y belongs to $\partial \Sigma_{2}$ is treated in a symmetric fashion). Since x then also belongs to Σ_{2}, by Lemma 4.6

$$
-1=M_{x}=M
$$

In both situations $M \leqslant-1$.
In the non-compact case, we follow a similar argument using the weak version of the Omori maximum principle Proposition 4.4. First, note that the Riemannian manifold $\Sigma_{1} \times \Sigma_{2}$ has sectional curvature larger than -1 by Proposition 3.26. For any $x=\left(x_{1}, x_{2}\right)$ with $B(x)>-1+\delta$ with $\delta>0$, Lemma 4.2 implies that there exists w tangent to x with

$$
\operatorname{Hess}_{x} B(w, w) \geqslant(2 B(x)+2)\|w\|^{2} \geqslant 2 \delta\|w\|^{2} .
$$

Since we noted after its definition that B is bounded from above, Proposition 4.4 then implies that B is bounded by $-1+\delta$. Since this is true for all δ, the function B is bounded by -1 . Thus $M \leqslant-1$ in the non-compact case as well.

We can now conclude the proof of the Uniqueness Theorem 4.1. Combining the two Lemmas 4.6 and 4.7, we obtain that for all x in Σ_{1}, we have $M_{x}=-1$. Thus, using the equality case in the same Lemma 4.6 , we obtain that x belongs to Σ_{2}. Thus Σ_{1} is equal to Σ_{2}. This concludes the proof.

5. Main compactness theorem

The main result of this section is the following compactness theorem concerning complete surfaces.

We start with a definition.
Definition 5.1. A sequence of complete acausal surfaces $\left\{\Sigma_{k}\right\}_{k \in \mathbb{N}}$ with boundary converges as a graph over an open subset V of a pointed hyperbolic plane P_{0} associated to the warped projection π_{0}, if, denoting $\Sigma_{k}^{V}:=\Sigma_{k} \cap \pi_{0}^{-1}(V)$

- the sequence $\left\{U_{k}\right\}_{k \in \mathbb{N}}$, with $U_{k}:=\pi_{0}\left(\Sigma_{k}^{V}\right)$ converges smoothly as open sets with smooth boundary in V to an open set with smooth boundary U_{0},
- there exists a smooth complete acausal surface Σ_{0} over $\pi_{0}^{-1}\left(U_{0}\right)$, so that $\Sigma_{k}^{U_{k}}$ converges to Σ_{0}.

We will mainly use this definition of the convergence of complete acausal surfaces Σ_{k} in settings where the projections U_{k} are fixed, i.e. not varying with the parameter k. Recall the Gauß lift $\Gamma(S) \subset \mathcal{G}(M)$, described in section 3.4, of a surface in $S \subset M$ into its Grassmannian $\mathcal{G}(M)$.
Theorem 5.2 (Compactness theorem). Let $\left\{\Sigma_{k}\right\}_{k \in \mathbb{N}}$ be a sequence of connected complete acausal maximal surfaces in $\mathbf{H}^{2, n}$, and let $\gamma_{k}:=\partial \Sigma_{k}$ be the finite boundary of Σ_{k}. Assume that we have the following boundary conditions:
(i) The sequence $\left\{\gamma_{k}\right\}_{k \in \mathbb{N}}$ is strongly positive and uniformly unpinched.
(ii) There is a positive constant A so that for all k, for all x in γ_{k}, we have $d\left(\mathrm{~T}_{x_{k}} \Sigma_{k}, \mathrm{~T}_{x_{k}}^{(2)} \gamma_{k}\right) \leqslant A$.
(iii) The sequence $\left\{\gamma_{k}\right\}_{k \in \mathbb{N}}$ has C^{∞} bounded geometry.
(iv) There is a pointed hyperbolic plane P within a uniformly bounded distance of the Gauß lift $\Gamma\left(\Sigma_{k}\right)$.
Then, the sequence of surfaces $\left\{\Sigma_{k}\right\}_{k \in \mathbb{N}}$ converges as a graph on every bounded ball of P .
The definition of bounded geometry and convergence for spacelike surfaces and strongly positive curves is given in Appendix A, the definition of uniformly unpinched is given in Definition 3.14, and the definition of finite boundary is given in Definition 3.9, while the definition of the Gauß lift is given in section 3.4.

The first three hypotheses can be thought of as a C^{1} bounds along the boundary, while the fourth one is an interior C^{0} bound.

This theorem implies readily a uniform bound on the second fundamental form of complete acausal surfaces without boundary. Such a result is also a consequence of a result by Ishihara [31]. However the Ishihara bound is not optimal and we will improve upon it in our setting in a subsequent paper [36].

We next describe a bound on the second fundamental form in the non-complete case.
If an acausal maximal surface Σ is not complete, we define its frontier $\operatorname{Fr}(\Sigma)$ and the distance $\partial(x, \operatorname{Fr}(\Sigma))$ to the frontier as in paragraph 2.1.1 and Definition 3.9. We may refer to the non-complete case as the free boundary case. In this setting, we will have two results: we will have a both a local bound on the geometry as well as a local compactness theorem.
Theorem 5.3. Let $\left\{\Sigma_{k}\right\}_{k \in \mathbb{N}}$ be a sequence of connected acausal maximal surfaces in $\mathbf{H}^{2, n}$, and let $\gamma_{k}:=\partial \Sigma_{k}$ be the finite boundary of Σ_{k}. Let also $\left\{x_{k}\right\}_{k \in \mathbb{N}}$ be a sequence of points so that x_{k} belongs to Σ_{k}.

Assume that we have the following boundary conditions:
(i) The sequence $\left\{\gamma_{k}\right\}_{k \in \mathbb{N}}$ is strongly positive and uniformly unpinched,
(ii) There is a positive constant A so that for all k, for all x in γ_{k}, we have $d\left(\mathrm{~T}_{x_{k}} \Sigma_{k}, \mathrm{~T}_{x_{k}}^{(2)} \gamma_{k}\right) \leqslant A$.
(iii) The sequence $\left\{\gamma_{k}\right\}_{k \in \mathbb{N}}$ has C^{∞} bounded geometry.

Assume furthermore that $ð\left(x_{k}, \operatorname{Fr}\left(\Sigma_{k}\right)\right)$ is bounded from below by a positive constant R. Then there exists a positive constant ε less than R so that for all k we have that

- the second fundamental form of Σ_{k} is uniformly bounded on the ball Σ_{k}^{ε} (with respect to d_{I}) on Σ_{k} of center x_{k} and radius ε.
- the sequence $\left\{x_{k}, \Sigma_{k}^{\varepsilon}\right\}_{k \in \mathbb{N}}$ subconverges smoothly.

In Section 6, we will describe three avatars of our compactness theorem.
5.1. Structure of the proof. The structure of the proof is as follows:
(i) In Paragraph 5.2, we describe how to construct "good"neighborhoods of points on acausal surfaces: see Proposition 5.4.
(ii) In Paragraph 5.3, we use this good neighborhood together with results on holomorphic curves to show local subconvergence under a uniform bound on the second fundamental form.
(iii) In Paragraph 5.4, we extend this subconvergence globally, again under a uniform bound on the second fundamental form.
(iv) In Paragraph 5.5, we prove a Bernstein type theorem: complete maximal surfaces without boundary in the pseudo-Euclidean space $\mathbf{E}^{2, n}$ are spacelike planes as well as a boundary version.
(v) in Paragraph 5.6 we use the subconvergence, a renormalisation and the Bernstein type theorem, to prove a uniform bound on the second fundamental form.
(vi) We conclude the proof of the main compactness Theorem 5.2 in paragraph 5.7, also proving Theorem 5.3. .
5.2. Preliminary : constructing "good" neighborhoods. This paragraph is devoted to the proof of Proposition 5.4 below.

In order to apply the theory of holomorphic curves to prove our main compactness theorems, we want to find neighborhoods of points in an acausal surface that are homeomorphic to disks with at most one connected arc in the boundary. We also want to control the size of these neighborhoods: they should not be too small (with respect to the warped projection), and their Gauß lift should be uniformly bounded.

Let Σ be a spacelike surface in $\mathbf{H}_{\lambda}^{2, n}$. We denote by
(i) d_{I} the induced metric on Σ from the metric on $\mathbf{H}_{\lambda}^{2, n}$, and area a_{I} the corresponding area form,
(ii) $\Gamma: \Sigma \rightarrow \mathcal{G}\left(\mathbf{H}_{\lambda}^{2, n}\right)$ the Gauß lift, $d_{\text {II }}$ the induced metric and area ${ }_{\text {II }}$ the corresponding area,
(iii) $d_{\mathcal{G}}$ the metric on $\mathcal{G}\left(\mathbf{H}^{2, n}\right)$.

Given a point x in Σ, let
(i) $\mathrm{P}_{x}=\left(x, H_{x}\right)$ be the pointed hyperbolic plane tangent to Σ at x (that is such that $\left.\mathrm{T}_{x} H_{x}=\mathrm{T}_{x} \Sigma\right)$,
(ii) d_{H} be the metric induced on H_{x} by $\mathbf{H}_{\lambda}^{2, n}$, and U_{R} be the disk of center x and radius R in H_{x}, and
(iii) π_{x} the warped projection from Σ to H_{x} defined by \mathbf{P}_{x},

Proposition 5.4. There exist constants A and δ_{0} so that for any δ less than δ_{0}, we have the following. Let Σ be an acausal surface in $\mathbf{H}_{\lambda}^{2, n}$ with $\lambda \leqslant 1$,
(i) whose finite boundary $\partial \Sigma$ is δ-unpinched, and
(ii) whose second fundamental form has norm bounded by 1.

Then for all positive κ less than $\frac{1}{100} \delta$, any x in Σ with $d_{\mathrm{I}}(x, \operatorname{Fr}(\Sigma)) \geqslant \delta$ admits an open neighborhood Σ_{x} in Σ homeomorphic to the disk with:
(i) $\stackrel{\circ}{\Sigma}_{x} \cap \partial \Sigma$ has at most one connected component,
(ii) for all y in Σ_{x}, we have $d_{\mathcal{G}}\left(\mathrm{T}_{y} \Sigma, \mathrm{~T}_{x} \Sigma\right) \leqslant A \kappa$,
(iii) the subset Σ_{x}° is a graph over a subset V_{x} of the disk U_{κ} in H_{x}, and
(iv) we have $d\left(x, \pi_{x}(\operatorname{Fr}(\stackrel{\circ}{\Sigma})) \geqslant \frac{\kappa}{A}\right.$.
5.2.1. The construction: controlling projections of arcs. We assume throughout this paragraph that
Σ is a spacelike acausal surface with second fundamental form of norm bounded by 1 and non-empty δ-unpinched boundary.

Assuming that $U_{R} \cap \pi_{x}(\partial \Sigma)$ is non-empty, we choose w to be a closest point in $U_{R} \cap \pi_{x}(\partial \Sigma)$ to x :

$$
d_{H}(x, w)=\inf \left\{\left(d_{H}(x, y) \mid y \in U_{R} \cap \pi_{x}(\partial \Sigma)\right\}\right.
$$

Let ω the preimage of w.
Let $c_{R}=c_{R}(x, \Sigma)$ be the connected component of $U_{R} \cap \pi_{x}(\partial \Sigma)$ containing w, and γ_{R} be the preimage of c_{R}. The point w and the $\operatorname{arc} c_{R}$ are not uniquely chosen, and when U_{R} is disjoint from $\pi_{x}(\partial \Sigma)$, they do not exist.

We begin our approach to Proposition 5.4 by showing, under the background assumption that x is relatively distant to the image of the frontier of Σ, that short geodesic arcs in H_{x} may be lifted to arcs in Σ, assuming the geodesic arcs in H_{x} are near x.

Lemma 5.5 (Lifting arcs). For any positive constants δ and ε, with $\varepsilon \leqslant \frac{1}{4} \delta$, and point x in Σ with $d_{I}(x, \operatorname{Fr}(\Sigma)) \geqslant \delta$ the following holds. Let $c:[0, \varepsilon] \rightarrow H_{x}$ be a geodesic arc (parametrized by arclength) not intersecting $\pi_{x}(\partial \Sigma)$ except possibly at its extremities and such that

$$
d_{I}\left(\xi_{0}, x\right) \leqslant \varepsilon, \pi_{x}\left(\xi_{0}\right)=c(0)
$$

then c is contained in $\pi_{x}(\Sigma)$. Moreover, if $\pi_{x}\left(\xi_{1}\right)=c(\varepsilon)$, then

$$
\begin{equation*}
d_{I}\left(\xi_{1}, x\right) \leqslant 2 \varepsilon, d_{\mathcal{G}}\left(\mathrm{T}_{\xi_{1}} \Sigma, \mathrm{~T}_{x} \Sigma\right) \leqslant 4 \varepsilon \tag{19}
\end{equation*}
$$

Proof. Let

$$
I_{0}:=\left\{t \in I \mid \forall s \leqslant t, c(s) \in \pi_{x}(\Sigma)\right\} .
$$

The set I_{0} is open and non-empty. Let $\xi: I_{0} \rightarrow \Sigma$ be the lift of c starting from ξ_{0}. Since π_{x} is length-increasing, for all t in I_{0},

$$
\begin{equation*}
d_{\mathrm{I}}(\xi(t), x) \leqslant d_{\mathrm{I}}\left(\xi(t), \xi_{0}\right)+d_{\mathrm{I}}\left(\xi_{0}, x\right) \leqslant 2 \varepsilon . \tag{20}
\end{equation*}
$$

Hence we get,

$$
d_{I}(\xi(t), \operatorname{Fr}(\Sigma)) \geqslant d_{I}(x, \operatorname{Fr}(\Sigma))-d_{I}(\xi(t), x) \geqslant \frac{1}{2} \delta
$$

It follows that I_{0} is closed, so $I_{0}=[0, \varepsilon]$ and thus c lies in $\pi_{x}(\Sigma)$. The inequality (19) follows directly from the inequality (20), and the bound on the second fundamental form applied to Proposition 3.28.

Our final ingredient for the proof of Proposition 5.4 is a statement that, still assuming that x is reasonably distant from the frontier of Σ, that if the nearest component of the image of the boundary of Σ comes very near x, then that component is unique.

Lemma 5.6. For any positive constant δ, there exists a constant $K \geqslant 1$ so that for any $R<\frac{1}{100} \delta$, the following holds.

Choose x in Σ so that $c_{R}(x, \Sigma)$ is not empty. Assume that $d_{I}(x, \operatorname{Fr}(\Sigma))>\delta$, we have
(i) If the arc c_{R} intersects $U_{R / K}$, then c_{R} is the unique connected component of $\pi(\partial \Sigma) \cap U_{R}$ intersecting $U_{R / K}$.
(ii) for all ζ in γ_{R},

$$
\begin{equation*}
d_{\mathrm{I}}(\zeta, x) \leqslant K \cdot R \tag{21}
\end{equation*}
$$

Proof. Let us prove the first assertion. Let $R^{\prime}=\frac{R}{K}$ where we choose K in the sequel of the proof.

Assume that $\pi_{x}(\partial \Sigma)$ intersects $U_{R^{\prime}}$. It follows that c_{R} intersects $U_{R^{\prime}}$. Let w be a closest point to x in c_{R}. Thus w belongs to $U_{R^{\prime}}$. Let ω be the preimage of w in Σ. Consider the geodesic arc from x to w whose length is less that R^{\prime} and so less that $\frac{1}{4} \delta$. Applying the inequality (19), we obtain that

$$
d_{I}(\omega, x) \leqslant 2 R^{\prime} \leqslant \frac{\delta}{50}
$$

We now prove
Assertion A : if $\zeta \in \partial \Sigma$ and $d_{\partial \Sigma}(\zeta, \omega) \leqslant 4 R^{\prime}$, then $\zeta \in \gamma_{R}$.

Figure 1. Lemma 5.6
Since $d_{\partial \Sigma}(\zeta, \omega)$ is finite, ζ and ω are by definition in the same connected component of $\partial \Sigma$. Let I be the arc along $\partial \Sigma$ from ζ to ω that we order from ω to ζ. Let F be the closed subset of I defined by

$$
F=\left\{\xi \in I \mid \forall \theta \in I, \theta \leqslant \xi \Longrightarrow d_{H}\left(\pi_{x}(\theta), x\right) \leqslant \frac{R}{2}\right\} .
$$

Obviously $F \subset \gamma_{R}$, as elements in F have projections to H that are within $\frac{R}{2}$ of x, while elements of γ_{R} have projections within R of x. The assertion will then follow from the fact that ζ belongs to F. We will thus show that $F=I$ using a connectedness argument.

- F is non-empty: since $d_{H}(w, x) \leqslant R^{\prime}<\frac{R}{4}, F$ contains ω. (Here we demand $K \geqslant 4$.)
- F is open: assume ξ belongs to F with $\xi<\zeta$. By continuity, and because elements of F project to within the smaller $\frac{R}{2}$ ball of x, while elements of γ_{R} project to the larger R-ball around x, we can find η in I, with $\zeta>\eta>\xi$ so that the interval J joining η to ξ lies in γ_{R}. By Lemma 3.29 there exists a constant k only depending on R, so that for σ in J,

$$
\begin{aligned}
d_{H}\left(\pi_{x}(\omega), \pi_{x}(\sigma)\right) & \leqslant k \cdot d_{\mathrm{I}}(\omega, \sigma) \\
& \leqslant k \cdot d_{\partial \Sigma}(\omega, \sigma) \\
& \leqslant k \cdot d_{\partial \Sigma}(\omega, \zeta) \leqslant 4 k \cdot R^{\prime}
\end{aligned}
$$

Thus $d_{H}\left(x, \pi_{x}(\sigma)\right) \leqslant R^{\prime}(1+4 k)$. If we now choose $K>2(1+4 k)$, it follows that η belongs to F. This shows that F is open.

- Finally F is obviously closed.

We conclude that $F=I$ and so $\zeta \in F \subset V_{R / 2}$, which implies that $\zeta \in \gamma_{R}$. This completes the proof of Assertion A.

Now, let ζ be in the intersection $\partial \Sigma \cap \pi_{x}^{-1}\left(U_{R^{\prime}}\right)$. The geodesic (in $\left.\mathbf{H}^{2, n}\right)$ between ω and ζ is spacelike, and so contained in some hyperbolic plane. Since by Lemma 3.8 the warped projection increases the distance, we find

$$
ð(\omega, \zeta) \leqslant d_{H}\left(\pi_{x}(\omega), \pi_{x}(\zeta)\right) \leqslant 2 R^{\prime} \leqslant \delta .
$$

By the δ-unpinched condition

$$
d_{\partial \Sigma}(\omega, \zeta) \leqslant 2 ð(\omega, \zeta) \leqslant 4 R^{\prime}
$$

Using Assertion A, we can now conclude that ζ belongs to γ_{R}. This proves item (i).
For item (ii), consider ζ in γ_{R}. As above

$$
ð(\omega, \zeta) \leqslant d_{H}\left(\pi_{x}(\omega), \pi_{x}(\zeta)\right) \leqslant 2 R \leqslant \delta
$$

Thus by the unpinched condition

$$
\begin{equation*}
d_{\partial \Sigma}(\omega, \zeta) \leqslant 2 ð(\omega, \zeta) \leqslant 4 R \tag{22}
\end{equation*}
$$

It follows that

$$
d_{\mathrm{I}}(\zeta, x) \leqslant d_{I}(\omega, x)+d_{\partial \Sigma}(\zeta, \omega) \leqslant R^{\prime}+4 R \leqslant 5 R
$$

This concludes the proof.
5.2.2. Proof of Proposition 5.4. If a curve is δ-unpinched it is also κ-unpinched for all $\kappa \leqslant \delta$. Thus it is enough to prove the proposition for $\kappa=\delta$ and we will do so to avoid burdening the notation.

We choose $R \leqslant \frac{1}{100} \delta$ as in Lemma 5.6. Let K, U_{R}, γ_{R} and c_{R} be as in the conclusion of this lemma and the paragraph above it.

We may choose R so that the projection of $\partial \Sigma$ with $U_{R / A}$ intersects transversally. We apply Lemma 5.6 by choosing $A \geqslant K$ so that c_{R} is the unique component of $\pi_{x}(\partial \Sigma) \cap U_{R}$ intersecting $U_{R / A}$. We now apply Lemma B.1, to $\gamma=c_{R}$. We thus obtain a topological disk U in U_{R}, whose boundary is $\partial U=\alpha_{0} \cup \alpha_{1}$, where α_{0} is a subarc of c_{R}, α_{1} a subarc of $\partial U_{R / A}$, and so that U is contained in U_{R} (see Figure 2).

Figure 2. Good neighborhoods
Now let \sum_{Σ}° be the preimage of U.
We first want to show that U is a subset of $\pi_{x}(\Sigma)$. Or in other words that any y in U has a preimage in Σ. First taking the closest point z in c_{R} to y, the hyperbolic geodesic arc $I:=[y, z]$ lies in U. Let ζ be the preimage of z.

By Lemma 5.6, $d_{I}(\zeta, x) \leqslant K \cdot R$ where K is the constant of that lemma. Applying Lemma 5.5 with $\varepsilon=K \cdot R$, for

$$
R \leqslant \frac{\delta}{8 K}
$$

we obtain that $y=\pi_{x}(\xi)$ with ξ in $\stackrel{\circ}{\Sigma}$ and

$$
\begin{equation*}
d_{\mathrm{I}}(\xi, x) \leqslant 2 K \cdot R, d_{\mathcal{G}}\left(\mathrm{T}_{\xi} \Sigma, \mathrm{T}_{x} \Sigma\right) \leqslant 4 K \cdot R . \tag{23}
\end{equation*}
$$

We have just shown that \sum° is a graph over U, that U is a topological disk, inequality (23) holds and the boundary of $\Sigma \Sigma^{\circ}$ is connected. We have thus proven that the first three items in the proposition.

The last item follows from the fact that $\pi_{x}\left(\operatorname{Fr}\left(\Sigma^{\circ}\right)\right)=\alpha_{1}$ and thus $d\left(x, \pi_{x}\left(\operatorname{Fr}\left(\Sigma^{\circ}\right)\right)\right)$ is equal to R_{1}.
5.3. Local control. Let us consider the following situation.
(i) Let $\left\{\lambda_{k}\right\}_{k \in \mathbb{N}}$ be a sequence of strictly positive numbers converging to $\lambda_{\infty} \geqslant 0$.
(ii) Let Σ_{k} be an acausal maximal surface (possibly with boundary) in $\mathbf{H}_{\lambda_{k}}^{2, n}$.
(iii) Let x_{k} be a point in Σ_{k}.
(iv) Let H_{k} be the totally geodesic plane containing x_{k}, so that $T_{x_{k}} H_{k}=T_{x_{k}} \Sigma_{k}$, and π_{k} the corresponding warped projection.
By convention, if $\lambda_{\infty}=0$, we let $\mathbf{H}_{\lambda_{\infty}}^{2, n}$ to be $\mathbf{E}^{2, n}$, the flat pseudo-Euclidean space of signature $(2, n)$.

Definition 5.7 (Local Control Hypothesis (*)). The sequence $\left\{\Sigma_{k}, x_{k}, \lambda_{k}\right\}_{k \in \mathbb{N}}$ satisfies the local control hypothesis ($*$) , if there exist positive constants B and κ so that
(i) Σ_{k} is a maximal surface in $\mathbf{H}_{\lambda_{k}}^{2, n}$ which is a graph over U_{k}, where
(a) the set U_{k} is a connected submanifold of $B\left(x_{k}, \kappa\right)$, the open ball of center x_{k} and radius κ in H_{k};
(b) the diameter of $\Gamma\left(\Sigma_{k}\right)$ is bounded by $B \kappa$;
(c) we have $d_{H}\left(x_{k}, \operatorname{Fr}\left(U_{k}\right)\right)>\kappa B^{-1}$;
(d) the boundary of U_{k} is connected.
(ii) We have the bound $\left\|I_{\Sigma_{k}}\right\| \leqslant 1$.
(iii) Finally let $\gamma_{k}=\partial \Sigma_{k}$ be the finite boundary of Σ_{k}. Assume that γ_{k} is strongly positive, and that
(a) The sequence of $\operatorname{arcs}\left\{\gamma_{k}\right\}_{k \in \mathbb{N}}$ converges smoothly (in the sense of Appendix A) to a strongly positive curve γ_{∞}.
(b) For any point y in γ_{k}, we have $d_{\mathcal{G}}\left(\mathrm{T}_{y} \Sigma_{k}, \mathrm{~T}_{y}^{(2)} \gamma_{k}\right) \leqslant B$.

Strongly positive curves in $\mathbf{H}_{\lambda}^{2, n}$ with $\lambda>0$ are defined in Definition 3.14. For $\lambda=0$, that is for the pseudo-Euclidean space $\mathbf{E}^{2, n}$, we apply the same definition, replacing hyperbolic plane by euclidean plane in the phrasing.

The goal of this paragraph is to show the following:
Proposition 5.8 (Convergence with local control). For κ small enough, assuming the local control hypothesis (*) and the notation therein, then, after extracting a subsequence, the sequence $\left\{x_{k}, \Sigma_{k}, \mathbf{H}_{\lambda_{k}}^{2, n}\right\}_{k \in \mathbb{N}}$ converges in the sense of Appendix A to $\left\{x_{\infty}, \Sigma_{\infty}, \mathbf{H}_{\lambda_{\infty}}^{2, n}\right\}$ where Σ_{∞} is a maximal surface with boundary γ_{∞}.

We prove this proposition in paragraph 5.3.3.
5.3.1. Distance and area estimates. Let $M_{k}=\mathrm{T} \Sigma_{k}$ be the Gauß lift of Σ_{k} in $\mathcal{G}\left(\mathbf{H}_{\lambda_{k}}^{2, n}\right)$, and let $y_{k}=\mathrm{T}_{x_{k}} \Sigma_{k}$ be the lift of x_{k}. Then set $d_{\mathcal{G}}$ to be the Riemannian distance in $\mathcal{G}\left(\mathbf{H}_{\lambda_{k}}^{2, n}\right)$.

Lemma 5.9. We have the following estimates. For κ small enough, and assuming the local control hypothesis (*), there exist positive constants A, b and a depending only on κ and B so that

$$
\begin{align*}
\operatorname{area}\left(M_{k}\right) & \leqslant A, \tag{24}\\
\text { for all w in } \Sigma_{k}, d_{\mathcal{G}}\left(\mathrm{T}_{x_{k}} \Sigma_{k}, \mathrm{~T}_{w} \Sigma_{k}\right) & <b \kappa, \tag{25}\\
\text { for all } u \text { in } \operatorname{Fr}\left(M_{k}\right), d_{\mathcal{G}}\left(y_{k}, u\right) & >a . \tag{26}
\end{align*}
$$

Proof. The second inequality is a direct consequence of ((i)b) with $b=B$. It then follows from Corollary 3.29, that for κ small enough, the projection from M_{k} (equipped with $d_{\text {II }}$) to U_{k} is infinitesimally biLipschitz for some constant only depending on B. The first inequality follows.

The third estimates follows from the fact that $\operatorname{Fr}\left(M_{k}\right) \subset Z$, where Z is the closed subset of $\mathcal{G}\left(\mathbf{H}_{\lambda}^{2, n}\right)$ of points (y, P) with $\pi_{k}(y) \in \operatorname{Fr}\left(U_{k}\right)$. So $a=\inf _{z \in Z} d\left(H_{0}, z\right)$ is positive and only depends on κ and A.

5.3.2. The holomorphic translation. Let us consider the two possible cases:

Case 1: There exists some positive ε so that $d_{\mathcal{G}}\left(\partial M_{k}, y_{k}\right) \geqslant \varepsilon$ for all k in \mathbb{N}.
Case 2: There exist $w_{k} \in \partial M_{k}$, with $\lim _{k \rightarrow \infty} d_{\mathcal{G}}\left(w_{k}, y_{k}\right)=0$.
We refer to the notation of Appendix C : \mathbf{D} denotes the open unit disk in \mathbb{C}, while $\mathbf{S}=\{z \in$ $D, \mathfrak{R}(z) \geqslant 0\}$ is the semi-disk. Corresponding to these two cases, we consider the following holomophic maps
(i) in Case 1, we consider the uniformization $f_{k}: \mathbf{D} \rightarrow M_{k} \backslash \partial M_{k}$, so that $f_{k}(0)=y_{k}$.
(ii) in Case 2 , we consider the uniformization $f_{k}: \mathbf{S} \rightarrow M_{k}$ so that $f_{k}(0)=w_{k}$.

To lighten the notation, we will write $U=\mathbf{D}$ or \mathbf{S}. Our hypotheses implies the following.
Lemma 5.10. The maps f_{k} are holomorphic immersions. Moreover, for κ small enough we have the following bounds

$$
\begin{align*}
\operatorname{area}\left(f_{k}(U)\right) & \leqslant A, \tag{27}\\
\text { for all } w \text { in } U, d\left(f_{k}(0), f_{k}(w)\right) & <b \kappa, \tag{28}\\
\text { for all } w \text { in } \operatorname{Fr}(U), d\left(f_{k}(0), f_{k}(w)\right) & >a, \tag{29}
\end{align*}
$$

where A, b and a only depends on κ.
Proof. This lemma is an immediate consequence of the holomorphic translation described in proposition 3.32 as well as of the bounds on M_{k} obtained in Lemma 5.9.

If g is a map from U to a space X, we define as in appendix $C, g(\operatorname{Fr}(U))$ to be the set of those points x in X so that there exists a sequence $\left\{z_{k}\right\}_{k \in \mathbb{N}}$ tending to $\operatorname{Fr}(U)$ with

$$
\lim _{k \rightarrow \infty}\left(g\left(z_{k}\right)\right)=x
$$

Corollary 5.11. For κ small enough, the following holds. After extracting a subsequence, the family $\left\{f_{k}\right\}_{k \in \mathbb{N}}$ converges to a non-constant holomorphic map f_{∞} so that,

$$
f_{\infty}(\operatorname{Fr}(U)) \subset \lim _{k \rightarrow \infty} f_{k}(\operatorname{Fr}(U))
$$

Proof. The Lemma 5.10 guarantees that we can apply the results on pseudo holomorphic cuves obtained in appendix C. More precisely, we split the discussion in the two cases described in the beginning of this paragraph:
Case 1: We are in the free boundary case and we apply Theorem C. 7 to get the result.

Case 2: In this case, let us consider $W_{k}=W_{A}\left(\gamma_{k}\right)$ defined in Definition 3.33. By the hypotheses (iii)a and (iii)b, the totally real submanifold W_{k} converges smoothly to a totally real submanifold. We can now apply Theorem C. 8 to get the result.

With the notation above, we have:
Lemma 5.12. The holomorphic map f_{∞} is an immersion at 0 . Moreover, $f_{\infty}(U)$ is the Gauß lift of a maximal surface.

Proof. We have the orthogonal splitting

$$
\begin{equation*}
\mathrm{T}_{(x, P)} \mathcal{G}\left(\mathbf{H}^{2, n}\right)=P \oplus P^{\perp} \oplus \operatorname{Hom}\left(P, P^{\perp}\right) . \tag{30}
\end{equation*}
$$

Let us consider the complex line subbundle V of $T \mathcal{G}$ over $\mathcal{G}\left(\mathbf{H}^{2, n}\right)$ so that, in the splitting above, we have $V_{(x, P)}=P$. The orthogonal projection from $\mathrm{T}_{(x, P)} \mathcal{G}\left(\mathbf{H}^{2, n}\right)$ to P is a complex morphism, and thus gives rise to a form α in $\Omega_{\mathbb{C}}^{1}(\mathcal{G}, V)$.

By construction, if M is the lift of a maximal surface, then α restricted to TM is injective. Conversely, if α is non-zero restricted to a holomorphic curve M, then M is the lift of a maximal surface.

For any k, we now choose a real line bundle L_{k} in V so that along $W\left(\gamma_{k}\right)$, we have $L_{k}=\omega\left(\mathrm{TW}\left(\gamma_{k}\right)\right)$ (see Proposition 3.34).

Let v be a tangent to M_{k}, and $u=\omega(v)$. By Proposition 3.28,

$$
\|v\|^{2}=g_{\mathrm{II}}(u, u) \leqslant\left(1+\|\mathrm{II}\|^{2}\right) g_{\mathrm{I}}(u, u) \leqslant 2\|\alpha(v)\|^{2}
$$

where in the last inequality we have used the assumption that the norm of the second fundamental form of Σ_{k} is bounded by 1 . Thus it follows that

$$
\left\|\mathrm{T} f_{k}\right\| \leqslant \sqrt{2}\left\|f_{k}^{*} \alpha\right\|
$$

According to Proposition C.20, this last inequality is enough to imply that the hypotheses of Theorem C. 19 are all satisfied. Thus $f_{\infty}^{*} \alpha$ is non-zero, and in particular $f_{\infty}(U)$ is the lift of a maximal surface.
5.3.3. Proof of Proposition 5.8. The proposition is a consequence of Lemma 5.11 and 5.12 .
5.4. Global control. Our goal in this subsection is to prove a global compactness result under assumptions that we make now precise:
(i) Let $\left\{\lambda_{k}\right\}_{k \in \mathbb{N}}$ be a bounded sequence of positive numbers.
(ii) Let $\left\{R_{k}\right\}_{k \in \mathbb{N}}$ be a sequence of positive number so that $\lim _{k \rightarrow \infty} R_{k}=\infty$.
(iii) Let $\left\{\Sigma_{k}\right\}_{k \in \mathbb{N}}$ be a sequence of connected complete acausal maximal surfaces in $\mathbf{H}_{\lambda_{k}}^{2, n}$. Let $x_{k} \in \Sigma_{k}$ and let

$$
B_{k}(R):=\left\{z \in \Sigma_{k} \mid d_{\mathrm{I}}\left(z, x_{k}\right) \leqslant R\right\}
$$

and let H_{k} be the totally geodesic plane tangent to Σ_{k} at x_{k}.
Definition 5.13 (Global control hypothesis (**)). The sequence $\left\{\Sigma_{k}, \lambda_{k}\right\}_{k \in \mathbb{N}}$ satisfies the global control hypothesis $(* *)$, if there exist positive constants A, M_{0} and δ so that
(i) The sequence $\left\{x_{k}, H_{k}, \mathbf{H}_{\lambda_{k}}^{2, n}\right\}_{k \in \mathbb{N}}$ converges (in the sense of Definition A.3).
(ii) We have the bound $\left\|\mathrm{I}_{\Sigma_{k}}\right\| \leqslant M_{0}$ on $B_{k}\left(R_{k}\right)$.
(iii) The 1-dimensional manifold $\gamma_{k}:=\partial \Sigma_{k}$ is strongly positive and δ-unpinched,
(a) The sequence $\left\{\gamma_{k}\right\}_{k \in \mathbb{N}}$ has bounded geometry, and
(b) For any point y in γ_{k}, we have $d_{\mathcal{G}}\left(\mathrm{T}_{y} \Sigma_{k}, \mathrm{~T}_{y}^{(2)} \gamma_{k}\right) \leqslant A$.

Our goal is now to show the
Proposition 5.14 (Convergence with global control). Assuming the global control hypothesis (**).
(i) Then for any positive R, there exists ε, only depending on δ, A and $\left\{\gamma_{k}\right\}_{k \in \mathbb{N}}$ so that if $\left\{x_{k}\right\}_{k \in \mathbb{N}}$ is a sequence of points with x_{k} in Σ_{k}, with the property that $ð\left(x_{k}, \operatorname{Fr}\left(\Sigma_{k}\right)\right)$ is bounded from below by R we have: the sequence of pointed surfaces $\left\{\left(x_{k}, \Sigma_{k}^{\varepsilon}\right)\right\}_{k \in \mathbb{N}}$ subconverges smoothly on the ball Σ_{k}^{ε} in Σ_{k}, where Σ_{k}^{ε} has center x_{k} and d_{1}-radius ε.
(ii) Assume now that Σ_{k} is complete, so that in particular $\operatorname{Fr}\left(\Sigma_{k}\right)$ is empty. Let π_{0} be the warped projection on some pointed hyperbolic plane $\mathrm{P}_{0}=\left(H_{0}, x_{0}\right)$. Assume that $d_{\mathcal{G}}\left(\mathrm{P}_{0}, \Gamma\left(\Sigma_{k}\right)\right)$ is uniformly bounded. Then $\left\{\Sigma_{k}, \mathbf{H}_{\lambda_{k}}^{2, n}\right\}_{k \in \mathbb{N}}$ subconverges as a graph on every compact set of H_{0} (see Definition 5.1).
We remark that by rescaling, that is replacing λ_{k} by $\lambda_{k} M_{0}^{-2}$ in the hypothesis and reversing in the conclusion, we can always assume that $M_{0}=1$. We will do so in the next paragraph.
5.4.1. Getting a local control. Let us first prove the following lemma.

Lemma 5.15. Assume that $\left\{\Sigma_{k}, \lambda_{k}\right\}_{k \in \mathbb{N}}$ satisfies the global control hypothesis (**) with $M_{0}=1$. Then for any positive R, there exists \mathcal{k} and B only depending on R, A, δ and $\left\{\gamma_{k}\right\}_{k \in \mathbb{N}}$ so that the following is true. Let $\left\{x_{k}\right\}_{k \in \mathbb{N}}$ with x_{k} in Σ_{k} and $ð\left(x_{k}, \operatorname{Fr}\left(\Sigma_{k}\right)\right)$ bounded below by R, then there exists a sequence of maximal surfaces $\left\{\Sigma_{k}\right\}_{k \in \mathbb{N}}$ so that
(i) We have the inclusions $\Sigma_{k} \subset \Sigma_{k}$, and $\partial \Sigma_{k} \subset \partial \Sigma_{k}$.
(ii) the sequence $\left\{\sum_{k}, x_{k}, \lambda_{k}\right\}_{k \in \mathbb{N}}$ satisfies the local control hypothesis (*) for κ and B.

Proof. Let us use Proposition 5.4 to construct, given κ small enough, a ${ }_{\Sigma}{ }_{k}$ and an open set U_{k} which will satisfy items (i)a, (i)b, (i)c, and (i)d of the local control hypothesis (*) (cf. see Definition 5.7), and thus the general item (i) is satisfied. Since all the other items are consequences of the global control hypothesis (**) (cf. see Definition 5.13), it follows that the local control hypothesis (*) is satisfied for $\stackrel{\circ}{\Sigma}_{k}$. This concludes the proof.
5.4.2. Proof of the Global Control Proposition 5.14. Let $\left\{\Sigma_{k}, \lambda_{k}\right\}_{k \in \mathbb{N}}$ be a sequence satisfying the global control hypothesis ($* *$) (cf. see Definition 5.13).

Let $\left\{x_{k}\right\}_{k \in \mathbb{N}}$ be a sequence of points with $x_{k} \in \Sigma_{k}$ with $ð\left(x_{k}, \operatorname{Fr}\left(\Sigma_{k}\right)\right)$ bounded from below by a positive constant. Let $\left\{\Sigma_{k}^{\circ}\right\}_{k \in \mathbb{N}}$ sequence of maximal surface obtained by Lemma 5.15.

Since by Proposition 5.8, the sequence $\left\{x_{k}, \check{\Sigma}_{k}, \mathbf{H}_{\lambda_{k}}^{2, n}\right\}_{k \in \mathbb{N}}$ subconverges, it follows that there exists a constant ε, depending on the sequence $\left\{\Sigma_{k}, \lambda_{k}, x_{k}\right\}_{k \in \mathbb{N}}$ so that $\left\{x_{k}, \Sigma_{k^{\prime}}^{\varepsilon}, \mathbf{H}_{\lambda_{k}}^{2, n}\right\}_{k \in \mathbb{N}}$ subconverges smoothly. However, since we can choose our sequence $\left\{x_{k}\right\}_{k \in \mathbb{N}}$ arbitrarily, provided $\circlearrowright\left(x_{k}, \operatorname{Fr}\left(S_{k}\right)\right)$ is bounded from below, it follows that we can choose ε to depend only on δ, A and the sequence $\left\{\gamma_{k}\right\}_{k \in \mathbb{N}}$.

This concludes the proof of the first item of the proposition.
Let us show the second item. Let P_{0} be as in the proposition and π_{0} the warped projection on P_{0}. Recall that the warped projection is a dilation.

Consider y in P_{0}, so that $y=\pi_{0}\left(x_{k}\right)$ with $x_{k} \in \Sigma_{k}$ and $d_{\mathcal{G}}\left(\mathrm{P}_{0}, \mathrm{~T}_{x_{k}} \Sigma_{k}\right)$ uniformly bounded. The first item guarantees that Σ_{k} converges as a graph over the ball $B_{\varepsilon}(y)$ of center y and radius ε in P_{0}.

Let now U be the subset of P_{0}, consisting of those points z so that $\left\{\Sigma_{k}\right\}_{k \in \mathbb{N}}$ converges as a graph over $B_{\varepsilon}(z)$. We focus on one such particular $z_{0} \in U$; in particular, if $\left\{x_{k}\right\}_{k \in \mathbb{N}}$ is a sequence of points, with x_{k} in Σ_{k} so that $\left\{\pi_{0}\left(x_{k}\right)\right\}_{k \in \mathbb{N}}$ converges to an element w in $B_{\varepsilon / 2}\left(z_{0}\right)$,
then $d_{\mathcal{G}}\left(\mathrm{T}_{x_{k}} \Sigma_{k}, \mathrm{P}_{0}\right)$ stays uniformly bounded. Thus, by the previous argument, and using that the $\operatorname{Fr}\left(\Sigma_{k}\right)$ is empty, w belongs to U.

It follows that U contains the $\frac{\varepsilon}{2}$ neighborhood of itself. Thus, if U is non-empty, then $U=P_{0}$.

The hypothesis guarantees the existence of a sequence $\left\{z_{k}\right\}_{k \in \mathbb{N}}$ of points so that $d_{\mathcal{G}}\left(\mathrm{T}_{z_{k}} \Sigma_{k}, \mathrm{P}_{0}\right)$ stays bounded. It follows that $\pi_{0}\left(z_{k}\right)$ is a bounded sequence, hence subconverges to a point y which belongs to U. Hence U is not empty.

This concludes the proof of the proposition.
5.5. Bernstein type theorem. In this paragraph, we prove the following.

Theorem 5.16 (Bernstein for maximal surfaces). (i) Let Σ be a complete maximal surface without boundary in $\mathbf{E}^{2, n}$. Then Σ is a totally geodesic 2-plane.
(ii) Let Σ be a complete maximal surface in $\mathbf{E}^{2, n}$ whose boundary $\partial \Sigma$ is a geodesic. Then Σ is a half-plane.
The first part of this result was proved by Ishihara in [31] for p-dimensional entire graphs in the signature (p, q) pseudo-Euclidean space $\mathbf{E}^{p, q}$. Here, for completeness, we give a more direct proof for the case $\mathbf{E}^{2, n}$. The reader may wish to compare the analogous proof of Chern [19] in the classical setting.
Proof. Observe first that $\mathcal{G}\left(\mathbf{E}^{2, n}\right)$ is isomorphic to $\mathbf{E}^{2, n} \times \operatorname{Gr}_{2,0}\left(\mathrm{~T}_{x} \mathbf{E}^{2, n}\right)$ where x is any point in $\mathbf{E}^{2, n}$. By the proof of Proposition 3.32, the projection of the Gauß map $\Gamma: \Sigma \rightarrow \mathcal{G}\left(\mathbf{E}^{2, n}\right)$ to the second factor of the decomposition above yields a holomorphic map $\varphi: \Sigma \rightarrow \operatorname{Gr}_{2,0}\left(\mathrm{~T}_{x} \mathbf{E}^{2, n}\right)$.

Observe now that $\mathrm{Gr}_{2,0}\left(\mathrm{E}^{2, n}\right)=\mathrm{SO}_{0}(2, n) /(\mathrm{SO}(2) \times \mathrm{SO}(n))$ is the symmetric space of $\mathrm{SO}(2, n)$ and, by a theorem of Harish-Chandra (see again [20]), is biholomorphic to a bounded domain in \mathbb{C}^{n}.

We remark that Σ is conformal to \mathbb{C} : by Gauß' equation, the induced metric on Σ has non-negative curvature (see Proposition 3.26): by a result of Blanc and Fiala [10] (see also [30]), we see that Σ uniformizes as the complex plane \mathbb{C}. By Liouville theorem φ is constant. Hence $u(\Sigma)$ is a spacelike plane.

Let us now consider the boundary case. Let us construct φ as above. Let L be a spacelike line in $\mathbf{E}^{2, n}$ and

$$
W_{L}:=\left\{P \in \operatorname{Gr}_{2,0}\left(\mathrm{~T}_{x} \mathbf{E}^{2, n}\right) \mid L \subset P\right\} .
$$

Then W_{L} is totally real, and totally geodesic: the geodesic between two 2-planes with a common line L, consists of planes containing L. It follows that $\partial \Sigma$ is totally geodesic for the induced metric on Σ by φ, and thus the same argument applied to the doubling shows that S is unifomized by the half-plane.

In the corresponding symmetric domain picture we can assume that the image of W_{L} is a contained in real vector subspace in \mathbb{C}^{n}. Thus, again, the Liouville theorem allows us to conclude that φ is constant.
5.6. Bounds on the second fundamental form. Let $\left\{\Sigma_{k}\right\}_{k \in \mathbb{N}}$ be a sequence of acausal maximal surfaces which are complete with respect to d_{I}. Let $\gamma_{k}:=\partial \Sigma_{k}$ be the finite boundary of Σ_{k}. Assume that we have the following boundary conditions:
(i) The sequence $\left\{\gamma_{k}\right\}_{k \in \mathbb{N}}$ is strongly positive and uniformly unpinched.
(ii) There is a positive constant A so that for all k, for all x in γ_{k}, we have $d\left(\mathrm{~T}_{x_{k}} \Sigma_{k}, \mathrm{~T}_{x_{k}}^{(2)} \gamma_{k}\right) \leqslant$ A.
(iii) The sequence $\left\{\gamma_{k}\right\}_{k \in \mathbb{N}}$ has bounded geometry.

Our main result is now:
Proposition 5.17. For every ε, there exists some constant M, such that if $\left\{x_{k}\right\}_{k \in \mathbb{N}}$ is a sequence with $x_{k} \in \Sigma_{k}$ so that $d_{\mathrm{I}}\left(x, \operatorname{Fr}\left(\Sigma_{k}\right)\right)>\varepsilon$, then the second fundamental form of Σ_{k} at x_{k} has norm uniformly bounded by M.

This proposition concludes the proof of the first item of Theorem 5.3.
Proof. We first recall without proof the following folkloric result (see for instance Paragraph 1.D in [27] for a proof).

Lemma 5.18 (Λ-maximum lemma). Let (X, d) be a metric space. Let η be a positive number and assume that the ball $B_{y}(\eta)$ of radius η centered at y is complete. Then there exists a constant $\Lambda \geqslant 1$ only depending on η, such that every positive locally bounded function f on X with $f(y) \geqslant 1$ admits a Λ-maximum on $B_{y}(\eta)$, that is a point x so that

$$
\begin{equation*}
f(x) \geqslant \sup \left\{f(y), \left.\frac{1}{\Lambda} f(z) \right\rvert\, \forall z \text { such that } d(x, z)<\frac{1}{\Lambda \sqrt{f(x)}}\right\} . \tag{31}
\end{equation*}
$$

We now argue by contradiction. For each k, let us define the function $f_{k}:=\left\|I_{k}\right\|$ on Σ_{k}. Assume that the second fundamental form of the sequence Σ_{k} is unbounded. Let then $\left\{y_{k}\right\}_{k \in \mathbb{N}}$ so that $y_{k} \in \Sigma_{k}$ and

$$
\lim _{k \rightarrow \infty} f_{k}\left(y_{k}\right)=+\infty .
$$

For each k, we apply the Λ-Maximum Lemma 5.18 to f_{k} and y_{k}, taking $\eta=1$, and thus obtaining a Λ-maximum x_{k} of f_{k} in $B\left(y_{k}, 1\right)$. Let $\lambda_{k}:=\left(\Lambda f_{k}\left(x_{k}\right)\right)^{-2}$ so in particular we have

$$
\lim _{k \rightarrow \infty} f_{k}\left(x_{k}\right)=\infty, \lim _{k \rightarrow \infty} \lambda_{k}=0, f_{k}(z) \leqslant \frac{1}{\sqrt{\lambda_{k}}} .
$$

for all z, with $d_{I}\left(x_{k}, z\right) \leqslant \lambda_{k}^{\frac{1}{4}} \Lambda^{-\frac{1}{2}}$. We renormalize the metric of $\mathbf{H}^{2, n}$ by λ_{k} - following paragraph 2.3.4. We shall denote, by Σ_{k}^{1}, the surface Σ_{k} seen as a surface in $\mathbf{H}_{\lambda_{k}}^{2, n}$ and denote all the geometric objects associated to Σ_{k}^{1} with a superscript 1 . Then by Lemma $3.20,\left\|\mathrm{II}_{k}^{1}\right\| \leqslant 1$ for all the points z in Σ_{k}^{1} so that

$$
d_{I}^{1}\left(z, x_{k}\right) \leqslant R_{k}:=\lambda_{k}^{-\frac{1}{4}} \Lambda^{-\frac{1}{2}} .
$$

Moreover $\left\|I^{1}\left(x_{k}\right)\right\|=1 / \Lambda$.
We can now apply the first item of the Global Control Proposition 5.14, to obtain that, after extracting a subsequence, the sequence $\left\{x_{k}, \Sigma_{k^{\prime}}^{1} \mathbf{H}_{\lambda_{k}}^{2, n}\right\}_{k \in \mathbb{N}}$ converges smoothly to ($x_{0}, \Sigma_{0}, \mathbf{R}^{2, n}$), and in particular the norm of the second fundamental form of Σ_{0} at x_{0} is Λ^{-1}.

Observe now that since $\left\{\gamma_{k}\right\}_{k \in \mathbb{N}}$ has bounded geometry and is δ-unpinched, then $\left\{\gamma_{k}^{1}\right\}_{k \in \mathbb{N}}$ converges to a geodesic: more precisely, for every sequence $\left\{z_{k}\right\}_{k \in \mathbb{N}}$ so that $z_{k} \in \gamma_{k}^{1}$, then $\left\{z_{k}, \gamma_{k}^{1}, \mathbf{H}_{\lambda_{k}}^{2, n}\right\}_{k \in \mathbb{N}}$ converges to $\left(z_{0}, \gamma_{0}, \mathbf{R}^{2, n}\right)$ where $z_{0} \in \gamma_{0}$, and γ_{0} is a spacelike geodesic - see the definition A. 3 and the observations thereafter. Thus the boundary of Σ_{0} is either empty or a geodesic. Thus by our Bernstein Theorem, the surface Σ_{0} is totally geodesic. We have obtained our contradiction.

This concludes the proof of Proposition 5.17.
5.7. Proof of Theorem 5.2 and 5.3 . The theorems now follows from the successive use of

- Proposition 5.17 which guarantees that under the assumptions of the theorems the second fundamental form is uniformly bounded.
- Proposition 5.14 then ensures the conclusions of the theorems.

6. Three specific compactness theorems

Theorems 5.2 and 5.3 are quite general. They incarnate in three specific versions whose hypotheses are easier to handle.
6.0.1. Boundary-free version. The boundary-free version is of special interest and will be proved in Paragraph 6.3. Int the next theorem, we explain three different compactness results that will be useful in this paper and its sequel.

Theorem 6.1 (Compactness theorem-boundary free). Let $\left\{\Sigma_{k}\right\}_{k \in \mathbb{N}}$ be a sequence of connected complete acausal maximal surfaces without boundary. For each k, let x_{k} be a point in Σ_{k}, let Λ_{k} be the asymptotic boundary of Σ_{k} (see definition 3.9) and $\bar{\Sigma}_{k}:=\Sigma_{K} \cup \Lambda_{k}$.
(i) Assume that the sequence $\left\{\mathrm{T}_{x_{k}} \Sigma_{k}\right\}_{k \in \mathbb{N}}$ converges, then the sequence of pointed maximal surfaces $\left\{\left(x_{k}, \Sigma_{k}\right)\right\}_{k \in \mathbb{N}}$ subconverges.
(ii) Assume that $\left\{\Lambda_{k}\right\}_{k \in \mathbb{N}}$ converges to a semi-positive loop Λ_{0}. Then the sequence $\left\{\Sigma_{k}\right\}_{k \in \mathbb{N}}$ subconverges smoothly as a graph on every pointed hyperbolic plane to a complete maximal surface Σ_{0} whose asymptotic boundary is Λ_{0}.
(iii) Assume that $\left\{\left(x_{k}, \Sigma_{k}\right)\right\}_{k \in \mathbb{N}}$ converges to $\left(x_{0}, \Sigma_{0}\right)$ then any sequence $\left\{y_{k}\right\}_{k \in \mathbb{N}}$ so that y_{k} belongs to $\bar{\Sigma}_{k}$ subconverges to a point in $\Sigma_{0} \cup \Lambda_{0}$ where Λ_{0} is a semi-positive loop which is the asymptotic boundary of Σ_{0}
6.0.2. Boundary vanishing at infinity.

Theorem 6.2 (Vanishing boundary). Let Λ_{0} be a positive loop in $\partial_{\infty} \mathbf{H}^{2, n}$ and $\left\{\Sigma_{k}\right\}_{k \in \mathbb{N}}$ be a sequence of connected complete acausal maximal surfaces.

Assume that $\gamma_{k}=\partial \Sigma_{k}$ is compact. Assume furthermore that
(i) $\left\{\gamma_{k}\right\}_{k \in \mathbb{N}}$ converges to Λ_{0},
(ii) the sequence $\left\{\gamma_{k}\right\}_{k \in \mathbb{N}}$ is a sequence of strongly positive curves of bounded geometry which are also uniformly unpinched,
(iii) the angular width of γ_{k} is uniformly bounded.

Then $\left\{\Sigma_{k}\right\}_{k \in \mathbb{N}}$ converges as a graph on any pointed hyperbolic plane to maximal surface with asymptotic boundary Λ_{0}.

This will be proved in Paragraph 6.3.
6.0.3. Finite boundary version. We also have a finite boundary version that will be proved in Paragraph 6.4.

Theorem 6.3 (Compact surfaces). Let $\left\{\Sigma_{k}\right\}_{k \in \mathbb{N}}$ be a sequence of compact acausal maximal surfaces in $\mathbf{H}^{2, n}$. Let γ_{k} be the 1-dimensional manifold $\gamma_{k}:=\partial \Sigma_{k}$. Assume that $\left\{\gamma_{k}\right\}_{k \in \mathbb{N}}$ are topological circles that converge smoothly to a topological circle γ which is strongly positive. Then $\left\{\Sigma_{k}\right\}_{k \in \mathbb{N}}$ subconverges smoothly to a maximal surface whose boundary is γ.
6.1. Proximality of the action of G on $\mathbf{P}(E)$. In the first subsection, we study the dynamics on $\mathbf{P}(E)$ of a divergent sequence in G. These dynamics will be helpful when proving the convergence of a sequence of maximal surfaces.

The main result of this section is the following:
Proposition 6.4 (Proximality). Let $\left\{g_{j}\right\}_{j \in \mathbb{N}}$ be an unbounded sequence in the subgroup of G fixing a point x in $\mathbf{H}^{2, n}$. Then there exists a hyperplane H of degenerate signature $(1, n)$ through x, such that for any compact set C in $\mathbf{P}(E)$ not intersecting H, the orbit of C under $\left\{g_{j}\right\}_{j \in \mathbb{N}}$ accumulates to a point in $\partial_{\infty} \mathbf{H}^{2, n}$ orthogonal to x.
6.1.1. Cartan decomposition. We call a Barbot crown a semi-positive loop C in $\partial_{\infty} \mathbf{H}^{2, n}$ made of 4 segments of photons (those objects appeared in the work of Barbot in [6] under the name crown). Denote the vertices of C by $\left\{c_{+}, d_{+}, d_{-}, c_{-}\right\}$, where the planes $\gamma=c_{+} \oplus c_{-}$and $\delta=d_{+} \oplus d_{-}$are non-degenerate, thus giving rise to space-like geodesics in $\mathbf{H}^{2, n}$. In particular, γ is a subset of δ^{\perp}. In particular, $F:=\operatorname{span}\{C\}$ is a non-degenerate subspace of signature $(2,2)$.

The group A which fixes $\left\{c_{+}, d_{+}, d_{-}, c_{-}\right\}$and F^{\perp} pointwise is a Cartan subgroup of G. By construction every element of A_{0}, the component of the identity of A, is characterised by its restriction on F which, in the basis given by $\left(c_{+}, d_{+}, d_{-}, c_{-}\right)$is a diagonal matrix

$$
a(\lambda, \mu):=\left(\begin{array}{cccc}
\lambda & 0 & 0 & 0 \\
0 & \mu & 0 & 0 \\
0 & 0 & 1 / \mu & 0 \\
0 & 0 & 0 & 1 / \lambda
\end{array}\right), \text { with } \lambda, \mu>0
$$

Given K a maximal compact subgroup of G, the corresponding Cartan decomposition of G states that any element g in G may be written as $g=k^{\prime} a k$ where $k^{\prime}, k \in \mathrm{~K}$ and $a=a(\lambda, \mu)$ is in A_{0}. Note that this decomposition is not unique; however, if we impose the condition $\lambda \geqslant \mu \geqslant 1$, the pair (λ, μ) is uniquely defined. We call $(\log (\lambda), \log (\mu))$ the Cartan projection of g.
6.1.2. Asymptotics of the action of \mathbf{G}. Let $\left\{g_{j}\right\}_{j \in \mathbb{N}}$ an unbounded sequence in \mathbf{G}, let $g_{j}=k_{j}^{\prime} a_{j} k_{j}$ be the Cartan decomposition of g_{j}, and $\left(\log \left(\lambda_{j}\right), \log \left(\mu_{j}\right)\right)$ the Cartan projection of g_{j}. We distinguish two cases:
(i) The sequence $\left\{g_{j}\right\}_{j \in \mathbb{N}}$ is called P_{1}-divergent when the sequence $\left\{\lambda_{j} / \mu_{j}\right\}_{j \in \mathbb{N}}$ is unbounded.
(ii) The sequence $\left\{g_{j}\right\}_{j \in \mathbb{N}}$ is called non P_{1}-divergent when the sequence $\left\{\lambda_{j} / \mu_{j}\right\}_{j \in \mathbb{N}}$ is bounded.

Here P_{1} refers to the parabolic subgroup in G stabilizing a point in $\partial_{\infty} \mathbf{H}^{2, n}$ and the terminology is inspired from [25].

Lemma 6.5 (P_{1}-divergent sequence). Let $\left\{g_{j}\right\}_{j \in \mathbb{N}}$ be a P_{1}-divergent sequence in G . Then, up to extracting a subsequence, there exist two points p and q in $\partial_{\infty} \mathbf{H}^{2, n}$ such that for any compact set C in $\mathbf{P}(E)$ and not intersecting $\mathbf{P}\left(q^{\perp}\right)$, the sequence $\left\{g_{j}\right\}_{j \in \mathbb{N}}$ converges uniformly to p on C.

Proof. Let $V=c_{+}$and $W=c_{-}^{\perp}$. The group A preserves the splitting $E=V \oplus W$. Moreover, the element a_{j} acts by λ_{j} on V and has spectral radius μ_{j} on W.

Let y be in $\mathbf{P}(E)$ but not in $\mathbf{P}(W)$, so that $y=[(v, w)] \in \mathbf{P}(V \oplus W)$ with $v \neq 0$. Since λ_{j} / μ_{j} is unbounded, up to extracting a subsequence, we have that $\left\{a_{j} \cdot y\right\}_{j \in \mathbb{N}}$ converges to $[(v, 0)]$.

Now since K is compact, the sequences $\left\{k_{j}^{\prime}\right\}_{j \in \mathbb{N}}$ and $\left\{k_{j}\right\}_{j \in \mathbb{N}}$ subconverge to k_{0}^{\prime} and k_{0} respectively. It follows that for any point y in $\mathbf{P}(E)$ and not in $\mathbf{P}\left(k_{0}^{-1} W\right)$, the sequence $\left\{g_{j} \cdot y\right\}_{j \in \mathbb{N}}$ subconverges to $\mathbf{P}\left(k_{0}^{\prime} V\right)$. Setting $q=\left(k_{0}^{-1} W\right)^{\perp}$ and $p=k_{0}^{\prime} V$ yields the result.

Lemma 6.6 (Non P_{1}-divergent sequence). Let $\left\{g_{j}\right\}_{j \in \mathbb{N}}$ be a Non P_{1}-divergent sequence in G . Then up to extracting a subsequence, there exist photons φ and ψ such that for any compact set C in $\mathbf{P}(E)$ and not intersecting $\mathbf{P}\left(\psi^{\perp}\right)$, the sequence $\left\{g_{j}\right\}_{j \in \mathbb{N}}$ converges uniformly to a point in $\mathbf{P}(\varphi)$.

Proof. Set $V=c_{+} \oplus d_{+}$and $W=\left(c_{-} \oplus d_{-}\right)^{\perp}$. Note that V and W^{\perp} are isotropic planes (that is photons) preserved by A and such that $E=V \oplus W$. The spectral radius of a_{j} on V is λ_{j} and is less or equal to 1 on W.

Since $\left\{g_{j}\right\}_{j \in \mathbb{N}}$ is unbounded , there is a subsequence of $\left\{\lambda_{j}\right\}_{j \in \mathbb{N}}$ that tends to infinity.
Again, for any y in $\mathbf{P}(E)$ not in $\mathbf{P}(W)$, the sequence $\left\{a_{j} \cdot y\right\}_{j \in \mathbb{N}}$ subconverges to a point in $\mathbf{P}(V)$. Setting $\psi:=k_{0}^{-1} W^{\perp}$ and $\varphi:=k_{0}^{\prime} V$ yields the result.
6.1.3. Proof of Proposition 6.4. First assume that $n \geqslant 2$, so the $\operatorname{group} \operatorname{Fix}(x)=\operatorname{Stab}\left(x^{\perp}\right) \cong$ $\mathrm{SO}(2, n)$ has rank 2. We can thus take a Barbot crown C with vertices $\left\{c_{+}, d_{+}, d_{-}, c_{-}\right\}$in x^{\perp}, which implies that the corresponding Cartan subgroup A is in $\operatorname{Fix}(x)$. We consider the Cartan decomposition (in $\operatorname{Fix}(x)) g_{j}=k_{j}^{\prime} a_{j} k_{j}$, with k_{j}^{\prime} and k_{j} as elements in a maximal compact subgroup K_{F} of $\operatorname{Fix}(x)$. Observe that K_{F} preserves the orthogonal to x.

In the P_{1}-divergent case, we apply Lemma 6.5 , observing that the points p and q are in $\mathbf{P}\left(x^{\perp}\right)$, and the result follows with $H:=\mathbf{P}\left(q^{\perp}\right)$.

In the non P_{1}-divergent case, we apply Lemma 6.6 and observe that φ and ψ are contained in x^{\perp}. We take any point q in ψ, and then $H:=q^{\perp}$ so that ψ^{\perp} is a subset of H.

Finally, if $n=1$, the stabilizer of point is isogenic $\mathrm{SO}(2,1)$ and has rank 1 . Thus the sequence $\left\{g_{j}\right\}_{j \in \mathbb{N}}$ is P_{1}-divergent and we apply Lemma 6.5.
6.2. A priori C^{0} - estimates. Both Theorems 6.1 and 6.2 will follow from some a priori estimate that we now state:

Proposition 6.7. Let $\left\{\Sigma_{k}\right\}_{k \in \mathbb{N}}$ be a sequence of complete maximal surfaces and Λ_{0} a semi-positive curve in $\partial_{\infty} \mathbf{H}^{2, n}$ satisfying either the hypotheses of Theorem 6.1 or those of Theorem 6.2.

Then for any pointed hyperbolic plane $\mathrm{P}=(q, H)$, if x_{k} in Σ_{k} is the preimage of q for the warped projection, then the sequence $\left\{d_{\mathcal{G}}\left(\mathrm{T}_{x_{k}} \Sigma_{k}, \mathrm{~T}_{q} H\right)\right\}_{k \in \mathbb{N}}$ is bounded.
Proof of proposition 6.7. Suppose the result is false. Then there exists a pointed hyperbolic plane $\mathrm{P}=(q, H)$ so that $\left\{d_{\mathcal{G}}\left(\mathrm{T}_{q} H, \mathrm{~T}_{x_{k}} \Sigma_{k}\right)\right\}_{k \in \mathbb{N}}$ is unbounded where $\pi\left(x_{k}\right)=q$.

Since the time-like sphere

$$
\mathrm{S}=: \pi_{\mathrm{P}}^{-1}(q),
$$

is compact, the sequence $\left\{x_{k}\right\}_{k \in \mathbb{N}}$ subconverges to a point x_{0}. The point x_{0} belongs to $\mathcal{C H}\left(\Lambda_{0}\right)$ since x_{k} is in the convex hull of the boundary of Σ_{k}.

Let $\left\{\tau_{k}\right\}_{k \in \mathbb{N}}$ be a sequence of elements of $\operatorname{Stab}(\mathrm{S})$ converging to the identity and so that $\tau_{k}\left(x_{k}\right)=x_{0}$, and let us write $\Sigma_{k}^{\prime \prime}=: \tau_{k}\left(\Sigma_{k}\right)$.

Let H_{0} be a hyperbolic plane through x_{0} and let g_{k} in G be such that $g_{k}\left(\mathrm{~T}_{x_{k}} \Sigma_{k}\right)=\mathrm{T}_{x_{0}} H_{0}$, and let $\Sigma_{k}^{\prime}=g_{k}\left(\Sigma_{k}\right)$. Then by construction $d_{\mathcal{G}}\left(\mathrm{T}_{x_{0}} H_{0}, \mathrm{~T} \Sigma_{k}^{\prime}\right)=0$. Observe now

- in the context of Theorem 6.1 the boundary of $\left\{\Sigma_{k}^{\prime}\right\}_{k \in \mathbb{N}}$ is empty and all hypothesis of Theorem 5.3 are de facto satisfied,
- in the context of Theorem 6.2, the second hypothesis of this theorem, implies the first and third hypothesis of Theorem 5.3, moreover Proposition 3.18 and the third
hypothesis of Theorem 6.2 gives that the second hypothesis of Theorem 5.3 is satisfied.
Thus, in both cases, we can apply Theorem 5.3. Hence the sequence $\left\{\Sigma_{k}^{\prime}\right\}_{k \in \mathbb{N}}$ subconverges on any compact to a maximal surface Σ_{0}^{\prime}. We observe that in the case of Here we invoke the hypotheses of Theorem 6.2 and Proposition 3.18 if the conditions on the boundary in Theorem 5.3 are not vacuously satisfied. By construction observe that $g_{k}\left(x_{k}\right)=x_{0}$, hence that Σ_{0}^{\prime} passes through x_{0}.

Let finally $h_{k}=\tau_{k} \cdot g_{k}^{-1}$. The sequence $\left\{h_{k}\right\}_{k \in \mathbb{N}}$ belongs to $\operatorname{Stab}\left(x_{0}\right)$, is unbounded by hypothesis, and

$$
h_{k}\left(\Sigma_{k}^{\prime}\right)=\Sigma_{k}^{\prime \prime} .
$$

By Proposition 6.4, there exists

- A hyperplane H^{+}of degenerate signature ($1, n$) passing through x_{0} such that for any compact set C in $\overline{\mathbf{H}}^{2, n}$ but not intersecting H^{+}, the sequence $\left\{h_{k}(C)\right\}_{k \in \mathbb{N}}$ accumulates to a point in $\partial_{\infty} \mathbf{H}^{2, n} \cap \mathbf{P}\left(x_{0}^{\perp}\right)$.
- A hyperplane H^{-}of degenerate signature $(1, n)$ passing through x_{0} such that for any compact set C in $\overline{\mathbf{H}}^{2, n}$ but not intersecting H^{-}, the sequence $\left\{h_{k}^{-1}(C)\right\}_{k \in \mathbb{N}}$ accumulates to a point in $\partial_{\infty} \mathbf{H}^{2, n} \cap \mathbf{P}\left(x_{0}^{\perp}\right)$.
We can now prove the proposition.
(i) Let us first treat the case of the boundary free Theorem 6.1.

By definition a semi-positive curve contains a positive triple. Thus Λ_{0} is not included in H^{-}, there exists a sequence $\left\{y_{k}\right\}_{k \in \mathbb{N}}$ in $\partial_{\infty} \Sigma_{k}^{\prime \prime}$ converging to a point y_{∞} in $\Lambda_{0} \backslash H^{-}$. Then $z_{k}=: h_{k}^{-1}\left(y_{k}\right)$ converges to a point z_{∞} which is orthogonal to x_{0}. On the other hand, since y_{k} belongs to $\partial_{\infty} \Sigma_{k}^{\prime \prime}, z_{k}$ belongs to $\partial_{\infty} \Sigma_{k}^{\prime}$. Thus z_{∞} belongs to Λ_{0}^{\prime}. This contradicts [21, Lemma 3.7 (c)] which asserts that if x is a point in a complete maximal surface S and y a point in the asymptotic boundary of S, then x and y are not orthogonal.
(ii) Let us now treat the case of Theorem 6.2, where we assume the limit Λ_{0} is a positive curve.

Observe that H^{+}does not contain any positive definite 2-plane, and thus does not contain Σ_{0}^{\prime}. Thus, there exists z_{k} in Σ_{k}^{\prime} converging to z_{0} in Σ_{0}^{\prime} such that if $y_{k}:=h_{k}\left(z_{k}\right)$, then $\left\{y_{k}\right\}_{k \in \mathbb{N}}$ subconverges to a point y_{∞} in $\partial_{\infty} \mathbf{H}^{2, n} \cap \mathbf{P}\left(x_{0}^{\perp}\right)$, which is in particular orthogonal to x_{0}.

Since y_{k} belongs to $\Sigma_{k}^{\prime \prime}$, it follows that y_{k} converges to y_{∞} which belongs to Λ_{0}. We obtain a contradiction with item (iii) of Proposition 2.15.
6.3. Boundary-free and boundary-vanishing case. The first item of Theorem 6.3 is a direct consequence of the Compactness Theorem 5.3. Indeed in that case, the finite boundary γ_{k} of Σ_{k} is empty and the first and third hypotheses of Theorem 5.3 are fulfilled. The second hypothesis is a conequence of the hypothesis of this first item.

We now move to the proof of the second item of 6.3 In order to apply the Compactness Theorem 5.3, we first need to find a pointed hyperbolic plane at finite distance from $T \Sigma_{k}$. This is achieved by Proposition 6.7. This completes the proof of Theorem 6.1.

The proof of Theorem 6.2 is also immediate: we notice from Proposition 3.18 that for all x in γ_{k}

$$
d_{\mathcal{G}}\left(\mathrm{T}_{x} \Sigma_{k}, \mathrm{~T}_{x}^{(2)} \gamma_{k}\right) \leqslant w\left(\gamma_{k}\right) .
$$

Thus the uniform bounds on the angular width for γ_{k} guarantees that the second item in the hypothesis of Theorem 5.3 is satisfied.

Finally, let us prove the third item in Theorem 6.3 using the notation therein. Let us realize the surfaces Σ_{k} as graphs over a fixed pointed hyperbolic disk \mathbf{P} and let π be the warped projection. Let us separate in two cases
(i) In the case the sequence of points $\left\{\pi\left(y_{k}\right)\right\}_{k \in \mathbb{N}}$ stays bounded, then the sequence $\left\{y_{k}\right\}_{k \in \mathbb{N}}$ subconverges since $\left\{\Sigma_{k}\right\}_{k \in \mathbb{N}}$ subconverges as a graph over \mathbf{P}
(ii) Otherwise we can assume that $\left\{\pi\left(y_{k}\right)\right\}_{k \in \mathbb{N}}$ converges to a point z_{∞} in the boundary at infinity in \mathbf{P}. Recall that Σ_{k} is included in the convex hull Ω_{k} of Λ_{k} and that Λ_{k} is the graph of a 1-Lipschitz map f_{k} over the boundary at infinity of \mathbf{P}. We may thus extract a subsequence so that $\left\{f_{k}\right\}_{k \in \mathbb{N}}$ converges to some 1-Lipschitz map f_{∞}. It then follows that $\left\{\Lambda_{k}\right\}_{k \in \mathbb{N}}$ converges in the Haussdorff topology to some semipositive loop Λ_{∞} and thus that $\left\{\Omega_{k}\right\}_{k \in \mathbb{N}}$ converges in the Haussdorff topology to the convex hull of Λ_{∞}. Then $\left\{y_{k}\right\}_{k \in \mathbb{N}}$ converges to the element $f_{\infty}\left(z_{\infty}\right)$ in Λ_{∞}. This concludes the proof
6.4. Proof of the compact boundary case: Theorem 6.3. Let us prove that the hypotheses of Theorem 5.3 are satisfied.

We first remark that the first and third boundary conditions of Theorem 5.3 are satisfied by the compactness and strong positivity of γ. Finally the second condition is satisfied due to proposition 3.18 and the fact that a maximal surface lies in the convex hull of its boundary by Proposition 3.27.

7. Finite Plateau problem

In this section, we prove the following finite Plateau problem.
Theorem 7.1. If γ is a deformable strongly positive closed curve in $\mathbf{H}_{+}^{2, n}$, there exists a unique complete acausal maximal spacelike surface Σ whose total boundary is γ.

Strongly positive curves are defined in Definition 3.14, deformable ones in Definition 3.19 and total boundary in Definition 3.9. Observe also that by Proposition 3.10, such a maximal surface is a graph.

The uniqueness of Σ has been proved in Theorem 4.1, so it only remains to prove the existence.
7.1. Existence by the continuity method. Consider a deformation $\left\{\gamma_{t}\right\}_{t \in[0,1]}$ of γ (see Definition 3.19). By Lemma 2.8, we can lift those curves continuously to $\mathbf{H}_{+}^{2, n}$.

Let \mathcal{M} be the space of $C^{k, \alpha}$ complete compact spacelike surfaces whose boundary is both smooth and strongly positive, which are graphs over a disk. Define
$\mathcal{A}=\left\{t \in[0,1] \mid\right.$ there is a complete maximal acausal surface $\Sigma \in \mathcal{M}$ with $\left.\partial \Sigma=\gamma_{t}\right\}$.
We already know that \mathcal{A} is non empty since it contains $t=0$; we also know that \mathcal{A} is closed by Theorem 6.3.

Thus a connectedness argument shows that Theorem 7.1 follows from the following proposition.
Proposition 7.2. The set \mathcal{A} is open.
The proof is a consequence of Corollary 3.24 and standard techniques on which we now give some details.

We need some preliminary. Let H_{0} be the hyperbolic plane containing γ_{0}, fix a point q_{0} in H_{0} and consider the pointed hyperbolic plane $\mathrm{P}_{0}=\left(q_{0}, H_{0}\right)$ (see Paragraph 3.1.1).

Fix t_{0} in \mathcal{A}. The image of $\gamma_{t_{0}}$ by the warped projection on P_{0} is a smooth simple closed curve bounding a domain Ω_{0}. Similarly, for any t close to t_{0}, we denote by Ω_{t} the domain in H_{0} bounded by the warped projection of γ_{t}. Let Σ_{0} be a maximal surface with boundary $\gamma_{t_{0}}$, we want to prove that for all t close to t_{0}, the curve γ_{t} bounds a maximal surface.

The next two lemmas describe coordinates on the space of (some) surfaces, and trivialisation of the associated normal bundles. These technicalities are made necessary by the non linear nature of $\mathbf{H}_{+}^{2, n}$.

Lemma 7.3 (Charts). There exists some n-dimensional vector spaces E_{1}, a neighbourhood \mathcal{U} of $\left(t_{0}, 0\right)$ in $I \times C^{k, \alpha}\left(\Omega_{0}, E_{1}\right)$, a map

$$
\phi: \mathcal{U} \times \Omega_{0} \longrightarrow \mathbf{H}_{+}^{2, n}
$$

such that for any (t, G) in neighbourhood of $\left(t_{0}, 0\right)$ in \mathcal{U} the map

$$
\phi_{(t, G)}: x \mapsto \phi(t, G, x),
$$

is a smooth parametrisation of a surface $S_{(t, G)}$ such that.
(i) $S_{(t, G)}$ is a graph over Ω_{t},
(ii) $S_{\left(t_{0}, 0\right)}=\Sigma_{0}$
(iii) If G vanishes on the boundary then $\partial S_{(t, G)}=\gamma_{t}$.

Proof. After possibly taking a smaller I, let us choose an immersion

$$
F: I \times \Omega_{0} \rightarrow \mathbf{H}_{+}^{2, n}=H_{0} \times \mathbf{S}^{n},
$$

so that $\pi\left(F\left(t_{0}, x\right)\right)=x$ and for every t, the map from $\partial \Omega_{0}$ to $\mathbf{H}^{2, n}$ given by

$$
x \mapsto F(t, x),
$$

is a parametrisation of γ_{t}. Then for every t small enough, the map $x \rightarrow F(t, x)$ is a parametrisation of a spacelike surface S_{t} whose boundary is γ_{t}.

Let us now consider a trivialisation of the bundle $F^{*}\left(\mathrm{TS}^{n}\right)$ as $I \times \Omega_{0} \times E_{1}$, and finally consider the map

$$
\phi(t, G, x)=\exp _{F(t, x)}(G(x)),
$$

where we have considered $G(x)$ as a vector in $\mathbf{T}_{F(t, x)} \mathbf{S}^{n}$ using the above trivialisation. The result follows from this construction, writing $S_{(t, G)}$ as the image of $x \mapsto \phi(t, G, x)$.

We have a similar result for the normal bundle
Lemma 7.4 (Trivialisation of the normal bundle). Similarly, there exists an n-dimensional vector space E_{2}, and a smooth map

$$
\Phi: \mathcal{U} \times C^{k-2, \alpha}\left(\Omega_{0}, E_{2}\right) \times \Omega_{0} \rightarrow \mathbf{T H}_{+}^{2, n}
$$

above ϕ, Such that fixing (t, G) in \mathcal{U}, the map

$$
N_{t, G}: C^{k-2, \alpha}\left(E_{2}\right) \times \Omega_{0} \rightarrow \mathbf{T H}_{+}^{2, n}
$$

is a linear isomorphism with the space of $C^{k-2, \alpha}$-section of the normal bundle to $S_{(t, G)}$.
Proof. Let us consider the bundle

$$
N \rightarrow \mathcal{U} \times \Omega_{0}
$$

whose fiber at the point $\phi(t, G, x)$ is the normal bundle of the surface $S_{(t, G)}$ at the point $\phi(t, G, x)$.

We now trivialize this bundle as

$$
\mathcal{U} \times \Omega_{0} \times E_{2}
$$

and the result follows
Proof of Proposition 7.2. Let (t, G) in \mathcal{U}. We denote by $\mathrm{H}(t, G)$ the mean curvature (vector) of the surface $\Sigma_{(t, G)}$. Using the identification in Lemma 7.4, we identify $\mathrm{H}(t, G)$ - with the same notation - to an element of $C^{k-2, \alpha}\left(\Omega_{0}, E_{2}\right)$. Thus we consider the map

$$
\mathrm{H}:\left\{\begin{array}{lll}
\mathcal{U} & \longrightarrow & C^{k-2, \alpha}\left(\Omega_{0}, E_{2}\right) \\
(t, G) & \longmapsto & \mathrm{H}(t, G)
\end{array}\right.
$$

Let \mathcal{V} a neigbourhood of 0 in $C_{0}^{k, \alpha}\left(\Omega_{0}, E_{1}\right)$ so that $\left\{t_{0}\right\} \times \mathcal{V}$ is included in \mathcal{U}. Consider the restricted map

$$
\mathrm{H}^{0}:\left\{\begin{array}{lll}
\mathcal{V} & \longrightarrow & C^{k-2, \alpha}\left(\Omega_{0}, E_{2}\right) \\
G & \longmapsto & \mathrm{H}\left(t_{0}, G\right)
\end{array}\right.
$$

Similarly to the setting of Plateau problems in Euclidean spaces, as shown in White [47, Proposition 1.4] the map $\mathrm{D}_{0} \mathrm{H}^{0}$ is Fredholm of index zero (to adapt the proof of this fact to the present setting, we need only observe that the map $\mathrm{D}_{0} \mathrm{H}^{0}$ is strongly elliptic at a spacelike surface).

By Corollary 3.24, $\mathrm{D}_{0} \mathrm{H}^{0}$ has zero kernel and spectrum bounded away from 0 , so it is invertible with continuous inverse.

To conclude the proof, we will use an Implicit Function Theorem. Fix an extension operator $\varepsilon: C^{k, \alpha}\left(\partial \Omega_{0}, E_{1}\right) \rightarrow C^{k, \alpha}\left(\Omega_{0}, E_{1}\right)$ such that $\left.\varepsilon(\delta)\right|_{\partial \Omega_{0}}=\delta$ for any δ. This gives an isomorphism

$$
\iota:\left\{\begin{array}{lll}
\left(I \times C^{k, \alpha}\left(\partial \Omega_{0}, E_{1}\right)\right) \times C_{0}^{k, \alpha}\left(\Omega_{0}, E_{1}\right) & \longrightarrow I \times C^{k, \alpha}\left(\Omega_{0}, E_{1}\right), \\
(t, \delta, G) & \longmapsto(t, \varepsilon(\delta)+G)
\end{array}\right.
$$

By restricting the domain of ι to an open set O containing $\left(\left(t_{0}, 0\right), 0\right)$, we can further assume ι takes value in \mathcal{U}.

Finally define

$$
\Psi:=\mathrm{H} \circ \iota: O \longrightarrow C^{k-2, \alpha}\left(\Omega_{0}, E_{2}\right)
$$

The differential of Ψ at $\left(\left(t_{0}, 0\right), 0\right)$ in the second factor - namely $C_{0}^{k, \alpha}\left(\Omega_{0}, E_{1}\right)$ - is just the operator $\mathbf{D}_{0} \mathrm{H}^{0}$ which, as we noted, is an isomorphism. By the Implicit Function Theorem, we obtain an application θ from a neighbourhood W of $\left(t_{0}, 0\right)$ in $I \times C^{k, \alpha}\left(\partial \Omega_{0}, E_{1}\right)$ to a neighborhood of 0 in $C_{0}^{k, \alpha}\left(\Omega_{0}, E_{1}\right)$ such that for G close to 0 in $C_{0}^{k, \alpha}\left(\Omega_{0}, E_{1}\right)$ and (t, f) in W,

$$
\begin{equation*}
\Psi((t, f), G)=0 \text { if and only if } G=\theta(t, f) \tag{32}
\end{equation*}
$$

Observe that $l((t, 0), f)=(t, f)$ and let

$$
\Sigma_{t}=S_{(t, \theta(t, 0))}
$$

By equation (32), Σ_{t} is maximal. Observe that since $\theta(t, f)$ belongs to $C_{0}^{k, \alpha}\left(\Omega_{0}, E_{1}\right)$, by the item (iii) of lemma 7.3, we have

$$
\partial \Sigma_{t}=\partial S_{t}=\gamma_{t}
$$

Since $(t, \theta(t, 0))$ is well defined and in \mathcal{U} for t in some neighborhood of t_{0}, we get that \mathcal{A} contains a neighbourhood of t_{0}. The uniqueness part comes from equation (32) with $f=0$.

8. Asymptotic Plateau problem: Theorem A

In this section, we prove Theorem A, namely, that any semi-positive loop in $\partial_{\infty} \mathbf{H}^{2, n}$ is the total boundary of a unique complete maximal surface in $\mathbf{H}^{2, n}$.

In particular, in light of our previous results, what remains to prove is
Theorem 8.1. Any (smooth) spacelike positive loop in $\partial_{\infty} \mathbf{H}^{2, n}$ is the total boundary of a complete maximal surface in $\mathbf{H}^{2, n}$.

Once this case of Theorem A is established for smooth boundary loops Λ, the full theorem follows by approximation of continuous loops Λ by smooth ones, using Corollary 2.14 and Theorem 6.1.
8.1. Exhaustion. We construct here an exhaustion of a spacelike positive loop by using radial curves.

More precisely we prove
Proposition 8.2 (Exhaustion). Let Λ be a spacelike positive loop in $\partial_{\infty} \mathbf{H}^{2, n}$. Then, there exists a sequence $\left\{\gamma_{k}\right\}_{k \in \mathbb{N}}$ of closed curves in $\mathbf{H}^{2, n}$ converging to Λ satisfying the following:
(i) For k large enough, the curve γ_{k} is strongly positive (Definition 3.14).
(ii) For k large enough, the strongly positive curve γ_{k} is deformable (Definition 3.19).
(iii) The sequence $\left\{\gamma_{k}\right\}_{k \in \mathbb{N}}$ is uniformly unpinched (Definition 3.15).
(iv) The sequence $\left\{\gamma_{k}\right\}_{k \in \mathbb{N}}$ has bounded geometry (Appendix A).
(v) The angular width of γ_{k} is uniformly bounded (Definition 3.17).

We first give the construction, then prove Proposition 8.2 in paragraph 8.1.2.
8.1.1. Construction of an exhaustion. Given a point p in $\mathbf{H}^{2, n}$, recall from Subsection 2.2 that the set

$$
\mathbf{T}_{p}^{1} \mathbf{H}^{2, n}=\left\{v \in \mathbf{T}_{p} \mathbf{H}^{2, n}, \mathbf{q}(v)=1\right\}
$$

is isometric to the signature $(1, n)$ pseudo-sphere $\mathbf{S}^{1, n}$. We denote by $\mathbf{g}_{\mathbf{S}^{1, n}}$ its metric. Fix a sequence $\left\{\rho_{k}\right\}_{k \in \mathbb{N}}$ of positive real numbers tending to infinity, and for any k, set

$$
\phi_{k}:\left\{\begin{array}{lll}
\mathrm{T}_{p}^{1} \mathbf{H}^{2, n} & \longrightarrow & \mathbf{H}^{2, n}, \\
v & \longmapsto & \exp \left(\rho_{k} v\right) .
\end{array}\right.
$$

The map ϕ_{k} is a diffeomorphism onto the pseudosphere $M_{k}:=\beta\left(p, \rho_{k}\right)=\left\{x \in \mathbf{H}^{2, n}, ð(p, x)=\right.$ $\left.\rho_{k}\right\}$. We have

$$
\begin{equation*}
\phi_{k}^{*} g_{M_{k}}=\sinh \left(\rho_{k}\right) \mathbf{g}_{\mathbf{S}^{1, n}} . \tag{33}
\end{equation*}
$$

Taking the limit as k goes to infinity, we obtain a map

$$
\phi_{\infty}: \mathrm{T}_{p}^{1} \mathbf{H}^{2, n} \longrightarrow \partial_{\infty} \mathbf{H}^{2, n}
$$

which is a conformal diffeomorphism onto $\partial_{\infty} \mathbf{H}^{2, n} \backslash \mathbf{P}\left(p^{\perp}\right)$.
Let us return to our situation. If Λ is a spacelike positive curve in $\partial_{\infty} \mathbf{H}^{2, n}$, fix a point p in the interior of the convex hull $C \mathcal{H}(\Lambda)$. By Proposition 2.15, the set Λ is disjoint from p^{\perp}. We can thus define the smooth closed curves γ_{0} in $\mathbf{T}_{p}^{1} \mathbf{H}^{2, n}$ and γ_{k} in M_{k} respectively by

$$
\gamma_{0}:=\phi_{\infty}^{-1}(\Lambda), \gamma_{k}:=\phi_{k}\left(\gamma_{0}\right)
$$

In other words, γ_{k} is the intersection of the cone over Λ with the pseudosphere M_{k}.
8.1.2. Proof of proposition 8.2. We prove that there is a subsequence of the previously constructed sequence $\left\{\gamma_{k}\right\}_{k \in \mathbb{N}}$ that satisfies the conditions of the proposition.

Proof of (i). Lift each γ_{k} and Λ to the hyperplane $\{x \in E,\langle p, x\rangle=-1\}$. We denote those lifts with the same notation.

Consider a smooth spacelike loop γ in E.
We may now choose an auxiliary euclidean metric h on E and let us use the arc length parametrisation with respect to this metric.

Define as in paragraph 3.2.2, the map

$$
\Phi_{\gamma}:\left\{\begin{array}{lll}
\gamma^{(3)} & \longrightarrow & \mathrm{Gr}_{3}(E) \\
\left(x_{1}, x_{2}, x_{3}\right) & \longmapsto & x_{1} \oplus x_{2} \oplus x_{3}
\end{array}\right.
$$

where $\mathrm{Gr}_{3}(E)$ is the Grassmannian manifold of 3-spaces in E.
Since γ is smooth, using $\dot{\gamma}$ and $\ddot{\gamma}:=\nabla_{\dot{\gamma}} \dot{\gamma}$, the map Φ_{γ} extends to a continuous map, also denoted Φ_{γ} on γ^{3}. Observe that if $\mathbf{q}(\gamma)<0$, then the projection of γ in $\mathbf{H}^{2, n}$ is strongly positive if and only if Φ_{γ} takes values in $\mathrm{Gr}_{2,1}(E)$.

We also observe that Φ_{γ} is Lipschitz - with respect to the induced metric by h on $\mathrm{Gr}_{3}(E)$ with a Lipschitz constant that depends on the third derivatives of γ.

Take an arclength parametrization - with respect to h - of Λ. Then $\left\{\Phi_{\gamma_{k}}\right\}_{k \in \mathbb{N}}$ converges uniformly to Φ_{Λ} by Arzela-Ascoli.

To conclude the proof of this first item we just need to prove that Φ_{Λ} takes values in $\mathrm{Gr}_{2,1}(E)$. Let us consider for three vectors x_{1}, x_{2} and x_{3} in E

$$
\Delta\left(x_{1}, x_{2}, x_{3}\right)=\operatorname{det}\left(\left\langle x_{i}, x_{j}\right\rangle\right)_{i, j}
$$

Observe also that the map Φ_{Λ} does not depend on the choice of a parametrisation; we therefore choose a parametrisation of Λ so that $\mathbf{q}(\Lambda(t))=1$. Observe then that taking the derivatives of $\mathbf{q}(\Lambda(t))=0$ and $\mathbf{q}(\dot{\Lambda}(t))=1$ yield the following equations

$$
\langle\dot{\Lambda}(t), \Lambda(t)\rangle=0,\langle\ddot{\Lambda}(t), \dot{\Lambda}(t)\rangle=0,\langle\ddot{\Lambda}(t), \Lambda(t)\rangle=-1
$$

To simply the notation let us write

$$
V(t, s, u):=\Phi_{\Lambda}(\Lambda(t), \Lambda(t), \Lambda(s))
$$

(i) Since Λ is postive, $V(t, s, u)$ takes values in $\mathrm{Gr}_{2,1}(E)$ for pairwise distinct (s, t, u).
(ii) For distinct s and $t, V(t, t, s)$ is the space

$$
\Lambda(t) \oplus \dot{\Lambda}(t) \oplus \Lambda(s)
$$

Thus, or $s \neq t$, the above equations give, letting $a=\langle\Lambda(t), \Lambda(s)\rangle$ and $b=\langle\dot{\Lambda}(t), \Lambda(s)\rangle$

$$
\Delta(\Lambda(s), \Lambda(t), \dot{\Lambda}(t))=\operatorname{det}\left(\begin{array}{lll}
0 & a & b \\
a & 0 & 0 \\
b & 0 & 1
\end{array}\right)=-a^{2}<0
$$

Thus $V(t, t, s)$ is non degenerate, hence of type $(2,1)$ by continuity.
(iii) Finally, $V(t, t, t)$ is the space

$$
\Lambda(t) \oplus \dot{\Lambda}(t) \oplus \ddot{\Lambda}(t)
$$

Letting $c=\langle\Lambda(t), \ddot{\Lambda}(t)\rangle$ we have

$$
\Delta(\Lambda(t), \dot{\Lambda}(t), \ddot{\Lambda}(t))=\operatorname{det}\left(\begin{array}{rrr}
0 & 0 & -1 \\
0 & 1 & 0 \\
-1 & 0 & c
\end{array}\right)=-1<0
$$

Hence $V(t, t, t)$ is non degenerate, hence of type $(2,1)$ by continuity..
We have proved that Φ_{Λ} takes values in $\mathrm{Gr}_{2,1}(E)$ and so does $\Phi_{\gamma_{k}}$ for k large enough by uniform convergence. Thus γ_{k} is strongly positive for k large enough.
Proof of (ii). Lift p to p_{+}in $\mathbf{H}_{+}^{2, n}$ and let $\mathrm{P}=\left(p_{+}, H\right)$ be a pointed hyperbolic plane containing p_{+}. This gives a decomposition $\partial_{\infty} \mathbf{H}_{+}^{2, n}=\mathbf{S}^{1} \times \mathbf{S}^{n}$ in which the boundary of H has the form $\mathbf{S}^{1} \times\{v\}$. Since Λ is disjoint from p^{\perp}, it admits a connected lift Λ_{+}to $\partial_{\infty} \mathbf{H}_{+}^{2, n}$ such that $\left\langle p_{+}, \Lambda_{+}\right\rangle<0$. This implies that in the splitting $\mathbf{S}^{1} \times \mathbf{S}^{n}$, the positive loop Λ_{+}is the graph of a smooth contracting map $f: \mathbf{S}^{1} \rightarrow \mathbf{S}^{n}$ (see Proposition 2.11) whose image is contained in the hemisphere $B=\left\{x \in \mathbf{S}^{n},\langle x, v\rangle>0\right\}$.

Consider the family of maps $\left\{\phi_{t}\right\}_{t \in[0,1]}$ from B to itself given by

$$
\phi_{t}(x)=\frac{t x+(1-t) v}{\|t x+(1-t) v\|}
$$

Observe that each ϕ_{t} is smooth and contracting for $t<1$. Thus, the maps $f_{t}:=\phi_{t} \circ f$ are smooth and contracting and so the projection Λ_{t} of their graph to $\partial_{\infty} \mathbf{H}^{2, n}$ define an isotopy $\left\{\Lambda_{t}\right\}_{t \in[0,1]}$ such that $\Lambda_{1}=\Lambda$, the loop Λ_{0} is the boundary of H and for each Λ_{t} is a smooth positive loop.

Because p belongs to the convex hull of every Λ_{t}, we can apply the construction on the proof of item (i). This gives an isotopy $\left\{\gamma_{k}^{t}\right\}_{t \in[0,1]}$ for every k. By compactness of the isotopy $\left\{\Lambda_{t}\right\}_{t \in[0,1]}$, it follows that for k large enough, every γ_{k}^{t} is strongly positive and so γ_{k} is deformable.

Proof of (iii). Denote respectively by d_{k} and d_{0} the length along γ_{k} and γ_{0}. Given two points $x_{k}, y_{k} \in \gamma_{k}$, we denote by $x_{k^{\prime}}^{o} y_{k}^{o}$ the points in γ_{0} such that $x_{k}=\phi_{k}\left(x_{k}^{o}\right)$ and $y_{k}=\phi_{k}\left(y_{k}^{o}\right)$. We thus have by equation (33)

$$
\begin{equation*}
d_{k}\left(x_{k}, y_{k}\right)=\sinh \left(\rho_{k}\right) \cdot d_{0}\left(x_{k}^{o}, y_{k}^{o}\right) \tag{34}
\end{equation*}
$$

Since p lies in the convex hull of Λ, Item (v) of Proposition 2.15 implies that the geodesics between p and x_{k} and between p and y_{k} are spacelike: here we use that the points x_{k} and y_{k} are constructed to lie on geodesics connecting p to Λ. Since γ_{k} is strongly positive by the first item, the geodesic between x_{k} and y_{k} is also spacelike and so the triple (p, x_{k}, y_{k}) is positive (unless p belongs to the geodesic between x_{k} and y_{k} in which case the following still holds). Hence p, x_{k} and y_{k} are the vertices of an isosceles hyperbolic triangle T_{k}. Classical hyperbolic trigonometry implies that

$$
\begin{equation*}
\sinh \left(\frac{ð\left(x_{k}, y_{k}\right)}{2}\right)=\sinh \left(\rho_{k}\right) \cdot \sin \left(\frac{\alpha\left(x_{k}, y_{k}\right)}{2}\right), \tag{35}
\end{equation*}
$$

where $\alpha\left(x_{k}, y_{k}\right)$ is the angle at p in the triangle T_{k}. In particular, $\alpha\left(x_{k}, y_{k}\right)$ is equal to the extrinsic distance between x_{k}^{o} and y_{k}^{o} in $\mathrm{T}_{p}^{1} \mathbf{H}^{2, n}$.

Consider a sequence $\left\{\left(x_{k}, y_{k}\right)\right\}_{k \in \mathbb{N}}$ where x_{k}, y_{k} are distinct points of γ_{k} such that $ð\left(x_{k}, y_{k}\right)$ tends to 0 , and let $\alpha_{k}:=\alpha\left(x_{k}, y_{k}\right)$.

By equation (35), $\lim _{k \rightarrow \infty} \frac{\partial\left(x_{k}, y_{k}\right)}{a_{k} \sinh \left(\rho_{k}\right)}=1$. Together with equation (34), we obtain

$$
\lim _{k \rightarrow \infty} \frac{\partial\left(x_{k}, y_{k}\right)}{d_{k}\left(x_{k}, y_{k}\right)}=\lim _{k \rightarrow \infty} \frac{\alpha_{k}}{d_{0}\left(x_{k^{\prime}}^{o} y_{k}^{o}\right)}=1,
$$

where for the last equality we used the fact that γ_{0} is smooth, spacelike and that α_{k} is equal to the extrinsic distance between x_{k}^{0} and y_{k}^{0}.

As a result, there exists a $\delta>0$ such that for any pair of distinct points x_{k}, y_{k} on γ_{k} with $ð\left(x_{k}, y_{k}\right) \leqslant \delta$, then $\frac{\partial\left(x_{k}, y_{k}\right)}{d_{k}\left(x_{k}, y_{k}\right)}>\frac{1}{2}$. So the sequence $\left\{\gamma_{k}\right\}_{k \in \mathbb{N}}$ is uniformly unpinched.
Proof of (iv). In this portion of the argument, we will use some definitions and results from Appendix A. Now, the curve $\gamma_{k} \subset M_{k}$ is obtained from $\gamma_{0} \subset \mathbf{T}_{p} \mathbf{H}^{2, n} \cong \mathbf{S}^{1, n}$ by rescaling the metric by a factor $\sinh \left(\rho_{k}\right)$. In particular, the curvature of M_{k} and γ_{k} converges uniformly to 0 , and so for any sequence $\left\{x_{k}\right\}_{k \in \mathbb{N}}$ with $x_{k} \in \gamma_{k}$, the sequence $\left\{x_{k}, \gamma_{k}, M_{k}\right\}_{k \in \mathbb{N}}$ converges in the sense of Appendix A to $\left\{x, \Delta, \mathbf{E}^{1, n}\right\}_{k \in \mathbb{N}}$ where Δ is a spacelike line in the pseudo-Euclidean space $\mathbf{E}^{1, n}$ and $x \in \Delta$. In other words, the sequence $\left\{\gamma_{k}, M_{k}\right\}_{k \in \mathbb{N}}$ has bounded geometry.

On the other hand, the sequence $\left\{M_{k}, \mathbf{H}^{2, n}\right\}_{k \in \mathbb{N}}$ has bounded geometry since, up to shifting the center of the pseudosphere, $\left\{M_{k}\right\}_{k \in \mathbb{N}}$ converges to an horosphere (see Subsection 2.2). It follows from Lemma A. 4 that $\left\{\gamma_{k^{\prime}}^{0} \mathbf{H}^{2, n}\right\}_{k \in \mathbb{N}}$ has bounded geometry when γ_{k} is equipped (see Definition A.1) with the normal framing γ_{k}^{o} given by $P_{k}(x):=\mathrm{T}_{x} \gamma_{k} \oplus \mathrm{~N}_{x} M_{k}$, where $\mathrm{N}_{x} M_{k}$ is the normal to M_{k} at x. The bounded geometry of $\left\{\gamma_{k}, \mathbf{H}^{2},\right\}_{k \in \mathbb{N}}$, when γ_{k} is equipped with its canonical normal framing given by $\mathrm{T}^{(2)} \gamma_{k}$, will follow from a lemma.
Lemma 8.3. Using the same notation as above, the sequence $d_{\mathcal{G}}\left(T^{(2)} \gamma_{k}, P_{k}\right)$ converges uniformly to 0.

Proof. Parametrize γ_{k} by arc length and define $\ddot{\gamma}_{k}:=\nabla_{\dot{\gamma}_{k}} \dot{\gamma}_{k}$. Then by definition, $\mathrm{T}^{(2)} \gamma_{k}=$ $\operatorname{span}\left\{\dot{\gamma}_{k}, \ddot{\gamma}_{k}\right\}$.

For a point x in γ_{k}, let $n_{k}(x)$ be the unit vector normal to M_{k} pointing outward, so $P_{k}=\operatorname{span}\left\{\dot{\gamma}_{k}, n_{k}\right\}$. Since the planes $P_{k}(x)$ and $\mathrm{T}_{x}^{(2)} \gamma_{k}$ intersect along $\mathrm{T}_{x} \gamma_{k}$, we have

$$
d_{\mathcal{G}}\left(\mathrm{T}_{x}^{(2)} \gamma_{k}, P_{k}(x)\right)=d_{\mathbf{H}^{n}}\left(n_{k}(x), \ddot{\gamma}_{k}(x)\right),
$$

where $n_{k}(x)$ and $\ddot{\gamma}_{k}(x)$ are considered as elements in the space of positive definite lines in the signature ($1, n$) space $\left(x \oplus \mathrm{~T}_{x} \gamma_{k}\right)^{\perp}$, which is identified with \mathbf{H}^{n}. In particular,

$$
\cosh \left(d_{\mathcal{G}}\left(\mathrm{T}_{x}^{(2)} \gamma_{k}, P_{k}(x)\right)\right)=\frac{\left\langle n_{k}(x), \ddot{\gamma}_{k}(x)\right\rangle}{\left\|\ddot{\gamma}_{k}(x)\right\|} .
$$

Let us write $\ddot{\gamma}_{k}=: \mu_{k}+v_{k}$ where μ_{k} belongs to $P_{k}(x)$ and v_{k} to $P_{k}^{\perp}(x)$. So

$$
\cosh \left(d_{\mathcal{G}}\left(\mathbf{T}_{x}^{(2)} \gamma_{k}, P_{k}(x)\right)\right)=\frac{\mu_{k}}{\sqrt{\mu_{k}^{2}+v_{k}^{2}}} .
$$

By definition, $\kappa_{k}:=g_{M_{k}}\left(v_{k}, v_{k}\right)$ is the geodesic curvature of γ_{k} seen as a curve in M_{k}. Similarly, $\mu_{k} n_{k}=\Pi_{k}\left(\dot{\gamma}_{k} \dot{\gamma}_{k}\right)$ where Π_{k} is the second fundamental form of M_{k}. Since M_{k} is umbilical with induced curvature $\sinh ^{-2}\left(\rho_{k}\right)$, we have

$$
\mathrm{II}_{k}(X, Y)=\operatorname{coth}\left(\rho_{k}\right) g_{M_{k}}(X, Y) n_{k} .
$$

Now, the curve $\phi_{k}^{-1}\left(\gamma_{k}\right)=\gamma_{0}$ is fixed independently of k. Moreover, by equation (33), the induced arclength parametrization of this curve grows without bound in k, and so the
geodesic curvature κ_{k} of γ_{k} in M_{k} converges uniformly to zero. The result follows from the fact that $\left\{\mu_{k}\right\}_{k \in \mathbb{N}}$ converges to 1 .

Proof of (v). For each k, let x_{k} be a point in γ_{k} such that $w\left(\gamma_{k}\right)=\operatorname{diam}\left(\pi_{x_{k}}\left(\gamma_{k}\right)\right)$ where $\pi_{x_{k}}: E \rightarrow\left(x_{k} \oplus \mathrm{~T}_{x_{k}} \gamma_{k}\right)^{\perp}$ is the orthogonal projection (see Definition 3.17). We want to prove that the limit of diam $\left(\pi_{x_{k}}\left(\gamma_{k}\right)\right)$, when k tends to infinity, is finite.

Denote by H_{k} the hyperbolic plane containing p and $\mathrm{T}_{x_{k}} \gamma_{k}$. Since there is a subsequence of $\left\{x_{k}\right\}_{k \in \mathbb{N}}$ that converges to a point $x_{\infty} \in \Lambda$, the sequence of pointed hyperbolic planes $\mathrm{P}_{k}=\left(p, H_{k}\right)$ subconverges to $\mathrm{P}_{\infty}=\left(p, H_{\infty}\right)$ where H_{∞} is the hyperbolic plane containing p and $\mathrm{T}_{x_{\infty}} \Lambda$, here using the smoothness of Λ.

Fix a spacelike line $L \subset \mathrm{~T}_{p} H_{\infty}$ and take $g_{k} \in \mathrm{G}$ such that $g_{k}\left(\mathrm{~T}_{x_{k}} \gamma_{k}\right)=L$, and $g_{k}\left(H_{k}\right)=H_{\infty}$. Denote by $\gamma_{k}^{\prime}=g_{k}\left(\gamma_{k}\right), M_{k}^{\prime}=g\left(M_{k}\right)$ and $p_{k}^{\prime}=g_{k}(p)$. From Subsection 2.2, the sequence $\left\{M_{k}^{\prime}\right\}_{k \in \mathbb{N}}$ converges to the horosphere \mathcal{H} tangent to $p_{\infty}:=\lim p_{k}^{\prime}$ and passing through p. Denote by $\bar{\sigma}=\sigma \cup\left\{p_{\infty}\right\}$ the closure in $\overline{\mathbf{H}}^{2, n}$ of the horocycle $\sigma=\mathcal{H} \cap H_{\infty}$.

Lemma 8.4. Using the same notation as above, for any sequence $\left\{y_{k}\right\}_{k \in \mathbb{N}}$ with $y_{k} \in \gamma_{k}$, there is a subsequence of $\left\{g_{k}\left(y_{k}\right)\right\}_{k \in \mathbb{N}}$ converging to a point in $\bar{\sigma}$.

Proof. Let $\left\{y_{k}\right\}_{k \in \mathbb{N}}$ be such a sequence. Up to extracting a subsequence, we can assume one of the following:
(i) For any k we have $y_{k}=x_{k}$,
(ii) For any k, we have $y_{k} \neq x_{k}$ but $\lim y_{k}=x_{\infty}$,
(iii) The limit of $\left\{y_{k}\right\}_{k \in \mathbb{N}}$ is different from x_{∞}.

We will prove that in any case, the sequence $\left\{g_{k}\left(y_{k}\right)\right\}_{k \in \mathbb{N}}$ subconverges to a point in $\bar{\sigma}$.
Case (i) is obvious since $g_{k}\left(y_{k}\right)=p \in \sigma$.
For case (ii), observe that the hyperbolic plane V_{k} containing p, x_{k} and y_{k} converges to the hyperbolic plane H_{∞} containing p and $\mathrm{T}_{x_{\infty}} \Lambda$. In fact, if x_{k}^{o} and y_{k}^{o} are the points in $\gamma_{0} \subset \mathrm{~T}^{1} \mathbf{H}^{2, n}$ such that $x_{k}=\phi_{k}\left(x_{k}^{o}\right)$ and $y_{k}=\phi_{k}\left(y_{k}^{o}\right)$, then V_{k} is also the hyperbolic plane such that $\mathrm{T}_{p} V_{k}$ contains x_{k}^{o} and y_{k}^{o}. By the smoothness of γ_{0}, the sequence of lines through x_{k}^{o} and y_{k}^{o} converges to $\mathrm{T}_{x_{\infty}^{0}} \gamma_{0}$, where $\phi_{\infty}\left(x_{\infty}^{0}\right)=x_{\infty}$.

In particular, $g_{k}\left(y_{k}\right)$ belongs to $g_{k}\left(V_{k}\right) \cap g_{k}\left(M_{k}\right)$ and so accumulates to a point in the closure of the intersection $\mathcal{H} \cap H_{\infty}$, that is in $\bar{\sigma}$.

For case (iii), we will use a proximality argument in the spirit of Section 6.1. For each k, write $g_{k}=g_{k}^{\prime} \cdot h_{k}$ where $h_{k}\left(p, H_{k}\right)=\left(p, H_{\infty}\right)$ is such that h_{k} converges to the identity. Then the sequence g_{k}^{\prime} is a sequence in $\operatorname{Stab}\left(H_{\infty}\right) \cong \operatorname{Isom}\left(\mathbf{H}^{2}\right)$ which by construction satisfies:

$$
\lim _{k \rightarrow \infty} g_{k}^{\prime}(p)=p_{\infty}, \lim _{k \rightarrow \infty}\left(g_{k}^{\prime}\right)^{-1}(p)=x_{\infty}
$$

The sequence $\left\{g_{k}\right\}_{k \in \mathbb{N}}$, is such that it approximates the sequence $\left\{g_{k}^{\prime}\right\}_{k \in \mathbb{N}}$ which have distinct fixed points on H_{∞}, is thus P_{1}-divergent and by Lemma 6.5 maps any point in $\mathbf{P}(E)$ that are not in $\mathbf{P}\left(x_{\infty}^{\perp}\right)$ to a sequence converging to p_{∞}. The result then follows from the fact that Λ is positive, so $\mathbf{P}\left(x_{\infty}^{\perp}\right) \cap \Lambda=x_{\infty}$.

Now the proof of item (v) follows. For each k, let y_{k} and z_{k} in γ_{k} be such that $w\left(\gamma_{k}\right)=$ $\operatorname{diam}\left(\pi_{x_{k}}\left(\gamma_{k}\right)\right)=d_{\mathbf{H}^{n}}\left(\pi_{x_{k}}\left(y_{k}\right), \pi_{x_{k}}\left(z_{k}\right)\right)$. Since the angular width is invariant under the action of G, we have $w\left(\gamma_{k}\right)=\operatorname{diam}\left(\pi_{p}\left(\gamma_{k}^{\prime}\right)\right)$ where $\pi_{p}: E \rightarrow L^{\perp}$. By the previous lemma, the sequence $\left\{g_{k}\left(y_{k}\right)\right\}$ and $\left\{g_{k}\left(z_{k}\right)\right\}$ subconverge to a point in $\bar{\sigma}$. Since $\pi_{p}(\bar{\sigma})$ is a point, the sequence $\left\{w\left(\gamma_{k}\right)\right\}_{k \in \mathbb{N}}$ subconverges to 0.
8.2. Proof of Theorem 8.1. Consider $\left\{\gamma_{k}\right\}_{k \in \mathbb{N}}$ the sequence constructed in Proposition 8.2. By Theorem 7.1, there exists a sequence $\left\{\Sigma_{k}\right\}_{k \in \mathbb{N}}$ of complete acausal maximal surfaces with $\partial \Sigma_{k}=\gamma_{k}$.

Since $\left\{\gamma_{k}\right\}_{k \in \mathbb{N}}$ satisfies the hypothesis of Theorem 6.2, we obtain a maximal surface whose asymptotic boundary is Λ.

Appendix A. Bounded geometry in the pseudo-Riemannian setting

A.1. Convergence of Riemannian and pseudo-Riemannian manifolds.

A.1.1. The Riemannian setting. We say that a sequence $\left\{\left(x_{k}, M_{k}\right)\right\}_{k \in \mathbb{N}}$ of pointed Riemannian manifolds converges C^{n} to a pointed Riemannian manifold (x, M) if for every compact set K in M, there exists an integer k_{0} such that, for any $k>k_{0}$ there is a an open set U containing K in M, a diffeomorphism ϕ_{k} from U onto an open set in M_{k}, so that when k tends to infinity, we have that $\left\{\phi_{k}^{-1}\left(x_{k}\right)\right\}_{k \in \mathbb{N}}$ converges to x and the metric $\phi_{k}^{*} g_{k}$ converge C^{n} to g in U, where g_{k} and g are respectively the metrics on M_{k} and M.

Similarly, given a sequence $\left\{\left(x_{k}, N_{k}, M_{k}\right)\right\}_{k \in \mathbb{N}}$ such that N_{k} is a submanifold of M_{k} and $x_{k} \in N_{k}$, we say that $\left\{\left(x_{k}, N_{k}, M_{k}\right)\right\}_{k \in \mathbb{N}}$ converges C^{n} to (x, N, M) if for every compact set K there exists an integer k_{0} and an open set U containg K, such that for $k>k_{0}$, there is a diffeomorphism ϕ_{k} from the U to an open set U_{k} in M_{k} containing x_{k}, so that
(i) $\phi_{k}(N \cap U)=N_{k} \cap U_{k}$,
(ii) $\left\{\phi_{k}^{-1}\left(x_{k}\right)\right\}_{k \in \mathbb{N}}$ converges to x,
(iii) when k tends to infinity, the sequence $\left\{\phi_{k}^{*} g_{k}\right\}_{k \in \mathbb{N}}$ of metrics converge C^{n} to g in U.

We say an estimate only depends on the local geometry of a Riemannian manifold (M, x) if such an estimate holds uniformly for any sequence of pointed Riemaniann manifolds converging to (M, x).
A.1.2. The pseudo-Riemannian setting. The definitions in this setting require additional data.

Let M be a pseudo-Riemannian manifold of signature (p, q), and N a submanifold of non-degenerate signature (p^{\prime}, q^{\prime}).

Definition A.1. A normal framing of N is a smooth choice, for every x in N, of a positive definite $\left(p-p^{\prime}\right)$-plane of the normal space $\left(\mathrm{T}_{x} N\right)^{\perp}$. We will denote N^{o} the submanifold N together with a normal framing.

Remark that if N reduces to a point x, then a normal framing x^{0} is the choice of a positive definite p-plane of $\mathrm{T}_{x} M$.

We denote by $\mathcal{G}_{p}(M)$ the Grassmannian of positive definite p-dimensional subspaces of M. By definition, $\mathcal{G}_{p}(M)$ is a bundle over M whose fiber over x is the Grassmannian $\operatorname{Gr}_{p, 0}\left(\mathrm{~T}_{x} M\right)$ of positive definite p-planes in $\mathrm{T}_{x} M$ (thus the fiber is identified the symmetric space of $\mathrm{SO}(p, q))$. The tangent space of $\mathcal{G}_{p}(M)$ at (x, P) splits as

$$
\mathrm{T}_{(x, P)} \mathcal{G}_{p}(M)=\mathrm{T}_{x} M \oplus \operatorname{Hom}\left(P, P^{\perp}\right)=P \oplus P^{\perp} \oplus \operatorname{Hom}\left(P, P^{\perp}\right) .
$$

The Riemannian metric g on $\mathcal{G}_{p}(M)$ is given by

$$
g_{(x, P)}=g_{x \mid P} \oplus\left(-g_{x \mid P^{\perp}}\right) \oplus h_{P}
$$

where h_{P} is the Killing metric on the symmetric space $\mathrm{Gr}_{p, 0}\left(\mathrm{~T}_{x} M\right)$ evaluated at P and g the metric on M.

A normal framing of a submanifold N gives an embedding of $\mathcal{G}_{p^{\prime}}(N)$ into $\mathcal{G}_{p}(M)$ whose image we denote by $\mathcal{G}_{p^{\prime}}^{0}(N)$. Given a triple (x, N, M) where N is a submanifold of M with
non-degenerate induced metric and x belongs to N, we say that the normal framing (x^{0}, N^{0}, M) is compatible if the normal framing of x contains the normal framing of N at x.

We can thus define the notion of convergence of framed pseudo-Riemannian submanifolds by using the Riemannian metric on the Grassmannian bundle:

Definition A.2. We say that the sequence $\left\{\left(x_{k^{\prime}}^{o} N_{k^{\prime}}^{o} M_{k}\right)\right\}_{k \in \mathbb{N}}$, where x_{k}^{o} is a compatibly normally framed point of N_{k}, and N_{k}^{o} is a normally framed submanifold of (non-degenerate) signature (p^{\prime}, q^{\prime}) of the pseudo-Riemanniann manifold M_{k} of signature (p, q) converges C^{n}, if the corresponding sequence of pointed Riemannian submanifolds $\left\{x_{p}^{o}, \mathcal{G}_{p^{\prime}}^{o}\left(N_{k}\right), \mathcal{G}_{p^{\prime}}\left(M_{k}\right)\right\}_{k \in \mathbb{N}}$ converges C^{n}.

Note that this notion of convergence highly depends on the choice of normal framing. This choice of normal framing of N is either vacuous or natural in two important cases that are used in this paper: in the case that N is a spacelike surface in a pseudo-Riemannian manifolds of signature $(2, n)$, then the framing is trivial, and it is similarly trivial for spacelike curves equipped with a (spacelike) osculating plane. Accordingly we will not explicitly describe the normal framing in our definitions below that describe the convergence in these cases.

Recall that strongly positive curves in $\mathbf{H}^{2, n}$ is in particular 2-spacelike: that is the osculating plane $\mathrm{T}^{(2)} \gamma=\operatorname{span}\left\{\dot{\gamma}, \nabla_{\dot{\gamma}} \dot{\gamma}\right\}$ is spacelike everywhere.
Definition A. 3 (Spacelike surfaces and strongly positive curves). Let $\left\{M_{k}\right\}_{k \in \mathbb{N}}$ be a sequence of pseudo-Riemannian manifolds of signature $(2, n)$,
(i) Let N_{k} be spacelike surfaces in M_{k}. In that case, we say that

$$
\begin{gathered}
\left\{x_{k}, N_{k}, M_{k}\right\}_{k \in \mathbb{N}} \text { converges to }\left\{x_{\infty}, N_{\infty}, M_{\infty}\right\} \\
\text { if }\left\{\mathrm{T}_{x_{k}} N_{k}, \mathrm{~T} N_{k}, \mathcal{G}\left(M_{k}\right)\right\}_{p \in \mathbb{N}} \text { converges to }\left\{\mathrm{T}_{x_{\infty}} N_{\infty}, \mathrm{T} N_{\infty}, \mathcal{G}\left(M_{\infty}\right)\right\} .
\end{gathered}
$$

(ii) Let γ_{k} be a spacelike curve in M_{k} whose osculating plane $\mathrm{T}^{(2)} \gamma_{k}$ is spacelike everywhere. In that case again we say that

$$
\begin{gathered}
\left\{x_{k}, \gamma_{k}, M_{k}\right\}_{k \in \mathbb{N}} \text { converges to }\{x, \gamma, M\} \\
\text { if }\left\{\mathrm{T}_{x_{k}}^{(2)} \gamma_{k}, \mathrm{~T}^{(2)} \gamma_{k}, \mathcal{G}\left(M_{k}\right)\right\}_{k \in \mathbb{N}} \text { converges to }\left\{\mathrm{T}_{x}^{(2)} \gamma, \mathrm{T}^{(2)} \gamma, \mathcal{G}(M)\right\} .
\end{gathered}
$$

Observe that the limits are always spacelike. More precisely in the first item, since by definition $\mathrm{T}_{x_{\infty}} N_{\infty}$ is in $\mathcal{G}\left(M_{\infty}\right), \mathrm{T}_{x_{\infty}} N_{\infty}$ is spacelike. The same holds for the curves in the second item: by the same argument $\mathrm{T}_{x}^{2} \gamma$ is spacelike, hence $\mathrm{T} \gamma$ is spacelike.

As for the Riemannian setting, we can use this notion of convergence to define the notion of bounded geometry.
A.2. Bounded Geometry. A sequence of Riemaniann manifolds $\left\{M_{k}\right\}_{k \in \mathbb{N}}$ has C^{n} bounded geometry if for every sequence of points $\left\{x_{k}\right\}_{k \in \mathbb{N}}$ with $x_{k} \in M_{k}$, then every subsequence of $\left\{\left(M_{k}, x_{k}\right)\right\}_{k \in \mathbb{N}}$ subconverges C^{n} to a pointed Riemannian manifold.

A sequence $\left\{\left(N_{k}, M_{k}\right)\right\}_{k \in \mathbb{N}}$ where M_{k} is a Riemannian manifold and N_{k} a submanifold in M_{k} has C^{n} bounded geometry if for every sequence of points $\left\{x_{k}\right\}_{k \in \mathbb{N}}$ with $x_{k} \in N_{k}$, every subsequence of $\left\{\left(x_{k}, N_{k}, M_{k}\right)\right\}_{k \in \mathbb{N}}$ subconverges C^{n}.

In the pseudo-Riemannian setting, we say a sequence $\left\{M_{k}\right\}_{k \in \mathbb{N}}$ of pseudo-Riemannian manifolds has C^{n} bounded geometry if the sequence of Riemannian manifolds $\left\{\mathcal{G}_{p}\left(M_{k}\right)\right\}_{k \in \mathbb{N}}$ has bounded geometry.

For pseudo-Riemannian submanifolds, we use a normal framing: a sequence $\left\{\left(N_{k}^{o}, M_{k}\right)\right\}_{k \in \mathbb{N}}$ where N_{k} is a submanifold of M_{k} with normal framing $N_{k^{\prime}}^{o}$, has C^{n} bounded geometry if for any sequence $\left\{x_{k}^{o}\right\}_{k \in \mathbb{N}}$ where x_{k} is a point of N_{k} with compatible normal framing $x_{k^{\prime}}^{0}$ every subsequence of $\left\{x_{k^{\prime}}^{o}, N_{k^{\prime}}^{o}, M_{k}\right\}_{k \in \mathbb{N}}$ subconverges C^{n}.

Accordingly, using Definition A.3, we extend this definition to say that $\left\{\left(N_{k}, M_{k}\right)\right\}_{k \in \mathbb{N}}$ has bounded geometry when N_{k} is a spacelike surface, or a 2-spacelike curve, in a pseudoRiemaniann submanifold M_{k} of signature $(2, n)$.

The following is a direct consequence of the previous definitions:
Lemma A.4. For each k, consider N_{k}^{o} a normally framed submanifold of M_{k}, and let γ_{k}^{o} be a normally framed submanfiold of N_{k}. Then if $\left\{\gamma_{k}^{o}, N_{k}\right\}_{k \in \mathbb{N}}$ and $\left\{N_{k}^{o}, M_{k}\right\}_{k \in \mathbb{N}}$ have bounded geometry, then so does $\left\{\gamma_{k}^{o o}, M_{k}\right\}_{k \in \mathbb{N}}$, where $\gamma_{k}^{o o}$ is the submanifold γ_{k} of M_{k} equipped with the normal framing induced by γ_{k}^{o} and N_{k}^{o}.

Appendix B. A lemma in plane topology

Lemma B.1. Let D_{1} and D_{0} be two smoothly embedded closed disks in the plane so that D_{1} is embedded in the interior of D_{0}. Let x_{1} be a point in D_{1}. Let $\gamma:[0,1] \rightarrow D_{0}$ be an arc smoothly embedded in D_{0} with $\gamma\{0,1\} \in \partial D_{0}$ and γ transverse to ∂D_{1}. Then there exists a disk U embedded in the interior of D_{0}, so that ,
(i) U contains the connected component of x_{1} in $D_{1} \backslash \gamma$,
(ii) $\partial U=\gamma_{1} \cup \eta$, where γ_{1} is a connected sub arc of γ, and η a connected sub arc of ∂D_{1}

The smoothness and transversality hypothesis are quite possibly not necessary but are enough for our purpose and simplify the argument.

Figure 3. Lemma B. 1

Proof. Let U_{1} be the connected component of x_{1} in $D_{1} \backslash \gamma$. If $U_{1}=D_{1}$ then we take $U=U_{1}$ and the proof is over. Otherwise, let

$$
t_{0}:=\inf \left\{t \mid \gamma(t) \in \bar{U}_{1}\right\}
$$

Let $y_{0}:=\gamma\left(t_{0}\right)$, then $D_{0} \backslash\left(\partial D_{1} \cup \gamma\right)$ intersect a small enough disk, which is neighbourhood of y_{0} in four connected components. Only one of these connected components, say V_{0}, is included in U_{1}. Let η be the connected component of $\partial D_{1} \backslash \gamma$ so that a subarc of η lies in the boundary of V_{1}. Let $y_{1}=\gamma\left(s_{0}\right)$ be the other extremity of η.

By construction $\gamma\left[t_{0}, s_{0}\right] \cup \eta$ is an embedded arc, bounding a embedded disk U_{2}. Since $V_{0} \cap U_{2}$ is non-empty by construction, it follows that $U_{1} \subset U_{2}$. We can therefore take $U=U_{2}$, and this concludes the proof.

Appendix C. Holomorphic curves and Gromov's Schwarz lemma

We recall the basis of the theory of holomorphic curves and some results from [26] for the convergence portion and [32] for the part concerning the area. We give an improvement of these results as well as considerations of when a limit of immersions is an immersion.
C.1. Preliminaries. Recall that an almost-complex structure on a even dimensional manifold M is a section J of the bundle of endomorphisms of $T M$ such that $J^{2}=-\mathrm{Id}$. When the real dimension of M is equal to 2, an almost complex structure is always integrable (that is, comes from an holomorphic atlas), and we call such a manifold M a Riemann surface.
Definition C.1. Given an almost complex manifold (M, J), a holomorphic curve is a smooth $\operatorname{map} f:(X, j) \rightarrow(M, J)$ where (X, j) is a Riemann surface, and satisfying $T f \circ j=J \circ \mathrm{~T} f$.

In this paper, we will be mostly interested in the case where $X=\mathbf{D}$ defined by

$$
\mathbf{D}=\{z \in \mathbb{C},|z|<1\} .
$$

The frontier of \mathbf{D} is

$$
\operatorname{Fr}(\mathbf{D})=\overline{\mathbf{D}} \backslash \mathbf{D}=\{z \in \mathbb{C},|z|=1\}
$$

Definition C.2. A totally real submanifold of an almost-complex manifold (M, J) (possibly with boundary) is a submanifold $W \subset M$ of half the dimension and such that for any x in W, we have $\mathrm{T}_{x} M=\mathrm{T}_{x} W \oplus J\left(\mathrm{~T}_{x} W\right)$.

Our main focus is the semi-disk \mathbf{S} defined by

$$
\mathbf{S}=\{z \in \mathbf{D}, \mathfrak{R}(z) \geqslant 0\}
$$

We denote by

$$
\begin{gathered}
\partial \mathbf{S}=\mathbf{S} \backslash \operatorname{int}(\mathbf{S})=\{z \in \mathbf{D}, \mathfrak{R}(z)=0\} \\
\operatorname{Fr}(\mathbf{S})=\overline{\mathbf{S}} \backslash \mathbf{S}=\{z \in \operatorname{Fr}(\mathbf{D}), \mathfrak{R}(z) \geqslant 0\}
\end{gathered}
$$

In this case, $\partial \mathbf{S}$ is a totally real submanifold of \mathbf{S}.
Definition C.3. A holomorphic curve with boundary in an almost complex manifold M with totally real submanifold W is a holomorphic curve f from \mathbf{S} to M mapping $\partial \mathbf{S}$ to W.
Definition C.4. Let (M, J) be a almost complex manifold equipped with a Riemannian metric \langle.$| .〉. An open set U$ in M is K-calibrated if there exists a 1 -form β so that

$$
\begin{equation*}
\forall u \in \mathrm{~T} U, \quad \beta(u)^{2} \leqslant K^{2} \cdot\langle u \mid u\rangle, \quad\langle u \mid u\rangle \leqslant K \cdot \mathrm{~d} \beta(u, J u) \tag{36}
\end{equation*}
$$

If W is a totally real, totally geodesic submanifold, we furthermore assume that β vanishes along $W \cap U$.

Then we have the following lemma
Lemma C. 5 (Local calibration). There exists positive constants ε and K, only depending on the geometry of (M, x) so that the ball B of radius ε in M of center x is K-calibrated.

We sketch a proof since the extension incorporating the totally real submanifold W is not in the original paper [40].
Proof. Let exp : $\mathrm{T}_{x} M \rightarrow M$ be the exponential map. Observe that $\mathrm{T}_{0} \exp$ is holomorphic. We choose $\beta=\exp _{*} \lambda$, where $\lambda \in \Omega^{1}\left(\mathrm{~T}_{x} M\right)$ is defined by $\lambda_{u}(v)=\langle u \mid J v\rangle$. Since the preimage by \exp of W is $\mathrm{T}_{x} W$ since W is totally geodesic, and $\mathrm{T}_{x} W$ is a totally real submanifold (actually linear) of $\mathrm{T}_{x} M$ since W is, it follows that λ vanishes on $\mathrm{T}_{x} W$ and thus β vanishes on W. The result follows.

Remark C.6. The notion of holomorphic curve can be extended to the following case. The (not necessarily even-dimensional) manifold M carries a distribution $\mathcal{D} \subset$ TM equipped with an almost complex structure $J: \mathcal{D} \rightarrow \mathcal{D}$. We then ask that a holomorphic curve is a map f such that $\mathrm{T} f$ takes values in \mathcal{D} and intertwines the almost complex structures.

In this framework, a totally real submanifold is a submanifold W of M of half the dimension of the distribution \mathcal{D} and such that for any x in W we have $\mathcal{D}_{x}=\mathrm{T}_{x} W \oplus J\left(\mathrm{~T}_{x} W\right)$.

All of the results described in the sequel canonically extend to this case.
C.2. Schwarz lemmas and convergence of holomorphic curves. In this subsection, we state and sketch the proofs of two of our main goals for this appendix. After a few definitions, we state the results, then collect some preliminaries before concluding with a description of the arguments.

To begin, let f be a map from \mathbf{D} or \mathbf{S} to M. If Z is a subset of $\operatorname{Fr}(\mathbf{D})$ or respectively $\operatorname{Fr}(\mathbf{S})$, we denote by $f(Z)$ the accumulation set of sequences $\left\{f\left(y_{k}\right)\right\}_{k \in \mathbb{N}}$ where $\left\{y_{k}\right\}_{k \in \mathbb{N}}$ is a sequence converging to a point in Z.

Let $\left\{M_{k}\right\}_{k \in \mathbb{N}}$ be a sequence of complete almost complex Riemannian manifolds with bounded geometry, let $\left\{x_{k}\right\}_{k \in \mathbb{N}}$ be a sequence of points. We assume that $x_{k} \in M_{k}$ and that $\left\{\left(x_{k}, M_{k}\right)\right\}_{k \in \mathbb{N}}$ converges $C^{p, \alpha}$ as almost complex Riemannian manifolds.
Theorem C. 7 (Free boundary). Let $\left\{U_{k}\right\}_{k \in \mathbb{N}}$ be a sequence, where U_{k} is an open set in M_{k}, uniformly calibrated and with bounded geometry. Let $\left\{f_{k}\right\}_{k \in \mathbb{N}}$ be a sequence of holomorphic maps from \mathbf{D} with values in U_{k}. Then $\left\{f_{k}\right\}_{k \in \mathbb{N}}$ subconverges $C^{p, \alpha}$ on every compact set to f_{0}. Assume furthermore that

$$
\begin{equation*}
\sup \left\{\operatorname{area}\left(f_{k}(\mathbf{D})\right), k \in \mathbb{N}\right\}<\infty . \tag{37}
\end{equation*}
$$

Then for every non-empty open subset Z of $\operatorname{Fr}(\mathbf{D})$,

$$
f_{0}(Z) \subset \lim _{k \rightarrow \infty} f_{k}(Z) .
$$

Assume now that W_{k} is a totally real submanifold and totally geodesic submanifold of M_{k} containing x_{k} and that $\left\{\left(x_{k}, W_{k}, M_{k}\right)\right\}_{k \in \mathbb{N}}$ converges $C^{p, \alpha}$ to $\left\{\left(x_{0}, W_{0}, M_{0}\right)\right\}$, with W_{0} totally real. In the boundary case, the following is an extension of [33].

Theorem C. 8 (Boundary). Let $\left\{U_{k}\right\}_{k \in \mathbb{N}}$ be a sequence of open sets in M_{k}, uniformly calibrated and with bounded geometry. Let $\left\{f_{k}\right\}_{k \in \mathbb{N}}$ be a sequence of holomorphic maps from \mathbf{S} with values in U_{k}. Then $\left\{f_{k}\right\}_{k \in \mathbb{N}}$ subconverges $C^{p, \alpha}$ on every compact set to f_{0}. Assume furthermore that

$$
\begin{equation*}
\sup \left\{\operatorname{area}\left(f_{k}(\mathbf{S})\right), k \in \mathbb{N}\right\}<\infty . \tag{38}
\end{equation*}
$$

Then for every non-empty open subset Z of $\operatorname{Fr}(\mathbf{S})$, we have

$$
f_{0}(Z) \subset \lim _{k \rightarrow \infty} f_{p}(Z) .
$$

Both these theorems represent an improvement over the corresponding earlier results which only considered the case $Z=\operatorname{Fr}(\mathbf{D})$ or $Z=\partial \mathbf{S}$.
C.2.1. Quadrangles and extremal length. We prepare for the proof by recalling a classical construction.

A quadrangle $Q:=\left(U, x_{1}, x_{2}, x_{2}, x_{3}\right)$ in \mathbb{C} equipped with the complex structure J is a topological disk U with four marked points $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ in cyclic order in ∂U. The a rectangle is the rectangle $R_{a}:=(R, a, a+i, i, 0)$ of vertices $(0, a, a+i, i)$. Two quadrangles ($U, x_{1}, x_{2}, x_{2}, x_{3}$) and ($V, y_{1}, y_{2}, y_{2}, y_{3}$) are conformally equivalent if we can find a conformal
mapping Φ sending \bar{U} to \bar{V} so that $\phi\left(x_{i}\right)=y_{i}$. Every quadrangle is conformally equivalent to a unique a-rectangle.

Let Q be a quadrangle and Γ_{Q} be the set of arcs in \bar{U} joining a point in the interval between x_{1} to x_{2} on $\operatorname{Fr}(U)$ to a point in the interval between x_{3} to x_{4} on $\operatorname{Fr}(U)$. The extremal length of Q is $\mathcal{L}(Q)$ where for a metric g

$$
\begin{align*}
\mathcal{L}_{g}(Q) & =\frac{\inf \left\{\operatorname{length}_{g}^{2}(\gamma) \mid \gamma \in \Gamma_{Q}\right\}}{\operatorname{area}_{g}(Q)} \tag{39}\\
\mathcal{L}(Q) & =\sup \left\{\mathcal{L}_{g}(Q) \mid g \text { conformal to } J\right\} \tag{40}
\end{align*}
$$

where length ${ }_{g}$ and area $_{g}$ denotes respectively the length and area with respect to g. By $^{\text {. }}$ construction $\mathcal{L}(Q)$ is a conformal invariant. A classical result asserts
Proposition C.9. We have $\mathcal{L}\left(R_{a}\right)=a$.
Let Z_{0} be the standard quarter in S^{1}, that is the subarc of S_{1} between 1 and i. Let Q_{0} be the standard sector

$$
Q_{0}:=\{z \in \mathbf{D}|\mathfrak{R}(z) \geqslant 0, \mathfrak{J}(z) \geqslant 0,|z|<1\}
$$

so that $\operatorname{Fr}\left(Q_{0}\right)=Z_{0}$.
Let $\ell(R)$ be the Euclidean distance from 0 to a point x in \mathbf{D} at hyperbolic distance R from 0 . (Of course, it is classical that $\ell(R)=\tanh (R)$, but the precise formula is not important for our discussion.) We define the R-corner quadrangle to be the quadrangle $Q_{R}=(U, i \ell(R), \ell(R), 1, i)$ where $U=\{z \in \mathbb{C}|\ell(R)<|z|<1, \mathfrak{R}(z)>0, \mathfrak{J}(z)>0\}$.

One then checks, for example by applying the conformal map $z \mapsto \log z$ to the domain Q_{R}, that
Proposition C.10. The map $K: R \rightarrow \mathcal{L}\left(Q_{R}\right)$, is a decreasing homeomorphism from $(0, \infty)$ to $(0, \infty)$.
The following lemma is a consequence of the previous discussion and is used in the sequel.
Lemma C.11. For any positive A and ε, there exists a positive constant ρ, with the following property. Assume f is a holomorphic map from Q_{0} to an almost complex manifold M. Assume that area $\left(f\left(Q_{0}\right)\right) \leqslant A$ and $\|T f\|$ is bounded by $\frac{\varepsilon}{\rho}$ on the ball of radius ρ (in Q_{0}) (with respect to the hyperbolic metric on $\mathbf{D})$. Then $d\left(f(0), f\left(Z_{0}\right)\right) \leqslant 2 \varepsilon$.
Proof. We choose ρ so that $A \cdot \mathcal{L}\left(Q_{\rho}\right) \leqslant \varepsilon^{2}$. Let g be the induced metric by f from M. Observe that for any curve γ in $\Gamma_{Q_{\rho}}$,

$$
\begin{aligned}
\text { length }_{g}(\gamma) & \geqslant d\left(f \left(\gamma(0), f(\gamma(1)) \geqslant d\left(f(0), f\left(Z_{0}\right)\right)-d(f(0), f(\gamma(0))\right.\right. \\
& \geqslant d\left(f(0), f\left(Z_{0}\right)\right)-\varepsilon
\end{aligned}
$$

where the last inequality uses the fact that $\|\mathrm{T} f\|$ is bounded by $\frac{\varepsilon}{\rho}$ on $B(0, \rho)$. Thus

$$
\varepsilon^{2} \geqslant \mathcal{L}\left(Q_{\rho}\right) \cdot \operatorname{area}_{g}\left(Q_{\rho}\right) \geqslant\left(d\left(f(0), f\left(Z_{0}\right)\right)-\varepsilon\right)^{2}
$$

The result follows.
C.2.2. Sketch of the proof of the first part of Theorem C.7. Without the hypothesis on the area, the subconvergence is consequence of the celebrated Gromov's Schwarz Lemma [26, 40] which states that the derivatives of f_{k} are uniformly bounded. We sketch the argument, since we are going to sketch a modification of it. We need three preliminary lemmas. In the first two, M is a manifold equipped with an almost complex structure J and a compatible metric \langle.$| . \rangle$ (that is a metric for which J is an isometry). First we have (see [40])

Lemma C. 12 (Weingarten lemma). Let Σ be a holomorphic curve in M, and let $x \in \Sigma$. Then there is a bound K only depending on the geometry of (M, x) so that the curvature of Σ at x is less than K.

Our second lemma from [40] is
Lemma C. 13 (Gromov's Schwarz lemma). Let g be a conformal metric on the disk. Let g_{0} be the hyperbolic metric and h the conformal factor so that $g=h g_{0}$ Assume that the curvature of g is bounded from above by K, and that g satisfies a linear isoperimetric inequality, that is for any disk A embedded in \mathbf{D}, we have

$$
\begin{equation*}
\operatorname{area}_{g}(A) \leqslant \mathrm{Klength}_{g}(\operatorname{Fr}(A)) . \tag{41}
\end{equation*}
$$

Then there exists a bound K_{0} only depending on K so that $h \leqslant K_{0}$.
Combining these two lemmas gives the celebrated
Lemma C. 14 (Gromov's Holomorphic Schwarz lemma). Let K_{1} be a positive constant. There exists a positive constant K_{0}, only depending on the local geometry of (M, x) and K_{1} so that if φ is a holomorphic map from the hyperbolic disk \mathbf{D} to a K_{1}-calibrated open set with bounded curvature then

$$
\|T \varphi\| \leqslant K_{0} .
$$

Proof. By replacing φ by the graph map $\varphi^{\prime}=(\varphi, \mathrm{Id}): \mathbf{D} \rightarrow M \times \mathbf{D}$ we may assume that φ is an immersion.

We consider the induced metric g by φ. By the Weingarten Lemma C. 12 the curvature of g is bounded from above. From the definition of calibration, the metric g satisfies a linear isoperimetric inequality:

$$
\operatorname{area}(A) \leqslant K_{1} \int_{A} \mathrm{~d} \beta=K_{1} \int_{\partial A} \beta \leqslant K_{1}^{2} \text { length }(\operatorname{Fr}(A)) .
$$

Thus the result follows by Gromov's Schwarz lemma C.13.
The strengthening of the first conclusion of Theorem C. 7 with the hypothesis on the area is an extension of [32, Lemme 6.8]. This will be proved in the last paragraph of this section.
C.2.3. Sketch of the proof of the first part of Theorem C.8. We proceed as in [33, Lemme 9.1]. We have

Proposition C.15. Let φ be a holomorphic immersion from \mathbf{S} to a Riemannian almost complex manifold M equipped with a compatible metric, so that $f(\partial \mathbf{S})$ lies in a totally real totally geodesic submanifold W. Then $\partial \mathbf{S}$ is totally geodesic for the metric induced by φ.

Proof. Let J be the complex structure of M and $\langle. \mid$.$\rangle the compatible metric. Let \gamma$ be an arc length parametrisation of $f(\partial \mathbf{S})$. The geodesic curvature of γ is $\left\langle\nabla_{\dot{\gamma}} \dot{\gamma} \mid j \dot{\gamma}\right\rangle$. Since $\gamma=f(\partial \mathbf{S})$ is embedded in a totally geodesic submanifold $W, \nabla \dot{\gamma} \dot{\gamma}$ and $\dot{\gamma}$ lie in TW. Since W is totally real, for all u and v in TW, we have $\langle u \mid J v\rangle=0$, and the result now follows.

Combining this lemma with the previous arguments, we obtain
Lemma C. 16 (Holomorphic Schwarz lemma with boundary). There exists positive constants ε and K_{0}, only depending on the geometry of (M, x) so that if φ is a holomorphic map from the semi-disk \mathbf{S} into the ball of radius ε centred at x, then

$$
\|T \varphi\| \leqslant K_{0} .
$$

Proof. After replacing φ by the graph $\operatorname{map} \varphi^{\prime}=(\varphi, \mathrm{Id})$ from \mathbf{S} to $M \times \mathbf{D}$ and W by $W^{\prime}=W \times \partial \mathbf{S}$, we may assume that φ is an immersion.

Let g_{0} be the hyperbolic metric on \mathbf{S} and $g=h g_{0}$ the metric induced by φ. By the Weingarten Lemma, the curvature of g is bounded from above. Since $\partial \mathbf{S}$ is totally geodesic for g, we can double g to obtain a C^{0} metric g_{2} on \mathbf{D}. By the doubling argument and since $\partial \mathbf{S}$ is totally geodesic, the curvature of g_{2} is also bounded from below.

To conclude the proof using Gromov's Schwarz Lemma one needs to show that g_{2} satisfies a linear isoperimetric inequality. Let us use the form β obtained from the Local Calibration Lemma C.5. Let A be a disk in \mathbf{D}, write $A=A_{0} \cup A_{1}$, where $A_{1}=A \cap \mathbf{S}$. Then by the Stokes formula

$$
\operatorname{area}\left(A_{1}\right) \leqslant K \int_{A_{1}} \mathrm{~d} \beta=K \int_{\operatorname{Fr}\left(A_{1}\right)} \beta=K \int_{\operatorname{Fr}(A) \cap \overline{A_{1}}} \beta \leqslant K^{2} \text { length }(\operatorname{Fr}(A)),
$$

where the first equality follows from the fact that $\beta=0$ on W, hence on $\partial \mathbf{S}$. Repeating the argument for A_{0} leads the desired linear isoperimetric inequality for g_{2}.
C.2.4. Improving regularity. Gromov's Schwarz Lemma gives uniform C^{1}-bounds on the sequence $\left\{f_{k}\right\}_{k \in \mathbb{N}}$. We need to improve this and proves the $C^{p, \alpha}$ convergence to obtain the first part of Theorems C. 7 and Theorem C.8.

This is done in two steps. As a preliminary, we choose $C^{p, \alpha}$ local coordinates on M_{k} so that M_{k} is identified with \mathbb{C}^{n} and W_{k} with \mathbb{R}^{n}. Thanks to our C^{1} bounds, we reduce to the case (by possibly shrinking the source) to bounded maps f_{k} with values in \mathbb{C}^{n}. The holomorphic curve condition then reduces to the equation

$$
\begin{equation*}
\partial_{y} f_{k}=J_{k}\left(f_{k}\right) \partial_{x} f_{k} \tag{42}
\end{equation*}
$$

where x and y are the coordinates on \mathbf{D} or \mathbf{S} and $\left\{J_{k}\right\}_{k \in \mathbb{N}}$ converges in $C^{p-1, \alpha}$. When present, the boundary condition is

$$
f_{k}(\partial S) \subset \mathbb{R}^{n}
$$

The two steps of our regularity improvement are as follows.
Uniform C^{2}-bounds: we consider the 1-jet map $g_{k}=\left(f_{k}, \partial_{y} f_{k}\right)$ with values in $\mathbb{C}^{2 n}$ satisfying the boundary condition

$$
g_{k}(\partial S) \subset \mathbb{R}^{2 n}
$$

A derivation of (42) gives that g_{k} is holomorphic for a certain complex structure J_{k}^{\prime} on $\mathbb{C}^{2 n}$. Indeed, erasing for a moment the index k to have readable formulas, we claim:

$$
\partial_{y} g=J^{\prime}(g) \partial_{x} g,
$$

where for (s, t) in $\mathbb{C}^{n} \times \mathbb{C}^{n}$,

$$
J^{\prime}(s, t)(u, v)=(J(s) u, J(s) v+A(s, t)(u)),
$$

where $A(s, t):=\left(\mathrm{D}_{s} J\right)(t)$ is the derivative of J at s in the direction of t. Since $A(s, t)$ anticommutes with $J(s)$, we see that

$$
J^{\prime 2}(u, v)=(-u,-v+J A(u)+A J(u))=-(u, v) .
$$

Gromov's holomorphic Schwarz Lemma then gives a uniform C^{1}-bound on g_{k}, hence the desired C^{2}-bound on f_{k}.
$C^{p, \alpha}$-convergence: Now that we have C^{2} bounds we can return to the equation (42) with the information that f_{k} is in C^{2} and in particular in $C^{1, \alpha}$, knowing that J_{k} converges in $C^{p-1, \alpha}$.

The proposition is then

Proposition C.17. Assume that u is in $C^{1, \alpha}$ and satisfies the equation

$$
\begin{equation*}
\partial_{y} u=J(u) \partial_{x} u, \tag{43}
\end{equation*}
$$

with possibly the boundary condition $u(\partial \mathbf{S}) \subset \mathbb{R}^{\mathbf{n}}$, where J is in $C^{1, \alpha}$. Then u is in $C^{2, \alpha}$. More precisely, for every positive constant A, there exist positive constants C and ε so that if the $C^{1, \alpha}$ norm of u is less than A, then the $C^{2, \alpha}$ norm of u is less than C on a ball of radius ε.

Proof. We reproduce and adapt the proof of Theorem A.2.1 in [1] in two ways, first by using $C^{1, \alpha}$ bounds rather than $W^{k, p}$ Sobolev norms, and second in assuming lower regularity of J.

In this proof, the quantities C_{i} will be positive constants. We may as well assume that $u(0)=0$ and $J(0)=i$ and restate equation (43) as

$$
\begin{equation*}
2 i \bar{\partial} u=-i(i-J(u)) \partial_{x} u \tag{44}
\end{equation*}
$$

We use the difference quotient technique and introduce for small h

$$
\begin{equation*}
u^{h}(x, y):=\frac{1}{h}(u(x, y+h)-u(x, y))=\int_{0}^{1} \partial_{y} u(x, y+t h) \mathrm{d} t \tag{45}
\end{equation*}
$$

Moreover

$$
\begin{align*}
0 & =\partial_{y} u^{h}-\left(J(u) \partial_{x} u\right)^{h} \\
& =\partial_{y} u^{h}-J(u) \partial_{x} u^{h}-J(u)^{h} \partial_{x} u(x, y+h) \\
& =2 i \bar{\partial} u^{h}+i(J(u)-i) \partial_{y} u^{h}-J(u)^{h} \partial_{x} u(x, y+h) . \tag{46}
\end{align*}
$$

Let also β be a bell function in \mathbb{R} with $\beta[0,1 / 2]=1, \beta\left[1,+\infty\left[=0, \beta^{\prime}(s) \leqslant 0\right.\right.$. We define

$$
\beta_{\varepsilon}(x, y)=\beta\left(\frac{x^{2}+y^{2}}{\varepsilon}\right)
$$

We now obtain, from (46) and the Leibniz rule $\beta_{\varepsilon} \partial_{y}\left(u^{h}\right)=\partial_{y}\left(\beta_{\varepsilon} u^{h}\right)-\partial_{y}\left(\beta_{\varepsilon}\right) u^{h}$,

$$
\begin{align*}
2 i \bar{\partial}\left(\beta_{\varepsilon} u^{h}\right) & =-i(J(u)-i) \partial_{y}\left(\beta_{\varepsilon} u^{h}\right)+i(J(u)-i)\left(\partial_{y} \beta_{\varepsilon}\right) u^{h} \\
& \left.+\beta_{\varepsilon} J(u)^{h} \partial_{y} u(x, y+h)+\left(\bar{\partial} \beta_{\varepsilon}\right) u^{h}\right) . \tag{47}
\end{align*}
$$

Let us denote by $\|v\|_{p, \alpha, \varepsilon}$ the $C^{p, \alpha}$ norm on the ball of radius ε while using the shorthand $\|v\|_{p, \alpha}=\|v\|_{p, \alpha, 1}$.

Let us makes a series of estimates
(i) In the equation above, let us consider the term

$$
B=2 i\left(\bar{\partial} \beta_{\varepsilon}\right) u^{h}+i(J(u)-i)\left(\partial_{y} \beta_{\varepsilon}\right) u^{h} .
$$

We have a constant C_{ε} depending only on ε and β, so that

$$
\begin{equation*}
\|B\|_{0, \alpha} \leqslant C_{\varepsilon}\left\|u^{h}\right\|_{0, \alpha, \varepsilon} \tag{48}
\end{equation*}
$$

(ii) Restricting ε so that $\varepsilon+h<1$, we have

$$
\begin{equation*}
\left\|(i-J(u))\left(\partial_{y} \beta_{\varepsilon} u^{h}\right)\right\|_{0, \alpha, \varepsilon} \leqslant C_{3}\|u\|_{0, \alpha, \varepsilon} \cdot\left\|\beta_{\varepsilon} u^{h}\right\|_{1, \alpha} . \tag{49}
\end{equation*}
$$

(iii) Since J is in $C^{1, \alpha}$ and in particular uniformly Lipschitz, we have a uniform constant C_{0} so that

$$
\left|J(u)^{h}\right| \leqslant C_{0}\left|u^{h}\right|
$$

Thus

$$
\begin{equation*}
\left\|\beta_{\varepsilon} J(u)^{h} \partial_{y} u(x+h, y)\right\|_{0, \alpha, \varepsilon} \leqslant C_{1}\|u\|_{1, \alpha, \varepsilon} \cdot\left\|u^{h}\right\|_{0, \alpha, \varepsilon} \tag{50}
\end{equation*}
$$

Combining the estimates (48), (49) and (50) with our original equation (47), we obtain that

$$
\begin{align*}
\left\|\bar{\partial}\left(\beta_{\varepsilon} u^{h}\right)\right\|_{0, \alpha, \varepsilon} \leqslant & C_{\varepsilon}\left\|u^{h}\right\|_{0, \alpha}+C_{1}\|u\|_{1, \alpha, \varepsilon}\left\|u^{h}\right\|_{0, \alpha, \varepsilon} \\
& +C_{3}\|u\|_{0, \alpha, \varepsilon} \cdot\left\|u^{h}\right\|_{1, \alpha}+C_{1}\|u\|_{1, \alpha, \varepsilon} \cdot\left\|\beta_{\varepsilon} u^{h}\right\|_{0, \alpha} . \tag{51}
\end{align*}
$$

Recall also that from the Cauchy-Pompeiu formula (see [4, Theorem 4.7.1] for a model) we have the estimates

$$
\left\|\beta_{\varepsilon} u^{h}\right\|_{1, \alpha} \leqslant C_{4}\left\|\vec{\partial}\left(\beta_{\varepsilon} u^{h}\right)\right\|_{0, \alpha} .
$$

We now fix ε, so that $C_{3} C_{4}\|u\|_{0, \alpha, \varepsilon} \leqslant \frac{1}{2}$. Then for some constant $D=D_{\varepsilon}$ depending on u and independent of h, we find

$$
\frac{1}{2}\left\|u^{h}\right\|_{1, \alpha, \frac{\varepsilon}{2}} \leqslant \frac{1}{2}\left\|\beta_{\varepsilon} u^{h}\right\|_{1, \alpha} \leqslant \quad D\left\|u^{h}\right\|_{0, \alpha} .
$$

Observe that the same methods also yield that for all $\eta<\alpha$ we have

$$
\frac{1}{2}\left\|u^{h}\right\|_{1, \eta, \frac{\varepsilon}{2}} \leqslant D\left\|u^{h}\right\|_{0, \eta} .
$$

Let us write $\psi^{h}:=u^{h}-\partial_{y} u$ and $M=\|u\|_{1, \alpha}$. Using the integral form for u^{h} in equation (45), we observe that ψ^{h} satisfies $\left\|\psi^{h}\right\|_{0, \alpha} \leqslant 2 M$ and $\left|\psi^{h}(x)\right| \leqslant 2 M h^{\alpha}$.

This implies that for all $\eta<\alpha$, we have

$$
\left|\psi^{h}(z)-\psi^{h}(w)\right| \leqslant 2 M \cdot \min \left\{h^{\alpha},|z-w|^{\alpha}\right\} \leqslant 4 M \cdot h^{\alpha-\eta}|z-w|^{\eta} .
$$

Thus $\left\|\psi^{h}\right\|_{0, \eta} \leqslant 4 M h^{\alpha-\eta}$. Thus u^{h} converges to $\partial_{y} u$ in $C^{0, \eta}$ for all $\eta<\alpha$, and then

$$
\frac{1}{2}\left\|\partial_{y} u\right\|_{1, \eta, \frac{\varepsilon}{2}} \leqslant D\left\|\partial_{y} u\right\|_{0, \eta} .
$$

Then taking the limit when η goes to α, and using that $\partial_{y} u \in C^{0, \alpha}$, we find

$$
\frac{1}{2}\left\|\partial_{y} u\right\|_{1, \alpha, \frac{\varepsilon}{2}} \leqslant D\left\|\partial_{y} u\right\|_{0, \alpha} .
$$

Thus u is in $C^{2, \alpha}$ in the ball of radius $\varepsilon / 2$.
Bootstrap and regularity: We can now conclude the argument by showing that if $\left\{u_{k}\right\}_{k \in \mathbb{N}}$ is a sequence of solutions in $C^{p+1, \alpha}$ satisfying

$$
\partial_{y} u_{k}=J_{k}\left(u_{k}\right) \partial_{x}\left(u_{k}\right),
$$

where

- $\left\{J_{k}\right\}_{k \in \mathbb{N}}$ converges in $C^{p, \alpha}$ to J_{0} for which \mathbb{R}^{n} is totally real,
- $\left\{u_{k}\right\}_{k \in \mathbb{N}}$ has uniform C^{1}-bounds and converges C^{0} to u_{0}, then $\left\{u_{k}\right\}_{k \in \mathbb{N}}$ converges in $C^{p+1, \alpha}$.

This is obtained via the bootstrap described in the first step, or equivalently as in [1, Theorem A.2.1] which immediately leads, using proposition C. 17 to
Proposition C.18. Assume that u is in $C^{k, \alpha}$ satisfies the equation (42)

$$
\partial_{y} u=J(u) \partial_{x} u,
$$

with possibly the boundary condition $u(\partial \mathbf{S}) \subset \mathbb{R}^{\mathrm{n}}$, where J is in $C^{p, \alpha}$, then u is in $C^{p+1, \alpha}$. More precisely, for every positive constant A, there exist positive constants C and ε so that if the $C^{p, \alpha}$ norm of u is less than A, then the $C^{k+1, \alpha}$ norm of u is less than C on a ball of radius ε.
C.2.5. Using the hypothesis on the area. We now show the second part of Theorem C. 7 and Theorem C.8.

Proof. Using the Schwarz Lemma, we can extract in both cases a subsequence so that $\left\{f_{k}\right\}_{k \in \mathbb{N}}$ subconverges to f_{0}.

Observe that we have a constant A so that for all subsets U of \mathbf{D}, or \mathbf{S}, then

$$
\begin{equation*}
\operatorname{area}\left(f_{0}(U)\right) \leqslant A \tag{52}
\end{equation*}
$$

Let $\left\{y_{k}\right\}_{k \in \mathbb{N}}$ be a sequence in \mathbf{D} or \mathbf{S} converging to a point y_{0} in an interval Z in $\operatorname{Fr}(\mathbf{D})$.
We want to show that there exists a sequence $\left\{f_{n_{k}}\right\}_{k \in \mathbb{N}}$ for which we have

$$
\lim _{k \rightarrow \infty}\left(d\left(f_{0}\left(y_{k}\right), f_{n_{k}}(Z)\right)=0\right.
$$

From the bound on the area of $f_{0}(\mathbf{D})$, we have that for all R

$$
\lim _{k \rightarrow \infty}\left(\operatorname{area}\left(f_{0}\left(B\left(y_{k}, R\right)\right)\right)=0\right.
$$

where $B\left(y_{k}, R\right)$ is the ball of radius R in the hyperbolic metric.
Using the fact that $\left\{f_{k}\right\}_{k \in \mathbb{N}}$ converges on every compact to f_{0}, we can choose a subsequence $\left\{f_{n_{k}}\right\}_{k \in \mathbb{N}}$, so that

$$
\begin{align*}
\operatorname{area}\left(f_{n_{k}}\left(B\left(y_{k}, 1\right)\right)\right. & \leqslant \frac{1}{k} \\
d\left(f_{0}\left(y_{k}\right), f_{n_{k}}\left(y_{k}\right)\right) & \leqslant \frac{1}{k} . \tag{53}
\end{align*}
$$

Let u_{k} be a conformal mapping of \mathbf{D} that sends 0 to y_{k}.
Since $\left\{y_{k}\right\}_{k \in \mathbb{N}}$ converges to an interior point of Z, th sequence $\left\{u_{k}^{-1}(Z)\right\}_{k \in \mathbb{N}}$ converges to the full boundary of \mathbf{D}. We can thus choose for each k, a subinterval Z_{k} in Z so that the preimage of Z_{k} by u_{k} is a quarter of circle Z_{0}.

After precomposing u_{k} with a rotation, we may furthermore assume that the preimage of Z_{k} is the standard quarter of circle.

Let then Q_{0} (as defined in the beginning of paragraph C.2.1) be the standard sector. We furthermore choose Z_{k} so that Q_{0} is a subset of $u_{k}^{-1}(\mathbf{S})$ in the boundary case.

To conclude the theorem it will be enough to prove

$$
\begin{equation*}
\lim _{k \rightarrow \infty} d\left(f_{n_{k}}\left(y_{k}\right), f_{n_{k}}\left(Z_{k}\right)\right)=0 \tag{54}
\end{equation*}
$$

Let then $g_{k}=f_{n_{k}} \circ u_{k}$. Assertion (54) is now restated as

$$
\begin{equation*}
\lim _{k \rightarrow \infty} d\left(g_{k}(0), g_{k}\left(\mathrm{Z}_{0}\right)\right)=0 \tag{55}
\end{equation*}
$$

Applying Schwarz Lemma again, $\left\{g_{k}\right\}_{k \in \mathbb{N}}$ subconverges to some g_{0}. By inequality (53), the area of $g_{0}(B(0,1))$ is equal to 0 , thus g_{0} is constant.

Let us choose a positive ε. Let A be the bound of the area defined in inequality (52) and ρ as in Lemma C.11. Since $\left\{g_{k}\right\}_{k \in \mathbb{N}}$ converges uniformly on every compact to the constant map g_{0}, it follows that for k large enough $\left\|\mathrm{T} g_{k}\right\|$ is bounded above by $\frac{\varepsilon}{\rho}$ on $B(0, \rho)$. We can thus conclude from Lemma C. 11 that for k large enough

$$
d\left(g_{k}(0), g_{k}\left(Z_{0}\right)\right) \leqslant 2 \varepsilon
$$

The assertion (55) follows, hence the theorem.
C.3. Immersions. A non-constant limit of holomorphic immersions may not be immersed. We describe here certain situations in which a limit of immersions is an immersion. This result is a generalization of the case when the target is \mathbb{C} : roughly speaking the role of the 2-dimensional target is played by a complex line bundle $L_{\mathbb{C}}$, together with a never vanishing 1 -form α with values in L. Our "immersion in $\mathbb{C}^{\text {" }}$ is now replaced by a holomorphic map f so that $f^{*} \alpha$ is uniformly non-vanishing.

Let us be more precise about our hypothesis: let M be an almost complex manifold, L be a real line bundle over $M, L_{\mathbb{C}}$ the complexification of L and $\alpha \in \Omega^{1}\left(M, L_{\mathbb{C}}\right)$ a never vanishing 1-form with values in L_{C}.

We also choose a Hermitian metric h on $L_{\mathbb{C}}$ as well as a unitary connection ∇^{0} on $L_{\mathbb{C}}$ for which L is parallel.

When we have a boundary problem defined by a totally real submanifold W we furthermore assume that $\alpha(\mathrm{TW})=L$. The result is the following version of a claim that a sequence of maps that are strongly immersed, in terms of the existence of one-form α which they all pull back in a non-degenerate way, limit on a map with the same immersivity property.

Theorem C.19. Let $\left\{f_{k}\right\}_{k \in \mathbb{N}}$ be either (free boundary case) a sequence of holomorphic maps from D, or (boundary case) a sequence of holomorphic maps from \mathbf{S} to M so that $f_{k}(\partial \mathbf{S})$ is included in W. Equip (M, W) with a real line bundle L and a one-form α with values in its complexification $L_{\mathbb{C}}$ as above, together with the chosen Hermitian metric h and parallel unitary connection ∇^{0}.

Assume that
(i) the sequence $\left\{f_{k}\right\}_{k \in \mathbb{N}}$ converges to f_{0},
(ii) for all $k, f_{k}^{*} \alpha$ never vanishes,
(iii) we have a constant K_{0} so that for all k and

$$
\begin{equation*}
\left\|f_{k}^{*} \mathrm{~d}^{\nabla^{0}} \alpha\right\| \leqslant K_{0}\left\|f_{k}^{*} \alpha\right\|^{2} \tag{56}
\end{equation*}
$$

using the metric h and some auxiliary metric on M.
(iv) assume finally that $f_{0}^{*} \alpha$ is not identically zero.

Then f_{0}^{*} a never vanishes.
We remark
Proposition C.20. Condition (56) is satisfied in the following two cases

$$
\begin{aligned}
\mathrm{d}^{\nabla^{0}} \alpha & =0, \text { or } \\
\left\|\mathrm{T} f_{k}\right\| & \leqslant K_{1}\left\|f_{k}^{*} \alpha\right\| .
\end{aligned}
$$

Proof. The first case in Proposition C. 20 is obvious. The second case follows form the remark that if $\beta \in \Omega^{k}(V)$, then $\left\|g^{*} \beta\right\| \leqslant\|\mathrm{T} g\|^{k} \cdot\|\beta\|$.

The first case is satisfied when $\alpha=\mathrm{d} \pi$, where π is a submersion in \mathbb{C} which maps W to a line, in which case the setting reduces to simply maps from \mathbf{D} (or \mathbf{S}) to \mathbb{C}.
C.3.1. Preliminary controls. Let f be a holomorphic map from \mathbf{D} to M satisfying inequality (56), and g the quadratic form defined by

$$
g(X, Y):=h(\alpha(\mathrm{~T} f(X)), \alpha(\mathrm{T} f(Y))),
$$

Let O be the open set in \mathbf{D} on which g is a metric, and let u be the continuous vector fields of norm 1 (defined up to sign) on O so that $\alpha(\mathrm{T} f(u)) \in L$.

Lemma C.21. Let β be the connection form for u defined by

$$
\beta(X)=g\left(\nabla_{X} u, J u\right),
$$

where ∇ is the Levi-Civita connection of g. Then

$$
\|\beta(X)\|^{2} \leqslant K_{1} g(X, X)
$$

where K_{1} only depends on K_{0}, α and ∇^{0}.
Proof. Let us consider the induced bundle $L_{0}:=f^{*} L$, as well as the pull-back metric h_{0}, induced forms $\zeta=f^{*} \alpha \in \Omega^{1}\left(\mathbf{D}, L_{0}\right)$, and induced connection $D=f^{*} \nabla^{0}$. In the proof k_{i} will be constants only depending on α and ∇^{0}. The classical formula for the Levi Civita connection tells us that

$$
\begin{aligned}
& 2 g\left(\nabla_{X} u, J u\right) \\
= & u \cdot g(X, J u)-J u \cdot g(X, u)+X \cdot g(u, J u) \\
& -g(u,[X, J u])-g(X,[u, J u])+g(J u,[X, u]) \\
= & \left.\left.u \cdot h_{0}(\zeta(X)), \zeta(J u)\right)-J u \cdot h_{0}(\zeta(X)), \zeta(u)\right)+X \cdot h_{0}(\zeta(u), \zeta(J u)) \\
& \left.\left.-h_{0}(\zeta(u)), \zeta([X, J u])\right)-h_{0}(\zeta(X), \zeta([u, J u]))+h_{0}(\zeta(J u)), \zeta([X, u])\right) \\
= & 2 h_{0}\left(D_{X}(\zeta(u)), \zeta(J u)\right) \\
& +h_{0}\left(\zeta(u), \mathrm{d}^{D} \zeta(X, J u)\right)-h_{0}\left(\zeta(J u), \mathrm{d}^{D} \zeta(X, u)\right)+h_{0}\left(\zeta(X), \mathrm{d}^{D} \zeta(u, J u)\right) .
\end{aligned}
$$

Here of course $\mathrm{d}^{D} \zeta(X, Y)=\left(D_{X} \zeta\right)(Y)-\left(D_{Y} \zeta\right)(X)-\zeta([X, Y])$.
Since L is parallel for ∇^{0}, it follows that $h_{0}\left(D_{X}(\zeta(u)), \zeta(J u)\right)=0$. Observe now that the hypothesis (56) and the Cauchy-Schwarz inequality implies that

$$
\left|h_{0}\left(\zeta(X), \mathrm{d}^{D} \zeta(Y, Z)\right)\right|^{2} \leqslant K_{0}^{2} g(X, X) \cdot g(Y, Y) \cdot g(Z, Z) .
$$

Thus, from the above inequality applied to the final three terms of the computation above of $2 \beta(X)=2 g\left(\nabla_{X} u, J u\right)$ and using that $g(u, u)=g(J u, J u)=1$, we see that

$$
\|\beta(X)\| \leqslant \frac{3}{2} K_{0} \sqrt{g(X, X)}
$$

This concludes the proof.
Lemma C.22. Let $g=\lambda^{2} g_{0}$, and let β_{0} be the connection form of the vector u_{0} proportional to u and of norm 1 for g_{0}. Then

$$
-(\mathrm{d} \log \lambda) \circ J=\beta-\beta_{0}
$$

Proof. The connection of $g=\lambda^{2} g_{0}$ is given by

$$
\nabla=D+(\mathrm{d} \log \lambda) \otimes \mathrm{Id}-(\mathrm{d} \log \lambda \circ J) \otimes J
$$

where D is the connection of g_{0}. Thus, if u is the vector field of norm 1 for g, then

$$
\beta(X)=g\left(\nabla_{X} u, J u\right)=g\left(D_{X} u, J u\right)-\mathrm{d} \log \lambda(J X)
$$

Observe now that $\lambda v=v_{0}$ where v_{0} has norm 1 for g_{0}, thus

$$
g\left(D_{X} v, J v\right)=\frac{1}{\lambda^{2}} g\left(D_{X} v_{0}, J v_{0}\right)=g_{0}\left(D_{X} v_{0}, J v_{0}\right)=\beta_{0}(X) .
$$

The result follows.

Corollary C.23. Assuming f is an immersion, let γ be either
(i) (Free boundary case) an embedded circle γ in \mathbf{D}, or
(ii) (Boundary case) or an embedded half circle so that $\partial \gamma \subset \partial \mathbf{S}$.

Then

$$
\left|\int_{\gamma}(\mathrm{d} \log \lambda) \circ J\right| \leqslant K_{2} \int_{\gamma} \lambda \mathrm{d} s
$$

where d is the arc length of γ with respect to g_{0}.
Proof. Let us consider first the free boundary case: from Lemma C.22,

$$
\int_{\gamma}(\mathrm{d} \log \lambda) \circ J=\int_{\gamma} \beta-\int_{\gamma} \beta_{0}=\int_{\gamma} \beta-\int_{U} \mathrm{~d} \beta_{0}=\int_{\gamma} \beta
$$

where U is the disk of boundary γ in the boundary free case, and boundary $\gamma \sqcup I$, where $I \subset \partial \mathbf{S}$ in the boundary case. Observe that we have used here that

$$
\int_{I} \beta_{0}=0
$$

which follows from the fact that u_{0} is tangent to $\partial \mathbf{S}$, so that its covariant derivative in the tangential direction is also tangential and hence orthogonal to $J u_{0}$. Thus the inequality follows from the bounds in Lemma C.21. For the boundary case, we first have to remark that if $X \in \mathbf{T} \partial \mathbf{S}$, then obviously $\beta_{0}(X)=0$. Moreover, $f(\partial S)$ is a curve in a totally real and totally geodesic manifold W. Thus $\nabla X u$ belongs to TW and $J u$ is orthogonal to TW. Thus

$$
\beta(X)=g\left(\nabla_{X} u, J u\right)=0 .
$$

The fact that β and β_{0} are zero when restricted to ∂S allows us to conclude the argument.
C.3.2. Proof of Theorem C.19. The proof in both cases follow the same scheme. We will point out where the difference occurs. It is enough to prove that $f_{0}^{*} \alpha$ does not vanish at 0 . Let g_{k} be the conformal metric on \mathbf{D} given by

$$
g_{k}(u, v)=h\left(\alpha\left(\mathrm{~T} f_{k}(u)\right), \alpha\left(\mathrm{T} f_{k}(u)\right)\right)
$$

and λ_{k} be the function on \mathbf{D} so that $g_{k}=\lambda_{k}^{2} g_{0}$ where g_{0} is the Euclidean metric on \mathbf{D}.
To prove the theorem, it is enough is to find a positive ρ so that, for all $k \in \mathbb{N}$

$$
\lambda_{k}(0) \geqslant \rho
$$

Let $D(R)$ be the disk of radius R centered at 0 with respect to g_{0} and $\gamma(R)$ its boundary. In the boundary case, we let $D(R)$ be the half disk centered at 0 and denote by $\gamma(R)$ the half circle which is part of $\operatorname{Fr}(D(R))$. We denote by (r, θ) the polar coordinates on $\mathbb{C} \backslash 0$. Let ω_{θ} is the closed form on $\mathbb{C} \backslash\{0\}$ given by

$$
\omega_{\theta}=\frac{x \mathrm{~d} y-y \mathrm{~d} x}{x^{2}+y^{2}}
$$

(Of course, ω_{θ} is usually denoted by $\mathrm{d} \theta$ but the notation $\mathrm{d} \theta$-disliked by the first author suggests that ω_{θ} is exact) Observe that for any 1-form α

$$
\begin{aligned}
\alpha \wedge \omega & =\alpha\left(\partial_{r}\right) \mathrm{d} r \wedge \omega_{\theta} \\
\int_{S(r)} \alpha \circ J & =\int_{S(r)} \alpha\left(J \partial_{\theta}\right) \omega_{\theta}=-r \int_{S(r)} \alpha\left(\partial_{r}\right) \omega_{\theta}
\end{aligned}
$$

For $k \in \mathbb{N}$, let G_{k} be the function $\mathbb{R}_{>0}$ given by

$$
G_{k}(R):=\int_{\partial D(R)} \log \left(\lambda_{k}\right) \cdot \omega_{\theta}
$$

Observe that, because λ_{k} does not vanish, we map apply Stokes theorem to the annulus $\{\eta<r, R\}$, and let $\eta \rightarrow 0$ to obtain

$$
G_{k}(R)=\int_{D(R)} \mathrm{d} \log \left(\lambda_{k}\right) \wedge \omega_{\theta}+G_{k}(0)=\int_{0}^{R}\left(\int_{\gamma(r)} \mathrm{d} \log \left(\lambda_{k}\right)\left(\partial_{r}\right) \cdot \omega_{\theta}\right) \mathrm{d} r+G_{k}(0)
$$

After taking the derivatives with respect to R, we get

$$
\dot{G}_{k}(R)=\int_{\gamma(R)} \mathrm{d} \log \left(\lambda_{k}\right)\left(\partial_{r}\right) \cdot \omega_{\theta}=-\frac{1}{R} \int_{\gamma(R)} \mathrm{d} \log \left(\lambda_{k}\right) \circ J .
$$

Since f_{k} is an immersion, it follows from Corollary C. 23 that

$$
\left|\dot{G}_{k}(R)\right| \leqslant \frac{K_{0}}{R} \int_{\gamma(R)} \lambda_{k} \mathrm{~d} s
$$

where ds is the length with respect to g_{0}. By the Schwarz lemma, we see that λ_{k} is uniformly bounded from above and thus $\left|\dot{G}_{k}(R)\right| \leqslant C_{2}$. It follows that for all R_{0}

$$
\varepsilon \pi\left|\log \lambda_{k}(0)\right|=\left|G_{k}(0)\right| \leqslant\left|G_{k}\left(R_{0}\right)\right|+C_{2} R_{0},
$$

where $\varepsilon=2$ in the free boundary case, and $\varepsilon=1$ in the boundary case. Thus

$$
\lambda_{k}(0) \geqslant \exp \left(-\frac{1}{\varepsilon \pi}\left(\left|G_{k}\left(R_{0}\right)\right|+C_{0} R_{0}\right)\right)
$$

Then, since λ_{∞} has isolated zeroes (See the similarity principle Theorem A.5.2 and Proposition A.5.3 in [1]), there exists some R_{0} so that $\gamma\left(R_{0}\right)$ does not contain any zeroes of λ_{∞}, thus there exists a positive α so that

$$
\int_{\partial D\left(R_{0}\right)} \log \left(\lambda_{\infty}\right) \cdot \omega_{\theta}>-\alpha>-\infty
$$

Thus for k large enough, $G_{k}\left(R_{0}\right) \geqslant-2 \alpha$. In particular, for k large enough

$$
\lambda_{k}(0) \geqslant \mu:=\exp \left(-\frac{1}{\varepsilon \pi}\left(2 \alpha+C_{0} R_{0}\right)\right)>0
$$

The result follows.

References

1. Casim Abbas and Helmut Hofer, Holomorphic curves and global questions in contact geometry, Birkhäuser Advanced Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks], Birkhäuser/Springer, Cham, 2019.
2. Shmuel Agmon, Avron Douglis, and Louis Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. II, Comm. Pure Appl. Math. 17 (1964), 35-92.
3. Michael T. Anderson, Complete minimal hypersurfaces in hyperbolic n-manifolds, Comment. Math. Helv. 58 (1983), no. 2, 264-290.
4. Kari Astala, Tadeusz Iwaniec, and Gaven Martin, Elliptic partial differential equations and quasiconformal mappings in the plane, Princeton Mathematical Series, vol. 48, Princeton University Press, Princeton, NJ, 2009.
5. Thierry Barbot, Virginie Charette, Todd Drumm, William M. Goldman, and Karin Melnick, A primer on the $(2+1)$ Einstein universe, Recent developments in pseudo-Riemannian geometry, ESI Lect. Math. Phys., Eur. Math. Soc., Zürich, 2008, 179-229.
6. Thierry Barbot, Deformations of Fuchsian AdS representations are quasi-Fuchsian, J. Differential Geom., 101(1), 1-46, 2015.
7. Robert Bartnik and Leon Simon, Spacelike hypersurfaces with prescribed boundary values and mean curvature, Comm. Math. Phys. 87 (1982/83), no. 1, 131-152.
8. Yves Benoist and Dominique Hulin, Cubic differentials and hyperbolic convex sets, J. Differential Geom. 98 (2014), no. 1, 1-19.
9. Gérard Besson, Miroslav Lovric, Maung Min-Oo, and McKenzie Yuen-Kong Wang, Riemannian geometry, vol. 4, American Mathematical Soc., 1996.
10. Charles Blanc and Félix Fiala, Le type d'une surface et sa courbure totale, Comment. Math. Helv. 14 (1942), 230-233.
11. Francesco Bonsante and Jean-Marc Schlenker, Maximal surfaces and the universal Teichmüller space, Invent. Math. 182 (2010), no. 2, 279-333.
12. Francesco Bonsante and Andrea Seppi, Area-preserving diffeomorphisms of the hyperbolic plane and K-surfaces in anti-de Sitter space, J. Topol., 11 (2018), no. 2, 420-468.
13. Francesco Bonsante, Andrea Seppi, and Peter Smillie, Complete CMC hypersurfaces in Minkowski (n+1)-space, arXiv:1912.05477 (2019) - To appear in: Comm. Anal. Geom..
14. Steven B. Bradlow, Oscar García-Prada, and Peter B. Gothen, Maximal surface group representations in isometry groups of classical Hermitian symmetric spaces, Geom. Dedicata 122 (2006), 185-213.
15. Marc Burger, Alessandra Iozzi, François Labourie, and Anna Wienhard, Maximal representations of surface groups: symplectic Anosov structures, Pure Appl. Math. Q. 1 (2005), no. 3, 543-590.
16. Marc Burger, Alessandra Iozzi, and Anna Wienhard, Surface group representations with maximal Toledo invariant, Ann. of Math. (2) (2010), 517-566.
17. Constantin Carathéodory, Über den variabilitätsbereich der Fourier'schen konstanten von positiven harmonischen funktionen, Rendiconti Del Circolo Matematico di Palermo (1884-1940) 32 (1911), no. 1, 193-217.
18. Shiu-Yuen Cheng and Shing-Tung Yau, Complete affine hypersurfaces. I. The completeness of affine metrics, Comm. Pure Appl. Math. 39 (1986), no. 6, 839-866.
19. Shiing-Shen Chern, Simple proofs of two theorems on minimal surfaces, Enseign. Math. (2) $\mathbf{1 5}$ (1969), 53-61.
20. Jean-Louis Clerc and Bent Ørsted, The Gromov norm of the Kaehler class and the Maslov index, Asian J. Math. 7 (2003), no. 2, 269-295.
21. Brian Collier, Nicolas Tholozan, and Jérémy Toulisse, The geometry of maximal representations of surface groups into $S O_{0}(2, n)$, Duke Math. J. 168 (2019), no. 15, 2873-2949.
22. Jeffrey Danciger, François Guéritaud, and Fanny Kassel, Convex cocompactness in pseudo-Riemannian hyperbolic spaces, Geom. Dedicata 192 (2018), no. 1, 87-126.
23. David Dumas and Michael Wolf, Polynomial cubic differentials and convex polygons in the projective plane, Geom. Funct. Anal. 25 (2015), no. 6, 1734-1798.
24. Charles Frances, Lorentzian Kleinian groups, Comment. Math. Helv., 40 (2005), no. 4, 883-910.
25. François Guéritaud, Olivier Guichard, Fanny Kassel, and Anna Wienhard, Anosov representations and proper actions, Geom. Topol., 21 (2017), no. 1, 485-584.
26. Mikhaïl Gromov, Pseudo holomorphic curves in symplectic manifolds, Invent. Math. 82 (1985), no. 2, 307-347.
27. _ Foliated Plateau problem. II. Harmonic maps of foliations, Geom. Funct. Anal. 1 (1991), no. 3, 253-320.
28. Richard S. Hamilton, The inverse function theorem of Nash and Moser, Bull. Amer. Math. Soc. (N.S.) 7 (1982), no. 1, 65-222.
29. Zheng Huang and Biao Wang, Counting minimal surfaces in quasi-Fuchsian three-manifolds, Trans. Amer. Math. Soc. 367 (2015), no. 9, 6063-6083.
30. Alfred Huber, On subharmonic functions and differential geometry in the large, Comment. Math. Helv. 32 (1957), 13-72.
31. Tōru Ishihara, Maximal spacelike submanifolds of a pseudo-Riemannian space of constant curvature, Michigan Math. J. 35 (1988), no. 3, 345-352.
32. François Labourie, Exemples de courbes holomorphes en géométrie riemannienne, Holomorphic curves in symplectic geometry, Progr. Math., vol. 117, Birkhäuser, Basel, 1994, pp. 251-269.
33. François Labourie, Problèmes de Monge-Ampère, courbes holomorphes et laminations, Geom. Funct. Anal. 7 (1997), no. 3, 496-534.
34._, Flat projective structures on surfaces and cubic holomorphic differentials, Pure Appl. Math. Q. 3 (2007), no. 4, 1057-1099.
35._, Cyclic surfaces and Hitchin components in rank 2, Ann. of Math. (2) $\mathbf{1 8 5}$ (2017), no. 1, 1-58.
34. François Labourie and Jérémy Toulisse, Quasicircles and quasiperiodic surfaces in pseudo-hyperbolic spaces, Arxiv:2010.05704 (2020)
35. Mealy, Jack, Volume maximization in semi-Riemannian manifolds, Indiana Univ. Math. J. 40 (1991), no 3, 793-814.
36. Yang Li, Dirichlet problem for maximal graphs of higher codimension, To be published in IMRN.
37. John C. Loftin, Affine spheres and convex $\mathbb{R} \mathbb{P}(n)$-manifolds, Amer. J. Math. 123 (2001), no. 2, 255-274.
38. Marie-Paule Müller, Gromov's Schwarz lemma as an estimates for the gradient of pseudo holomorphic curves, Holomorphic curves in symplectic geometry, Progr. Math., vol. 117, Birkhäuser, Basel, 1994, pp. 251-269.
39. Hideki Omori, Isometric immersions of Riemannian manifolds, J. Math. Soc. Japan 19 (1967), no. 2, 205-214.
40. Andrea Tamburelli, Polynomial quadratic differentials on the complex plane and light-like polygons in the Einstein universe, Adv. Math., 352 (2019), 483-515.
41. Andrea Tamburelli, Regular globally hyperbolic maximal anti-de Sitter structures, J. Topol. 13 (2020), no. 1, 416-439.
42. Andrea Tamburelli and Michael Wolf, Planar minimal surfaces with polynomial growth in the $S P(4, \mathbb{R})$-symmetric space, arXiv:2002.07295 (2020).
43. Domingo Toledo, Harmonic maps from surfaces to certain Kähler manifolds, Math. Scand. 45 (1979), no. 1, 13-26.
44. Biao Wang, Minimal surfaces in quasi-Fuchsian 3-manifolds, Math. Ann. 354 (2012), no. 3, 955-966.
45. Brian White, The space of m-dimensional surfaces that are stationary for a parametric elliptic functional, Indiana Univ. Math. J. 36 (1987), no. 3, 567-602.

Université Côte d'Azur, CNRS, LJAD, France
Email address: francois.labourie@unice.fr
Université Côte d'Azur, CNRS, LJAD, France
Email address: jtoulisse@unice.fr
Department of Mathematics, Rice University
Email address: mwolf@rice.edu

[^0]: Date: March 1, 2022.
 F.L., J.T. and M.W. acknowledge support from U.S. National Science Foundation (NSF) grants DMS 1107452, 1107263, 1107367 "RNMS: Geometric structures And Representation varieties" (the GEAR Network). F.L. and J.T. were supported by the ANR grant DynGeo ANR-11-BS01-013. F.L. was supported by the Institut Universitaire de France. F.L. and M.W. appreciate the support of the Mathematical Sciences Research Institute during the fall of 2019 (NSF DMS-1440140). M.W. acknowledges support from NSF grants DMS-1564374 and DMS-2005551 as well as the Simons Foundation.

