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AND ANDRES SAMBARINO

Abstract. Using the thermodynamic formalism, we introduce a notion of
intersection for projective Anosov representations, show analyticity results for
the intersection and the entropy, and rigidity results for the intersection. We
use the renormalized intersection to produce an Out(Γ)-invariant Riemannian
metric on the smooth points of the deformation space of irreducible, generic,
projective Anosov representations of a word hyperbolic group Γ into SLm(R).
In particular, we produce mapping class group invariant Riemannian metrics
on Hitchin components which restrict to the Weil–Petersson metric on the
Fuchsian loci. Moreover, we produce Out(Γ)-invariant metrics on deformation
spaces of convex cocompact representations into PSL2(C) and show that the
Hausdorff dimension of the limit set varies analytically over analytic families
of convex cocompact representations into any rank 1 semi-simple Lie group.

1. Introduction

In this paper we produce a mapping class group invariant Riemannian metric
on a Hitchin component of the character variety of representations of a closed sur-
face group into SLm(R) whose restriction to the Fuchsian locus is a multiple of the
Weil-Petersson metric. More generally, we produce a Out(Γ)-invariant Riemann-
ian metric on the smooth generic points of the deformation space of irreducible,
projective Anosov representations of a word hyperbolic group Γ into SLm(R). We
use Plücker representations to produce metrics on deformation spaces of convex
cocompact representations into PSL2(C) and on the smooth points of deformation
spaces of Zariski dense Anosov representations into an arbitrary semi-simple Lie
group.

Our metric is produced using the thermodynamic formalism developed by Bowen
[12, 13], Parry–Pollicott [55], Ruelle [61] and others. It generalizes earlier work done
in the Fuchsian and quasifuchsian cases by McMullen [53] and Bridgeman [9]. In
order to use the thermodynamic formalism, we associate a natural flow UρΓ to any
projective Anosov representation ρ, and show that it is a topologically transitive
metric Anosov flow and is a Hölder reparameterization of the geodesic flow U0Γ
of Γ as defined by Gromov. We then see that entropy varies analytically over any
smooth analytic family of projective Anosov homomorphisms of Γ into SLm(R).
As a consequence, again using the Plücker embedding, we see that the Hausdorff
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dimension of the limit set varies analytically over analytic families of convex cocom-
pact representations into a rank one semi-simple Lie group. We also introduce a
renormalized intersection J on the space of projective Anosov representations. Our
metric is given by the Hessian of this renormalised intersection J.

We now introduce the notation necessary to give more careful statements of our
results. Let Γ be a word hyperbolic group with Gromov boundary ∂∞Γ. Loosely
speaking, a representation ρ : Γ → SLm(R) is projective Anosov if it has trans-
verse projective limit maps, the image of every infinite order element is proximal,
and the proximality “spreads uniformly” (see Section 2.1 for a careful definition).
An element A ∈ SLm(R) is proximal if its action on RP(m) has an attracting
fixed point. A representation ρ : Γ → SLm(R) is said to have transverse projec-
tive limit maps if there exist continuous ρ-equivariant maps ξ : ∂∞Γ → RP(m) and
θ : ∂∞Γ → RP(m)∗ such that if x and y are distinct points in ∂∞Γ, then

ξ(x)⊕ θ(y) = Rm

(where we identify RP(m)∗ with the Grassmanian of (m − 1)-dimensional vector
subspaces of Rm). If γ ∈ Γ has infinite order, ρ is projective Anosov and γ+ is
the attracting fixed point of the action of γ on ∂Γ, then ξ(γ+) is the attracting
fixed point for the action of ρ(γ) on RP(m). Moreover, Guichard and Wienhard
[26, Proposition 4.10] proved that every irreducible representation ρ : Γ → SLm(R)
with transverse projective limit maps is projective Anosov.

If ρ is a projective Anosov representation, we can associate to every conjugacy
class [γ] of γ ∈ Γ its spectral radius Λ(γ)(ρ). The collection of these radii form the
radius spectrum of ρ. For every positive real number T we define

RT (ρ) = {[γ] | log(Λ(γ)(ρ)) ! T}.

We will see that RT (ρ) is finite (Proposition 2.8). We also define the entropy of a
representation by

h(ρ) = lim
T→∞

1

T
log &(RT (ρ)).

If ρ1 and ρ2 are two projective Anosov representations, we define their intersec-
tion by

I(ρ1, ρ2) = lim
T→∞

!

" 1

&(RT (ρ1))

#

[γ]∈RT (ρ0)

log(Λ(γ)(ρ2))

log(Λ(γ)(ρ1))

$

% .

We also define the renormalised intersection by

J(ρ1, ρ2) =
h(ρ2)

h(ρ1)
I(ρ1, ρ2).

We prove, see Theorem 1.3, that all these quantities are well defined and obtain the
following inequality and rigidity result for the renormalised intersection. Let πm :
SLm(R) → PSLm(R) be the projection map. If ρ : Γ → SLm(R) is a representation,
let Gρ be the Zariski closure of ρ(Γ).

Theorem 1.1. [Intersection] If Γ is a word hyperbolic group and ρ1 : Γ → SLm1(R)
and ρ2 : Γ → SLm2(R) are projective Anosov representations, then

J(ρ1, ρ2) " 1.
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Moreover, if ρ1 and ρ2 are irreducible, Gρ1 and Gρ2 are connected and J(ρ1, ρ2) = 1,
then there exists an isomorphism φ : πm1

(Gρ1
) → πm2

(Gρ2
) such that

φ ◦ πm1
◦ ρ1 = πm2

◦ ρ2.

We also establish a spectral rigidity result. If ρ : Γ → SLm(R) is projective
Anosov and γ ∈ Γ, then let L(γ)(ρ) denote the eigenvalue of maximal absolute
value of ρ(γ), so

Λ(γ)(ρ) = |L(γ)(ρ)|.

Theorem 1.2. [Spectral rigidity] Let Γ be a word hyperbolic group and let
ρ1 : Γ → SLm(R) and ρ2 : Γ → SLm(R) be projective Anosov representations with
limit maps ξ1 and ξ2 such that

L(γ)(ρ1) = L(γ)(ρ2)

for every γ in Γ. Then there exists g ∈ GLm(R) such that gξ1 = ξ2.
Moreover, if ρ1 is irreducible, then gρ1g

−1 = ρ2.

We now introduce the deformation spaces which occur in our work. In section 7,
we will see that each of these deformation spaces is a real analytic manifold. Let us
introduce some terminology. If G is a reductive subgroup of SLm(R), we say that
an element of G is generic if its centralizer is a maximal torus in G. For example, an
element of SLm(R) is generic if and only if it is diagonalizable over C with distinct
eigenvalues. We say that a representation ρ : Γ → G is G-generic if the Zariski
closure of ρ(Γ) contains a generic element of G. Finally, we say that ρ ∈ Hom(Γ,G)
is regular if it is a smooth point of the algebraic variety Hom(Γ,G).

• Let C(Γ,m) denote the space of (conjugacy classes of) regular, irreducible,
projective Anosov representations of Γ into SLm(R).

• Let Cg(Γ,G) denote the space of (conjugacy classes of) G-generic, regular,
irreducible, projective Anosov representations.

We show that the entropy and the renormalised intersection vary analytically
over our deformation spaces. Moreover, we obtain analyticity on analytic families
of projective Anosov homomorphisms. An analytic family of projective Anosov
homomorphisms is a continuous map β : M → Hom(Γ, SLm(R)) such that M is an
analytic manifold, βm = β(m) is projective Anosov for all m ∈ M , and m → βm(γ)
is an analytic map of M into SLm(R) for all γ ∈ Γ.

Theorem 1.3. [Analyticity] If Γ is a word hyperbolic group, then the entropy
h and the renormalised intersection J are well-defined positive, Out(Γ)-invariant
analytic functions on the spaces C(Γ,m) and C(Γ,m)× C(Γ,m) respectively. More
generally, they are analytic functions on any analytic family of projective Anosov
homomorphisms.

Moreover, let γ : (−1, 1) → C(Γ,m) be any analytic path with values in the de-
formation space, let Jγ(t) = J(γ(0), γ(t)) then

d

dt

&&&&
t=0

Jγ = 0 and
d2

dt2

&&&&
t=0

Jγ " 0. (1)

Theorem 1.3 allows us to define a non-negative analytic 2-tensor on Cg(Γ,G).
The pressure form is defined to be the Hessian of the restriction of the renormalised
intersection J. Our main result is the following.
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Theorem 1.4. [Pressure metric] Let Γ be a word hyperbolic group and let G be
a reductive subgroup of SLm(R). The pressure form is an analytic Out(Γ)-invariant
Riemannian metric on Cg(Γ,G).

If S is a closed, connected, orientable, hyperbolic surface, Hitchin [30] exhibited
a component Hm(S) of Hom(π1(S),PSLm(R))/PGLm(R) now called the Hitchin
component, which is an analytic manifold diffeomorphic to a ball. Each Hitchin
component contains a Fuchsian locus which consists of representations obtained
by composing Fuchsian representations of π1(S) into PSL2(R) with the irreducible
representation τm : PSL2(R) → PSLm(R). The representations in a Hitchin com-
ponent are called Hitchin representations and can be lifted to representations into
SLm(R). Labourie [41] showed that lifts of Hitchin representations are projective
Anosov, irreducible and SLm(R)-generic. In particular, if ρi : π1(S) → PSLm(R)
are Hitchin representations, then one can define h(ρi), I(ρ1, ρ2) and J(ρ1, ρ2) just
as for projective Anosov representations. Guichard has recently announced a clas-
sification of the possible Zariski closures of Hitchin representations, see Section 11.3
for a statement. As a corollary of Theorem 1.1 and Guichard’s work we obtain a
stronger rigidity result for Hitchin representations.

Corollary 1.5. [Hitchin rigidity] Let S be a closed, orientable surface and let
ρ1 ∈ Hm1

(S) and ρ2 ∈ Hm2
(S) be two Hitchin representations such that

J(ρ1, ρ2) = 1.

Then, either

• m1 = m2 and ρ1 = ρ2 in Hm1(S), or
• there exists an element ρ of the Teichmüller space T (S) so that ρ1 = τm1

(ρ)
and ρ2 = τm2(ρ).

In section 11.4 we use work of Benoist [5, 6] to obtain a similar rigidity result for
representations which arise as monodromies of strictly convex projective structures
on compact manifolds with word hyperbolic fundamental group. We will call such
representations Benoist representations.

Each Hitchin component lifts to a component of Cg(π1(S), SLm(R)). As a corol-
lary of Theorem 1.4 and work of Wolpert [68] we obtain:

Corollary 1.6. [Hitchin component] The pressure form on the Hitchin compo-
nent is an analytic Riemannian metric which is invariant under the mapping class
group and restricts to the Weil-Petersson metric on the Fuchsian locus.

The same naturally holds for Hitchin components of representations into PSp(n,R),
S0(n, n + 1) and G2,0, since they embed in Hitchin components of representations
into PSL(n,R). Labourie and Wentworth [46] have announced an explicit formula
(in term of the Hitchin parametrisation) for the pressure metric along the Fuchsian
locus.

Li [48] has used the work of Loftin [50] and Labourie [43] to exhibit a metric
on H3(S), which she calls the Loftin metric, which is invariant with respect to the
mapping class group, restricts to a multiple of the Weil-Petersson metric on the
Fuchsian locus and such that the Fuchsian locus is totally geodesic. She further
shows that a metric on H3(S) constructed earlier by Darvishzadeh and Goldman
[24] restricts to a multiple of the Weil-Petersson metric on the Fuchsian locus.
Kim and Zhang [39] introduced a mapping class group invariant Kähler metric on
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the Hitchin component H3(S) for SL(3, R), which Labourie [45] generalized to the
Hitchin components associated to all real split simple Lie groups of rank 2.

If Γ is a word hyperbolic group, we let Cc(Γ,PSL2(C)) denote the space of (conju-
gacy classes of) convex cocompact representations of Γ into PSL2(C). In Section 2.3
we produce a representation, called the Plücker representation, α : PSL2(C) → SLm(R)
(for some m), so that if ρ ∈ Cc(Γ,PSL2(C)), then α ◦ ρ is projective Anosov. The
deformation space Cc(Γ,PSL2(C)) is an analytic manifold and we may define a renor-
malised intersection J and thus a pressure form on Cc(Γ,PSL2(C)). The following
corollary is a direct generalization of Bridgeman’s pressure metric on quasifuchsian
space (see [9]).

Corollary 1.7. [Kleinian groups] Let Γ be a torsion-free word hyperbolic group.
The pressure form gives rise to a Out(Γ)-invariant metric on the analytic manifold
Cc(Γ,PSL2(C)) which is Riemannian on the open subset consisting of Zariski dense
representations. Moreover,

(1) If Γ does not have a finite index subgroup which is either a free group or a
surface group, then the metric is Riemannian at all points in Cc(Γ,PSL2(C)).

(2) If Γ is the fundamental group of a closed, connected, orientable surface,
then the metric is Riemannian off of the Fuchsian locus in Cc(Γ,PSL2(C))
and restricts to a multiple of the Weil-Petersson metric on the Fuchsian
locus.

If G is a rank one semi-simple Lie group, then work of Patterson [56], Sullivan
[66], Yue [69] and Corlette-Iozzi [20] shows that the entropy of a convex cocompact
representation ρ : Γ → G agrees with the Hausdorff dimension of the limit set of
ρ(Γ). We may then apply Theorem 1.3 and the Plücker representation to conclude
that that the Hausdorff dimension of the limit set varies analytically over analytic
families of convex cocompact representations into rank one semi-simple Lie groups.

Corollary 1.8. [Analyticity of Hausdorff Dimension] If Γ is a finitely gen-
erated group and G is a rank one semi-simple Lie group, then the Hausdorff dimen-
sion of the limit set varies analytically on any analytic family of convex cocompact
representations of Γ into G. In particular, the Hausdorff dimension varies analyti-
cally over Cc(Γ,PSL2(C))

One may further generalize our construction into the setting of virtually Zariski
dense Anosov representations into an arbitrary semi-simple Lie group G. A rep-
resentation ρ : Γ → G is virtually Zariski dense if the Zariski closure of ρ(Γ) is a
finite index subgroup of G. If Γ is a word hyperbolic group, G is a semi-simple Lie
group with finite center and P is a non-degenerate parabolic subgroup, then we let
Z(Γ;G,P) denote the space of (conjugacy classes of) regular virtually Zariski dense
(G,P)-Anosov representations of Γ into G. The space Z(Γ;G,P) is an analytic orb-
ifold, see Proposition 7.3, and we can again use a Plücker representation to define
a pressure metric on Z(Γ;G,P). If G is connected, then Z(Γ;G,P) is an analytic
manifold.

Corollary 1.9. [Anosov representations] Suppose that Γ is a word hyperbolic
group, G is a semi-simple Lie group with finite center and P is a non-degenerate par-
abolic subgroup of G. Then there exists an Out(Γ)-invariant analytic Riemannian
metric on the orbifold Z(Γ;G,P).
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A key tool in our proof is the introduction of a flow UρΓ associated to a projective
Anosov representation ρ. Let ρ : Γ → SLm(R) be a projective Anosov representation
with limit maps ξ and θ. Let F be the total space of the principal R-bundle over
RP(m) × RP(m)∗ whose fiber at the point (x, y) is the space of norms on the line
ξ(x). There is a natural R-action on F which takes a norm u on x to the norm
e−tu. Let Fρ be R-principal bundle over

∂∞Γ(2) = ∂∞Γ× ∂∞Γ \ {(x, x) | x ∈ ∂∞Γ}.
which is the pull back of F by (ξ, θ). The R-action on F gives rise to a flow on
Fρ. (An analogue of this flow was first introduced by Sambarino [63, 62] in the
setting of projective Anosov irreducible representations of fundamental groups of
closed negatively curved manifolds.)

We then show that this flow is metric Anosov and is a Hölder reparameterization
of the Gromov geodesic flow U0Γ of Γ. Moreover, this flow encodes the spectral radii
of elements of ρ(Γ), i.e. the period of the flow associated to (the conjugacy class of )
an element γ ∈ Γ is logΛ(γ)(ρ). (Metric Anosov flows are a natural generalization of
Anosov flows in the setting of compact metric spaces and were studied by Pollicott
[57].)

Theorem 1.10. [geodesic flow] The action of Γ on Fρ is proper and cocompact.
Moreover, the R action on UρΓ = Fρ/Γ is a topologically transitive metric Anosov
flow which is Hölder orbit equivalent to the geodesic flow U0Γ.

Theorem 1.10 allows us to make use of the thermodynamic formalism. We show
that if fρ is the Hölder function regulating the change of speed of UρΓ and U0Γ,
then Φρ = −h(ρ)fρ is a pressure zero function on U0Γ. Therefore, we get a mapping

T : C(Γ,m) → H(U0Γ),

called the thermodynamic mapping, from C(Γ,m) into the spaceH(U0Γ) of Livšic co-
homology classes of pressure zero Hölder functions on U0Γ. Given any [ρ] ∈ C(Γ,m),
there exists an open neighborhood U of [ρ] and a lift of T|U to an analytic map of
U into the space P(U0Γ) of pressure zero Hölder functions on U0Γ. Our pressure
form is obtained as a pullback of the pressure 2-tensor on P(U0Γ) with respect to
this lift.

Remarks and references: Anosov representations were introduced by Labourie
[41] in his study of Hitchin representations, and their theory was further developed
by Guichard and Wienhard [26]. Benoist [5, 6, 7] studied holonomy maps of strictly
convex projective structures on closed manifolds which he showed were irreducible
representations with transverse projective limit maps, hence projective Anosov.
Sambarino [62, 63, 64] introduced a flow, closely related to our flow, associated
to a representation with transverse projective limit maps and used it to prove the
continuity of the associated entropy on a Hitchin component. Pollicott and Sharp
[58] applied the thermodynamic formalism and work of Dreyer [23] to show that a
closely related entropy gives rise to an analytic function on any Hitchin component.

Our metric generalizes Thurston’s Riemannian metric on Teichmüller space which
he defined to be the Hessian of the length of a random geodesic. Wolpert [68]
proved that Thurston’s Riemannian metric was a multiple of the more classical
Weil-Petersson metric. Bonahon [11] gave an interpretation of Thurston’s metric in
terms of the Hessian of an intersection function. Burger [16] previously studied the
intersection number for convex cocompact subgroups of rank 1 simple Lie groups
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and proved a strong version of Theorem 1.1 in this setting (see also Kim [37]).
The study of geometric properties of surfaces using the thermodynamic formalism
originated in Bowen [14]. Using a Bowen-Series coding and building on work of
Bridgeman and Taylor [10], McMullen [53] gave a pressure metric formulation of
the Weil–Petersson metric on Teichmüller space. Bridgeman [9] developed a pres-
sure metric on quasifuchsian space which restricts to the Weil–Petersson metric on
the Fuchsian locus. Our Theorem 1.4 is a natural generalization of Bridgeman’s
work into the setting of projective Anosov representations, while Corollary 1.7 is a
generalization into the setting of general deformation spaces of convex cocompact
representations into PSL2(C).

Corollary 1.8 was established by Ruelle [60] for quasifuchsian representations,
i.e. when Γ = π1(S) and G = PSL2(C), and by Anderson and Rocha [2] for
function groups, i.e. when Γ is a free product of surface groups and free groups and
G = PSL2(C). Previous work of Tapie [67] implies that the Hausdorff dimension of
the limit set is a C1 function on C1-families of convex cocompact representations of
Γ into a rank one Lie group G. Tapie’s work was inspired by work of Katok, Knieper,
Pollicott and Weiss [35, 36] who established analytic variation of the entropy for
analytically varying families of Anosov flows on closed Riemannian manifolds. Our
Theorem 1.2 is related to the marked length spectrum rigidity theorem of Dal’Bo-
Kim [21].

Coornaert–Papadopoulos [19] showed that if Γ is word hyperbolic, then there is
a symbolic coding of its geodesic flow U0Γ. However, this coding is not necessarily
one-to-one on a large enough set to apply the thermodynamic formalism. Therefore,
word hyperbolic groups admitting projective Anosov representations represent an
interesting class of groups from the point of view of symbolic dynamics.
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2. Anosov representations

In this section, we recall the theory of Anosov representations. We begin by
defining projective Anosov representations and developing their basic properties.
In section 2.3, we will see that any Anosov representation can be transformed, via
post-composition with a Plücker representation, into a projective Anosov represen-
tation, while in section 2.4 we will study properties of irreducible projective Anosov
representations.
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2.1. Projective Anosov representations. A representation ρ : Γ → SLm(R)
is projective Anosov if it has transverse projective limit maps and the associated
flat bundle over its Gromov geodesic flow has a contraction property we will define
carefully below.

Definition 2.1. Let Γ be a word hyperbolic group and ρ be a representation of Γ in
SLm(R). We say ρ has transverse projective limit maps if there exist ρ-equivariant
continuous maps ξ : ∂∞Γ → RP(m) and θ : ∂∞Γ → RP(m)∗ such that if x ∕= y, then

ξ(x)⊕ θ(y) = Rm.

Conventions: Denote by RP(m) the projective space of Rm. We will often identify
RP(m)∗ with the Grassmannian Grm−1(Rm) of (m − 1)-dimensional subspaces of
Rm, via ϕ (→ kerϕ. The action of SLm(R) on RP(m)∗ consistent wth this identifi-
cation is

g · ϕ = ϕ ◦ g−1.

We will also assume throughout this paper that our word hyperbolic group does
not have a finite index cyclic subgroup. Since all the word hyperbolic groups we
study are linear, Selberg’s Lemma implies that they contain finite index torsion-free
subgroups.

Gromov [25] defined a geodesic flow U0Γ for a word hyperbolic group – that we
shall call the Gromov geodesic flow – (see Champetier [17] and Mineyev [54] for
details). He defines a proper cocompact action of Γ on ∂∞Γ(2)×R which commutes
with the action of R by translation on the final factor. The action of Γ restricted to
∂∞Γ(2) is the diagonal action arising from the standard action of Γ on ∂∞Γ. There
is a metric on ∂∞Γ(2) ×R, well-defined up to Hölder equivalence, so that Γ acts by
isometries, every orbit of the R action gives a quasi-isometric embedding and the
geodesic flow acts by Lipschitz homeomorphisms. The flow on

'U0Γ = ∂∞Γ(2) × R

descends to a flow on the quotient

U0Γ = ∂∞Γ(2) × R/Γ.

In the case that M is a closed negatively curved manifold and Γ = π1(M), U0Γ may
be identified with T1M in such a way that the flow on U0Γ is identified with the
geodesic flow on T1M . Since the action of Γ on ∂∞Γ2 is topologically transitive,
the Gromov geodesic flow is topologically transitive.

If ρ : Γ → SLm(R) is a representation, we let Eρ be the associated flat bundle
over the geodesic flow of the word hyperbolic group U0Γ. Recall that

Eρ = 'U0Γ× Rm/Γ

where the action of γ ∈ Γ on Rm is given by ρ(γ). If ρ has transverse projective
limit maps ξ and θ, there is an induced splitting of Eρ as

Eρ = Ξ⊕Θ

where Ξ and Θ are sub-bundles, parallel along the geodesic flow, of rank 1 and
m − 1 respectively. Explicitly, if we lift Ξ and Θ to sub-bundles Ξ̃ and Θ̃ of the

bundle 'U0Γ × Rm over 'U0Γ, then the fiber of Ξ̃ above (x, y, t) is simply ξ(x) and

the fiber of Θ̃ is θ(y).
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The R-action on 'U0Γ extends to a flow {ψ̃t}t∈R on 'U0Γ× Rm (which acts trivially

on the Rm factor). The flow {ψ̃t}t∈R descends to a flow {ψt}t∈R on Eρ which is
a lift of the geodesic flow on U0Γ. In particular, the flow respects the splitting
Eρ = Ξ⊕Θ.

In general, we say that a vector bundle E over a compact topological space whose
total space is equipped with a flow {φt}t∈R of bundle automorphisms is contracted
by the flow if for any metric ‖.‖ on E, there exists t0 > 0 such that if v ∈ E, then

‖φt0(v)‖ ! 1

2
‖v‖.

Observe that if bundle is contracted by a flow, its dual is contracted by the inverse
flow. Moreover, if the flow is contracting, it is also uniformly contracting, i.e. given
any metric, there exists positive constants A and c such that

‖φt(v)‖ ! Ae−ct‖v‖
for any v ∈ E.

Definition 2.2. A representation ρ : Γ → SLm(R) with transverse projective
limit maps is projective Anosov if the bundle Hom(Θ,Ξ) is contracted by the flow
{ψt}t∈R.

In the sequel, we will use the notation Θ∗ = Hom(Θ,R). The following alterna-
tive description will be useful.

Proposition 2.3. A representation ρ : Γ → SLm(R) with transverse projective
limit maps ξ and θ is projective Anosov if and only if there exists t0 > 0 such that
for all Z ∈ U0Γ, v ∈ ΞZ \ {0} and w ∈ ΘZ \ {0},

‖ψt0(v)‖
‖ψt0(w)‖

≤ 1

2

‖v‖
‖w‖ . (2)

Proof. Given a projective Anosov representation ρ : Γ → SLm(R) and a metric ‖.‖
on Eρ, let t0 > 0 be chosen so that

‖ψt0(η)‖ ! 1

2
‖η‖.

for all η ∈ Ξ ⊗ Θ∗. If Z ∈ U0Γ, v ∈ ΞZ \ {0} and w ∈ ΘZ \ {0}, then there exists
η ∈ Hom(ΘZ ,ΞZ) = (Ξ⊗Θ∗)Z such that η(w) = v and ‖η‖ = ‖v‖/‖w‖. Then,

‖ψt0(v)‖
‖ψt0(w)‖

≤ ‖ψt0(η)‖ ! 1

2
‖η‖ =

‖v‖
‖w‖ .

The converse is immediate. □

Furthermore, projective Anosov representations are contracting on Ξ.

Lemma 2.4. If ρ : Γ → SLm(R) is projective Anosov, then {ψt}t∈R is contracting
on Ξ.

Proof. Since the bundle Ξ⊗Θ∗ is contracted, so is

Ω = det(Ξ⊗Θ∗) = Ξ⊗(m−1) ⊗ det(Θ∗).

One may define an isomorphism from Ξ to det(Θ)∗ by taking u to the map α →
Vol(u ∧ α). Since det(Θ)∗ is isomorphic to det(Θ∗), it follows that Ω is isomorphic
to Ξ⊗m. Thus Ξ is contracted. □
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It follows from standard techniques in hyperbolic dynamics that our limit maps
are Hölder. We will give a proof of a more general statement in Section 6 (see [41,
Proposition 3.2] for a proof in a special case).

Lemma 2.5. Let ρ be a projective Anosov representation, then the limit maps ξ
and θ are Hölder.

If γ is an infinite order element of Γ, then there is a periodic orbit of U0Γ
associated to γ. If γ+ is the attracting fixed point of γ on ∂∞Γ and γ− is its other
fixed point, then this periodic orbit is the image of (γ+, γ−) × R. Inequality (2)
and Lemma 2.4 applied to the periodic orbit of U0Γ associated to γ imply that
ρ(γ) is proximal and that ξ(γ+) is the eigenspace associated to the largest modulus
eigenvalue of ρ(γ). Similarly, ξ(γ−) is the repelling hyperplane of ρ(γ). It follows
that the limit maps ξ and θ are uniquely determined by ρ (see also [26, Lemmas
3.1 and 3.3]).

Let L(γ)(ρ) denote the eigenvalue of ρ(γ) of maximal absolute value and let
Λ(γ)(ρ) denote the spectral radius of ρ(γ), so Λ(γ)(ρ) = |L(γ)(ρ)|. If S is a fixed
generating set for Γ and γ ∈ Γ, then we let l(γ) denote the translation length of
the action of γ on the Cayley graph of Γ with respect to S; more explicitly, l(γ) is
the minimal word length of any element conjugate to γ. Since the contraction is
uniform and the length of the periodic orbit of U0Γ associated to γ is comparable
to l(γ), we obtain the following uniform estimates:

Proposition 2.6. If ρ : Γ → SLm(R) is a projective Anosov representation, then
there exists δ ∈ (0, 1) such that if γ ∈ Γ has infinite order, then L(γ)(ρ) and
(L(γ−1)(ρ))−1 are both eigenvalues of ρ(γ) of multiplicity one and

ρ(γ) = L(γ)(ρ)pγ +mγ +
1

L(γ−1)(ρ)
qγ

where

• pγ is the projection on ξ(γ+) parallel to θ(γ−),
• qγ = pγ−1 ,
• mγ = A ◦ (1− qγ − pγ) and A is an endomorphism of θ(γ−)∩ θ(γ+) whose
spectral radius is less than

δℓ(γ)Λ(γ)(ρ).

Moreover, we see that ρ is well-displacing in the following sense:

Proposition 2.7. [Displacing property] If ρ : Γ → SLm(R) is a projective
Anosov representation, then there exists constants K > 0 and C > 0, and a neigh-
borhood U of ρ0 in Hom(Γ, SLm(R)) such that that for every γ ∈ Γ and ρ ∈ U we
have

1

K
ℓ(γ)− C ! log(Λ(γ)(ρ)) ! Kℓ(γ) + C, (3)

Proposition 2.7 immmediately implies:

Proposition 2.8. For every real number T , the set

RT (ρ) = {[γ] | log(Λ(γ)(ρ)) ! T}

is finite.
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Remark: Proposition 2.6 is a generalization of results of Labourie [41, Proposition
3.4], Sambarino [63, Lemma 5.1] and Guichard-Wienhard [26, Lemma 3.1]. Propo-
sition 2.7 is a generalization of a result of Labourie [44, Theorem 1.0.1] and a special
case of a result of Guichard-Wienhard [26, Theorem 5.14]. See [22] for a discus-
sion of well-displacing representations and their relationship with quasi-isometric
embeddings.

2.2. Anosov representations. We now recall the general definition of an Anosov
representation and note that projective Anosov representations are examples of
Anosov representations.

We first recall some notation and definitions. Let G be a semi-simple Lie group
with finite center and Lie algebra g. Let K be a maximal compact subgroup of G
and let τ be the Cartan involution on g whose fixed point set is the Lie algebra of
K. Let a = aG be a maximal abelian subspace contained in {v ∈ g : τv = −v}.

For a ∈ a, let M be the connected component of the centralizer of exp a which
contains the identity, and let m denote its Lie algebra. Let Eλ be the eigenspace of
the action of a on g with eigenvalue λ and consider

n+ =
(

λ>0

Eλ,

n− =
(

λ<0

Eλ,

so that

g = m⊕ n+ ⊕ n−. (4)

Then n+ and n− are Lie algebras normalized by M. Let P± the connected Lie
subgroups of G whose Lie algebras are p± = m⊕ n±. Then P+ and P− are opposite
parabolic subgroups. We will say that P+ is non-degenerate if p+ does not contain
a simple factor of g.

We may identify a point ([X], [Y ]) in G/P+×G/P− with the pair (Ad(X)P+,Ad(Y )P−)
of parabolic subgroups. The pair (Ad(X)P+,Ad(Y )P−) is transverse if their inter-
section Ad(X)P+ ∩Ad(Y )P− is conjugate to M.

We now suppose that ρ : Γ → G is a representation of word hyperbolic group
Γ and ξ+ : ∂∞Γ → G/P+ and ξ− : Γ → G/P− are continuous ρ-equivariant maps.
We say that ξ+ and ξ− are transverse if given any two distinct points x, y ∈ ∂∞Γ,
ξ+(x) and ξ−(y) are transverse. The G-invariant splitting described by Equation

(4) then gives rise to bundles over U0Γ. Let )N+
ρ and )N−

ρ be the bundles over 'U0Γ
whose fibers over the point (x, y, t) are

Ad(ξ−(y))n+ and Ad(ξ+(x))n−.

There is a natural action of Γ on )N+
ρ and )N−

ρ , where the action on the fiber is

given by ρ(Γ), and we denote the quotient bundles over U0Γ by N+
ρ and N−

ρ . We

may lift the geodesic flow to a flow on the bundles N+
ρ and N−

ρ which acts trivially
on the fibers.

Definition 2.9. Suppose that G is a semi-simple Lie group with finite center, P+

is a parabolic subgroup of G and Γ is a word hyperbolic group. A representation
ρ : Γ → G is (G,P+)-Anosov if there exist transverse ρ-equivariant maps

ξ+ : ∂∞Γ → G/P+ and ξ− : ∂∞Γ → G/P−
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so that the geodesic flow is contracting on the associated bundle N+
ρ and the inverse

flow is contracting on the bundle N−
ρ .

We now recall some basic properties of Anosov representations which were es-
tablished by Labourie, [41, Proposition 3.4] and [44, Theorem 6.1.3], and Guichard-
Wienhard [26, Theorem 5.3 and Lemma 3.1]. We recall that an element g ∈ G is
proximal relative to P+ if g has fixed points x+ ∈ G/P+ and x− ∈ G/P− so that x+

is transverse to x− and if x ∈ G/P+ is transverse to x− then limn→∞ gn(x) = x+.

Theorem 2.10. Let G be a semi-simple Lie group, P+ a parabolic subgroup, Γ a
word hyperbolic group and ρ : Γ → G a (G,P+)-Anosov representation.

(1) ρ has finite kernel, so Γ is virtually torsion-free.
(2) ρ is well-displacing, so ρ(Γ) is discrete.
(3) If γ ∈ Γ has infinite order, then ρ(γ) is proximal relative to P+

In this language, projective Anosov representations are exactly the same as
(SLm(R),P+)-Anosov representations where P+ is the stabilizer of a line in Rm.

Proposition 2.11. Let P+ be the stabilizer of a line in Rm. A representation
ρ : Γ → SLm(R) is projective Anosov if and only if it is (SLm(R),P+)-Anosov.
Moreover, the limit maps ξ and θ in the definition of projective Anosov representa-
tion agree with the limit maps ξ+ and ξ− in the definition of a (SLm(R),P+)-Anosov
representation.

Proof. If ρ is projective Anosov with limit maps ξ and θ, one may identify SLm(R)/P+

with RP(m) and SLm(R)/P− with RP(m)∗ so that, after letting ξ+ = ξ and ξ− = θ,
N+

ρ is identified with Hom(Θ,Ξ) and N−
ρ is identified with Hom(Ξ,Θ).

The same identification holds if ρ is (SLm(R),P+)-Anosov with limit maps ξ+

and ξ−. □
2.3. Plücker representations. Guichard and Wienhard [26] showed how to ob-
tain a projective Anosov representation from any Anosov representation by post-
composing with a Plücker representation. We first recall the following general
result.

Theorem 2.12. [Guichard-Wienhard [26, Prop. 4.3]] Let φ : G → SL(V ) be a
finite dimensional irreducible representation. Let x ∈ P(V ) and assume that

P = {g ∈ G : φ(g)(x) = x}
is a parabolic subgroup of G with opposite parabolic Q. If Γ is a word hyperbolic
group, then a representation ρ : Γ → G is (G,P)-Anosov if and only if φ ◦ ρ is
projective Anosov.

Furthermore, if ρ is (G,P)-Anosov with limit maps ξ+ and ξ−, then the limit
maps of φ ◦ ρ are given by ξ = β ◦ ξ+ and θ = β∗ ◦ ξ− where β : G/P → P(V ) and
β∗ : G/Q → P(V ∗) are the maps induced by φ.

The following corollary is observed by Guichard-Wienhard [26, Remark 4.12].
We provide a proof here for the reader’s convenience. The representation given in
the proof will be called the Plücker representation of G with respect to P.

Corollary 2.13. [Guichard-Wienhard] For any parabolic subgroup P of a semi-
simple Lie group G with finite center, there exists a finite dimensional irreducible
representation α : G → SL(V ) such that if Γ is a word hyperbolic group and ρ : Γ → G
is a (G,P)-Anosov representation, then α ◦ ρ is projective Anosov.
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Moreover, if P is non-degenerate, then ker(α) = Z(G) and α is an immersion.

Proof. In view of Theorem 2.12 it suffices to find a finite dimensional irreducible
representation α : G → SL(V ) such that α(P) is the stabilizer (in α(G)) of a line in
V.

Let ΛkW denote the k-th exterior power of the vector spaceW. Let n = dim n+ =
dim n− and consider α : G → SL(Λng) given by

α(g) = Λn Ad(g).

One may readily check that the restriction of α to V = 〈α(G) · Λnn+〉 works.
If P is non-degenerate, then ker(α|V ) is a normal subgroup of G which is contained

in P, so ker(α|V ) is contained in Z(G) (see [59]). Since Z(G) is in the kernel of the
adjoint representation, we see that ker(α|V ) = Z(G). Since α|V is algebraic and
Z(G) is finite, it follows that α|V is an immersion. □

If G has rank one, then it contains a unique conjugacy class of parabolic sub-
groups. A representation ρ : Γ → G is Anosov if and only if it is convex cocompact
(see [26, Theorem 5.15]). We then get the following.

We recall that the topological entropy of a convex cocompact representation
ρ : Γ → G of a word hyperbolic group into a rank one semi-simple Lie group is
given by

h(ρ) = lim
T→∞

1

T
log (&{[γ] |d(ρ(γ)) ! T}) ,

where d(ρ(γ)) denotes the translation length of ρ(γ). We obtain the following im-
mediate corollary.

Corollary 2.14. Let G be a rank one semi-simple Lie group, let Γ be a word
hyperbolic group and let α : G → SL(V ) be the Plücker representation. There exists
K > 0, such that if ρ : Γ → G is convex cocompact, then α ◦ ρ is projective Anosov
and

h(α ◦ ρ) = h(ρ)

K
.

Proof. Let λG : G → aG be the Jordan projection of G. Since aG is one dimensional,
we can identify it with R by setting λG(g) = d(g).

Denote by χα ∈ aG the highest (restricted) weight of the representation α (see,
for example, Humphreys [32]). By definition, one has Λ(α(g)) = χα(d(g)), for every
g ∈ G. Hence, since aG is one dimensional, one has

Λ(α(ρ(γ))) = Kd(ρ(γ)) (5)

for every γ ∈ Γ.
It follows immediately that

h(α ◦ ρ) = h(ρ)

K
.

□
2.4. Irreducible representations. Guichard andWienhard [26, Proposition 4.10]
proved that irreducible representations with transverse projective limit maps are
projective Anosov (see also [41] for hyperconvex representations).

Proposition 2.15. [Guichard–Wienhard] If Γ is a word hyperbolic group, then
every irreducible representation ρ : Γ → SLm(R) with transverse projective limit
maps is projective Anosov.
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It will be useful to note that if ρ : Γ → SLm(R) is projective Anosov and
irreducible, then ξ(∂∞Γ) contains a projective frame for RP(m). We recall that a
collection of m+1 elements in RP(m) is a projective frame if every subset containing
m elements spans Rm. We first prove the following lemma.

Lemma 2.16. Let ρ : Γ → SLm(R) be a representation with a continuous ρ-equivariant
map ξ : ∂∞Γ → RP(m), then the preimage ξ−1(V ) of a vector subspace V ⊂ Rm is
either ∂∞Γ or has empty interior on ∂∞Γ.

Proof. Choose {x1, . . . , xp} ⊂ ∂∞Γ so that {ξ(x1), . . . , ξ(xp)} spans the vector sub-
space 〈ξ(∂∞Γ)〉 spanned by ξ(∂∞Γ).

Suppose that ξ−1(V ) = {x ∈ ∂∞Γ : ξ(x) ∈ V } has non-empty interior in ∂∞Γ.
Choose γ ∈ Γ so that γ− /∈ {x1, . . . , xp} and γ+ belongs to the interior of ξ−1(V ).

Since γn(xi) → γ+ for every i ∈ {1, . . . , p}, if we choose n large enough, then
γn(xi) is contained in the interior of ξ−1(V ), so ξ(γnxi) ∈ V. Since {ξ(γn(x1)), . . . , ξ(γ

n(xp))}
still spans 〈ξ(∂∞Γ)〉, we see that 〈ξ(∂∞Γ)〉 ⊂ V , in which case ξ−1(V ) = ∂∞Γ. □

The following generalization of the fact that every irreducible projective Anosov
representation admits a projective frame will be useful in Section 11.

Lemma 2.17. Let ρ1 : Γ → SLm(R) and ρ2 : Γ → SLm(R) be representa-
tions with continuous equivariant limit maps ξ1 and ξ2 such that dim 〈ξ1(∂∞Γ)〉 =
dim 〈ξ2(∂∞Γ)〉 = p. Then there exist p+1 distinct points {x0, . . . , xp} in ∂∞Γ such
that

{ξ1(x0), . . . , ξ1(xp)} and {ξ2(x0), . . . , ξ2(xp)}
are projective frames of 〈ξ1(∂∞Γ)〉 and 〈ξ2(∂∞Γ)〉 respectively.

Proof. We first proceed by iteration to produce {x1, . . . , xp} so that {ξ1(x1), . . . , ξ1(xp)}
and {ξ2(x1), . . . , ξ2(xp)} generate

V = 〈ξ1(∂∞Γ)〉 and W = 〈ξ2(∂∞Γ)〉 .
Assume we have found {x1, . . . , xk} so that {ξ1(x1), . . . , ξ1(xk)} and {ξ2(x1), . . . , ξ2(xk)}
are both linearly independent. Define

Vk = 〈{ξ1(x1), . . . , ξ1(xk)}〉 and Wk = 〈{ξ2(x1), . . . , ξ2(xk)}〉 .
By the previous lemma, if k < p, then ξ−1

1 (Vk) and ξ−1
2 (Wk) have empty interior,

so their complements must intersect. Pick

xk+1 ∈ ξ−1
1 (Vk)

c ∩ ξ−1
2 (Wk)

c.

This process is complete when k = p.
It remains to find x0. For each i = 1, . . . , p, let

U1
i = 〈{ξ1(x1), . . . , ξ1(xp)} \ {ξ1(xi)}〉

and
U2
i = 〈{ξ2(x1), . . . , ξ2(xp)} \ {ξ2(xi)}〉 .

Then, choose

x0 ∈
*

i

ξ−1
1 (U1

i )
c ∩ ξ−1

2 (U2
i )

c.

One easily sees that {x0, . . . , xp} has the claimed properties. □

If ρ : Γ → SLm(R) is projective Anosov and irreducible, then 〈ξ(∂∞Γ)〉 = Rm

(since 〈ξ(∂∞Γ)〉 is ρ(Γ)-invariant), so Lemma 2.17 immediately gives:
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Lemma 2.18. If ρ : Γ → SLm(R) is an irreducible projective Anosov representa-
tion with limit maps ξ and θ, then then there exist {x0, . . . , xm} ⊂ ∂∞Γ so that
{ξ(x0), . . . , ξ(xm)} is a projective frame for RP(m).

We will also need the following lemma which was explained to us by J.-F. Quint.

Lemma 2.19. [Quint] If ∆ is an irreducible subgroup of SLm(R) that contains
a proximal element, then the Zariski closure G of ∆ is a semi-simple Lie group
without compact factors whose center Z(G) ⊂ {±I}.
Proof. Since G acts irreducibly on Rm, it is a reductive group. Moreover, since G
contains a proximal matrix, one easily sees that attracting lines of proximal matrices
in G span Rm, and that each attracting line of a proximal matrix in G is invariant
under Z(G). Therefore, Z(G) ⊂ {±I}, so G is a semi-simple Lie group.

Let K be the maximal normal connected compact subgroup of G, and let H be
the product of the non-compact Zariski connected, simple factors of G. Then H and
K commute and HK has finite index in G.

Consider now a proximal element g ∈ G. Replacing g by a large enough power,
we can assume that g = hk for some h ∈ H and k ∈ K. Since all eigenvalues of k
have modulus 1 and k and h commute, we conclude that h is proximal. So we can
assume that g ∈ H.

Since g and K commute, the attracting line of g is fixed by K, and, since K is
connected, each vector of this attracting line is fixed by K. Let W be the vector
space of K-fixed vectors on Rm, then W is G-invariant , since K is normal in G, and
nonzero. Since G is irreducible, W = Rm and so K = {I}. □

Proposition 2.6 and Lemma 2.19 together have the following immediate conse-
quence.

Corollary 2.20. Let ρ : Γ → SLm(R) be an irreducible projective Anosov repre-
sentation, then the Zariski closure Gρ of ρ(Γ) is a semi-simple Lie group without
compact factors such that Z(Gρ) ⊂ {±I}.
2.5. G-generic representations. Let G be a reductive subgroup of SLm(R). We
recall that an element in G is generic if its centralizer is a maximal torus in G. We
say that a representation ρ : Γ → SLm(R) of Γ is G-generic if ρ(Γ) ⊂ G and the

Zariski closure ρ(Γ)
Z
of ρ(Γ) contains a G-generic element.

We will need the following observation.

Lemma 2.21. If G is a reductive subgroup of SLm(R) and ρ : Γ → G is a G-generic
representation, then there exists γ ∈ Γ such that ρ(γ) is a generic element of G.

Proof. We first note that the set of non-generic elements of G is Zariski closed in
G, so the set of generic elements is Zariski open in G. Therefore, if the Zariski
closure of ρ(Γ) contains generic elements of G, then ρ(Γ) must itself contain generic
elements of G. □

3. Thermodynamic formalism

In this section, we recall facts from the thermodynamic formalism, as developed
by developed by Bowen [12, 13], Parry–Pollicott [55], Ruelle [61] and others, which
we will need in our work. In section 3.5, we will describe a variation of a construction
of McMullen [53], which produces a pressure form on the space of pressure zero
functions on a flow space. Our pressure metric will be a pull-back of this form.
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3.1. Hölder flows on compact spaces. Let X be a compact metric space with
a Hölder continuous flow φ = {φt}t∈R without fixed points.

3.1.1. Flows and parametrisations. Let f : X → R be a positive Hölder continuous
function. Then, since X is compact, f has a positive minimum and for every x ∈ X,

the function κf : X × R → R, defined by κf (x, t) =
+ t

0
f(φsx)ds, is an increasing

homeomorphism of R. We then have a map αf : X × R → R that verifies

αf (x,κf (x, t)) = κf (x,αf (x, t)) = t, (6)

for every (x, t) ∈ X × R.
The reparametrization of φ by f, is the flow φf = {φf

t }t∈R on X, defined by

φf
t (x) = φαf (x,t)(x), for all t ∈ R and x ∈ X.

3.1.2. Livšic-cohomology classes. Two Hölder functions f, g : X → R are Livšic-
cohomologous if there exists V : X → R of class C1 in the flow’s direction such
that

f(x)− g(x) =
∂

∂t

&&&&
t=0

V (φt(x)).

Then one easily notices that:

(1) If f and g are Livšic cohomologous then they have the same integral over
any φ-invariant measure, and

(2) If f and g are both positive and Livšic cohomologous, then the flows φf

and φg are Hölder conjugate.

3.1.3. Periods and measures. Let O be the set of periodic orbits of φ. If a ∈ O then

its period as a {φf
t } periodic orbit is

, p(a)

0

f(φs(x))ds

where p(a) is the period of a for φ and x ∈ a. In particular, if -δa is the probability
measure invariant by the flow and supported by the orbit a, and if

-δa =
δa

〈δa|1〉
,

then

〈δa|f〉 =
, p(a)

0

f(φs(x))ds and p(a) = 〈δa|1〉 .

In general, if µ is a φ-invariant measure on X and f : X → R is a Hölder function,
we will use the notation

〈µ|f〉 =
,

X

fdµ.

Let µ be a φ-invariant probability measure on X and let φf be the reparametriza-

tion of φ by f . We define .f.µ by

.f.µ =
1

〈µ|f〉f.µ.
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The map µ (→ .f.µ induces a bijection between φ-invariant probability measures

and φf -invariant probability measures. If -δfa is the unique φf invariant probability

measure supported by a, then -δfa = /f.δa. In particular, we have

〈-δfa |g〉 =
〈δa|f.g〉
〈δa|f〉

(7)

3.1.4. Entropy, pressure and equilibrium states. If µ is a φ-invariant probability
measure on X, then we denote by h(φ, µ), its metric entropy. The Abramov formula
[1] relates the metric entropies of a flow and its reparameterization:

h(φf , .f.µ) = 1+
f dµ

h(φ, µ). (8)

Let Mφ denote the set of φ-invariant probability measures. The pressure of a
function f : X → R is defined by

P(φ, f) = sup
m∈Mφ

0
h(φ,m) +

,

X

f dm

1
. (9)

In particular,

htop(φ) = P(φ, 0)

is the topological entropy of the flow φ.
A measure m ∈ Mφ on X such that

P(φ, f) = h(φ,m) +

,

X

fdm,

is called an equilibrium state of f .
An equilibrium state for the function f ≡ 0 is called a measure of maximal

entropy.

Remark: The pressure P(φ, f) only depends on the Livšic cohomology class of
f .

The following lemma from Sambarino [63] is a consequence of the definition and
the Abramov formula.

Lemma 3.1. (Sambarino [63, Lemma 2.4]) If φ is a Hölder continuous flow on a
compact metric space X and f : X → R is a positive Hölder continuous function,
then

P (φ,−hf) = 0

if and only if h = htop(φ
f ).

Moreover, if h = htop(φ
f ) and m is an equilibrium state of −hf , then /f.m is a

measure of maximal entropy for the reparameterized flow φf .

3.2. Metric Anosov flows. We shall assume from now on that the flow {φt}t∈R
is a topologically transitive metric Anosov flow on X.

We recall that a flow {φ}t∈R on a metric space X is topologically transitive if
given any two open sets U and V in X, there exists t ∈ R so that φt(U) ∩ V is
non-empty.

Let X be metric space. Let L be an equivalence relation on X. We denote by Lx

the equivalence class of x and call it the leaf through x, so that we have a partition
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of X into leaves

X =
2

y∈Y

Ly,

where Y is the collection of equivalence classes of L. Such a partition is a lamination
if we can for every x in X, an open neighbourhood Ox of x, two topological spaces U
and K, a homeomorphism νx = (ν1x, ν

2
x) called a chart from Ox to U ×K satisfying

the following conditions

• for all z, w ∈ Ox ∩Oy,

ν1x(w) = ν1x(z) ⇐⇒ ν1y(w) = ν1y(z),

• we have that w L z if and only if there exists a sequence wi, i ∈ {1, . . . n}
with w1 = w and wn = z, such that wi+1 ∈ Owi and ν1wi

(wi) = ν1wi
(wi+1).

A plaque open set in the chart corresponding to ν is a set of the form ν (O × {z0})
where x = ν(y0, z0) and O is an open set in U containing y0. The plaque topology
on Lx is the topology generated by the plaque open sets. A plaque neighborhood of
x is a neighborhood for the plaque topology on Lx.

We say that two laminations L and L′ define a local product structure, if for
any point x in X there exist plaque neighborhoods U and U ′ of x in L and L′

respectively, and a map ν : U ×U ′ → X, which is an homeomorphism onto an open
set of X, such that ν is both a chart for L and for L′.

Assume now we have a flow {φt}t∈R on X. If L is a lamination invariant by {φt},
we say that L is transverse to the flow, if for every x in X, there exists a plaque
neighborhood U of x in Lx, a topological space K, ε > 0, and a chart

ν : U ×K × (−ε, ε) → X,

such that

φt(ν(u, k, s)) = ν(u, k, s+ t).

If L is tranverse to the flow, we define a new lamination, called the central lamina-
tion with respect to L, denoted by Lc, by letting xLc y if and only if there exists s
such that φs(x)L y.

Finally, a {φt} invariant lamination L is contracted by the flow, if there exists
t0 > 0 such that for all x ∈ X, there exists a chart νx : U × K → V of an open
neighborhood V of x, such that if

z = νx(u, k), and y = νx(v, k),

then for all t > t0

d(φt(z),φt(y)) <
1

2
d(z, y).

Definition 3.2. [Metric Anosov flow] A flow {φt}t∈R on a compact metric
space X is metric Anosov, if there exist two laminations, L+ and L−, transverse
to the flow, such that

(1) (L+,L−,c) defines a local product structure,
(2) (L−,L+,c) defines a local product structure,
(3) L+ is contracted by the flow, and
(4) L− is contracted by the inverse flow.

Then L+, L−, L+,c, L−,c are respectively called the stable, unstable, central stable
and central unstable laminations.
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Remark: In the language of Pollicott [57], a metric Anosov flow is a Smale flow:
the local product structure of (L+,L−,c) is what he calls the map

〈·, ·〉 : {(x, y) ∈ X ×X : d(x, y) < ε} → X.

3.2.1. Livšic’s Theorem. Livšic [49] shows that the Livšic cohomology class of a
Hölder function f : X → R is determined by its periods:

Theorem 3.3. Let f : X → R be a Hölder continuous function, then 〈δa|f〉 = 0
for every a ∈ O if and only if f is Livšic cohomologous to zero.

3.2.2. Coding. We shall say that the triple (Σ,π, r) is a Markov coding for φ if Σ is
an irreducible two-sided subshift of finite type, the maps π : Σ → X and r : Σ → R∗

+

are Hölder-continuous and verify the following conditions: Let σ : Σ → Σ be the
shift, and let r̂ : Σ× R → Σ× R be the homeomorphism defined by

r̂(x, t) = (σx, t− r(x)),

then

i) the map Π : Σ × R → X defined by Π(x, t) = φt(π(x)) is surjective and
r̂-invariant,

ii) consider the suspension flow σr = {σr
t }t∈R on (Σ×R)/r̂, then the induced

map Π : (Σ× R)/r̂ → X is bounded-to-one and, injective on a residual set
which is of full measure for every ergodic invariant measure of total support
of σr.

Remark: If a flow φ admits a Markov coding, then every reparametrization φf

of φ also admits a Markov coding, simply by changing the roof function r.
We recall, see Remark 3.2, that a metric Anosov flow is a Smale flow. One then

has the following theorem of Bowen [12, 13] and Pollicott [57].

Theorem 3.4. A topologically transitive metric Anosov flow on a compact metric
space admits a Markov coding.

3.3. Entropy and pressure for Anosov flows. The thermodynamic formalism
of suspensions of subshifts of finite type extends thus to topologically transitive
metric Anosov flows. For a positive Hölder function f : X → R+ and T ∈ R, we
define

RT (f) = {a ∈ O | 〈δa|f〉 ! T}.
Observe that RT (f) only depends on the cohomology class of f .

3.3.1. Entropy. For a topologically transitive metric Anosov flow Bowen [12] (see
also Pollicott [57]) showed:

Proposition 3.5. The topological entropy of a topologically transitive metric Anosov
flow φ = {φt}t∈R on a compact metric space X is finite and positive. Moreover,

htop(φ) = lim
T→∞

1

T
log & {a ∈ O | p(a) ! T} .

In particular, for a nowhere vanishing Hölder continuous function f ,

hf = lim
T→∞

1

T
log & (RT (f)) = htop(φ

f )

is finite and positive.
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3.3.2. Pressure. The Markov coding may be used to show the pressure of a Hölder
function g : X → R is finite and that there is a unique equilibrium state of g. We
shall denote this equilibrium state as mg.

Theorem 3.6. [Bowen–Ruelle [15],Pollicott [57]] Let φ = {φt}t∈R be a
topologically transitive metric Anosov flow on a compact metric space X and let
g : X → R be a Hölder function, then there exists a unique equilibrium state mg

for g. Moreover, if f : X → R is a Hölder function such that mf = mg, then f − g
is Livšic cohomologous to a constant.

The pressure function has the following alternative formulation in this setting
(see Bowen–Ruelle [15]):

P(φ, g) = lim
T→∞

1

T
log

!

"
#

a∈RT (1)

e〈δa|g〉

$

% . (10)

3.3.3. Measure of maximal entropy. We have the following equidistribution result
of Bowen [12] (see also Pollicott [57]).

Theorem 3.7. A topologically transitive metric Anosov flow φ = {φt}t∈R on a
compact metric space X has a unique probability measure µφ of maximal entropy.
Moreover,

µφ = lim
T→∞

!

" 1

&RT (1)

#

a∈RT (1)

-δa

$

% . (11)

The probability measure of maximal entropy for φ is called the Bowen–Margulis
measure of φ.

3.4. Intersection and renormalised intersection.

3.4.1. Intersection. Let φ = {φt}t∈R be a topologically transitive metric Anosov
flow on a compact metric space X. Consider a positive Hölder function f : X → R+

and a continuous function g : X → R. We define the intersection of f and g as

I(f, g) =

,
g

f
dµφf ,

where µφf is the Bowen–Margulis measure of the flow φf . We also have the following
two alternative ways to define the intersection

I(f, g) = lim
T→∞

!

" 1

&RT (f)

#

a∈RT (f)

〈δa|g〉
〈δa|f〉

$

% (12)

I(f, g) =

+
g dm−hff+
f dm−hff

(13)

where hf is the topological entropy of φf , and m−hf .f is the equilibrium state of
−hf .f . The first equality follows from Theorem 3.7 and Equation (7), the second
equality follows from the second part of Lemma 3.1.

Since 〈δa|f〉 depends only on the Livšic cohomology class of f and 〈δa|g〉 depends
only on the Livšic cohomology class of g, the intersection I(f, g) depends only on
the Livšic cohomology classes of f and g.
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3.4.2. A lower bound on the renormalized intersection. For two positive Hölder
functions f, g : X → R+ define the renormalized intersection as

J(f, g) =
hg

hf
I(f, g),

where hf and hg are the topological entropies of φf and φg. Uniqueness of equilib-
rium states together with the definition of the pressure imply the following propo-
sition.

Proposition 3.8. If φ = {φt}t∈R is a topologically transitive metric Anosov flow
on a compact metric space X, and f : X → R+ and g : X → R+ are positive Hölder
functions, then

J(f, g) " 1.

Moreover, J(f, g) = 1 if and only if hff and hgg are Livšic cohomologous.

Proof. Since P(φ,−hgg) = 0,

hg

,
g dm " h(φ,m)

for all m ∈ Mφ and, by Theorem 3.6, equality holds only for m = m−hgg, the
equilibrium state of −hgg. Applying the analogous inequality for m−hff , together
with Abramov’s formula (8) and Lemma 3.1, one sees that

hg

,
g dm−hf .f " h(φ,m−hf .f ) = hf

,
f dm−hf .f ,

which implies that J(f, g) " 1.
If J(f, g) = 1, then m−hgg = m−hff and thus, applying theorem 3.6, one sees

that hgg − hff is Livšic cohomologous to a constant c. Thus,

0 = P(φ,−hgg) = P(φ,−hff − c) = P(φ,−hff)− c = −c.

Therefore, hgg and hff are Livšic cohomologous. □

3.5. Variation of the pressure and the pressure form. McMullen [53] intro-
duced a pressure metric on the space of Livšic cohomology classes of pressure zero
Hölder functions on a shift space Σ. In this section, we use his construction to
produce a pressure form, and associated semi-norm, on the space of pressure zero
Hölder functions on our flow space X.

3.5.1. First and second derivatives. For g a Hölder continuous function with mean
zero (i.e.

+
g dmf = 0), we define the variance of g with respect to f as

Var(g,mf ) = lim
T→∞

1

T

, 3, T

0

g(φs(x))ds

42

dmf (x),

where mf is the equilibrium state of f. Similarly, for two mean zero Hölder con-
tinuous functions g and h, we define the covariance of g and h with respect to f
as

Cov(g, h,mf ) = lim
T→∞

1

T

, 3, T

0

g(φs(x))ds

43, T

0

h(φs(x))ds

4
dmf (x).
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Since mf is invariant with respect to flow φt, we may rewrite this as

Cov(g, h,mf ) = lim
T→∞

,
g(x)

3, T

−T

h(φs(x))ds

4
dmf (x).

We shall omit the background flow in the notation of the pressure function and
simply write

P(·) = P(φ, ·).

Proposition 3.9. (Parry-Pollicott [55, Prop. 4.10,4.11], Ruelle [61]) Sup-
pose that φ = {φt}t∈R is a topologically transitive metric Anosov flow on a compact
metric space X, and f : X → R and g : X → R are Hölder functions. If mf is the
equilibrium state of f , then

(1) The function t (→ P(f + tg) is analytic,
(2) The first derivative is given by

∂P(f + tg)

∂t

&&&&
t=0

=

,
g dmf ,

(3) If
+
g dmf = 0 then

∂2P(f + tg)

∂t2

&&&&
t=0

= Var(g,mf ),

(4) If Var(g,mf ) = 0 then g is Livšic cohomologous to zero.

3.5.2. The pressure form. Let Ch(X) be the set of real valued Hölder continuous
functions on X. Define P(X) to be the set of pressure zero Hölder functions on X,
i.e.

P(X) =
5
Φ ∈ Ch(X) : P(Φ) = 0

6
.

The tangent space of P(X) at Φ is the set

TΦP(X) = ker dΦP =

7
g ∈ Ch(X) |

,
g dmΦ = 0

8

wheremΦ is the equilibrium state of Φ.Define the pressure semi-norm of g ∈ TΦP(X)
as

‖g‖2P = −Var(g,mΦ)+
Φ dmΦ

.

One has the following computation.

Lemma 3.10. Let φ = {φt}t∈R be a topologically transitive metric Anosov flow
on a compact metric space X. If {Φt}t∈(−1,1) is a smooth one parameter family
contained in P(X), then

‖Φ̇0‖2P =

+
Φ̈0 dmΦ0+
Φ0 dmΦ0

.

Proof. As P(Φt) = 0 by differentiating twice we get the equation

D2P(Φ0)(Φ̇0, Φ̇0) + DP(Φ0)(Φ̈0) = 0 = Var(Φ̇0,mΦ0) +

,
Φ̈0dmΦ0 .

Thus

‖Φ̇0‖2P = −Var(Φ̇0,mΦ)+
Φ0 dmΦ0

=

+
Φ̈0 dmΦ0+
Φ0 dmΦ0

.

□
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We then have the following relation, generalizing Bonahon [11], between the
renormalized intersection and the pressure metric.

Proposition 3.11. Let φ = {φt}t∈R be a topologically transitive metric Anosov
flow on a compact metric space X. If {ft : X → R+}t∈(−1,1) is a one-parameter
family of positive Hölder functions and Φt = −hftft for all t ∈ (−1, 1), then

∂2

∂t2

&&&&
t=0

J(f0, ft) = ‖Φ̇0‖2P.

Proof. By Equation (13) and the definition of the renormalised intersection, we see
that

J(f0, ft) =

+
Φt dmΦ0+
Φ0 dmΦ0

.

Differentiating twice and applying the previous lemma, one obtains

∂2

∂t2

&&&&
t=0

J(f0, ft) =

+
Φ̈0 dmΦ0+
Φ0 dmΦ0

= ‖Φ̇0‖2P

which completes the proof. □

So, the pressure semi-norm arises naturally from the pressure form p which is
the symmetric 2-tensor on TΦP(X) given by the Hessian of JΦ = J(Φ, ·). One may
compute that if f, g ∈ TΦP(X), then

p(f, g) = −Cov(f, g,mΦ)+
Φ dmΦ

.

3.6. Analyticity of entropy, pressure and intersection. We now show that
pressure, entropy and intersection vary analytically for analytic families of positive
Hölder functions.

Proposition 3.12. Let φ = {φt}t∈R be a topologically transitive metric Anosov
flow on a compact metric space X. Let {fu : X → R}u∈D and {gv : X → R}v∈D

be two analytic families of Hölder functions. Then the function

u (→ P(fu)

is analytic. Moreover, if the family {fu}u∈D consists of positive functions then the
functions

u (→ hu = hfu , (14)

(u, v) (→ I(fu, gv). (15)

are both analytic.

Proof. Since the pressure function is analytic on the space of Hölder functions (see
Parry-Pollicott [55, Prop. 4.7] or Ruelle [61, Cor. 5.27]) the function u (→ P(fu) is
analytic.

Since the family {fu}u∈D consists of positive functions, Proposition 3.9 implies
that

d

dt

&&&&
t=hu

P(−tfu) =
d

dt

&&&&
t=hu

P(−hufu − (t− hu)fu) = −
,

fudm−hufu < 0.

Thus an application of the Implicit Function Theorem yields that u (→ hu is ana-
lytic.
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We also get that

(u, v, t) (→ d

dt

&&&&
t=0

P(−hufu + tgv),

is analytic. But, applying Proposition 3.9 again,

d

dt

&&&&
t=0

P(−hufu + tgv) =

,
gv dm−hufu .

Thus the function (u, v) (→
+
gv dm−hufu is analytic. Similarly (taking gv = fu),

the function u (→
+
fu dm−hufu is analytic. Thus, we get, by Equation (13) that

(u, v) (→ I(fu, gv) =

+
gvdm−hufu+
fudm−hufu

,

is analytic.
□

4. The geodesic flow of a projective Anosov representation

In this section, we define a flow (UρΓ, {φt}t∈R) associated to a projective Anosov
representation ρ : Γ → SLm(R). We will show that UρΓ is a Hölder reparameteriza-
tion of the geodesic flow U0Γ of the domain group Γ, so it will make sense to refer
to UρΓ as the geodesic flow of the representation.

Let F be the total space of the bundle over

RP(m)(2) = RP(m)× RP(m)∗ \ {(U, V ) | U ∕⊂ V },

whose fiber at the point (U, V ) is the space

M(U, V ) = {(u, v) | u ∈ U, v ∈ V, 〈v|u〉 = 1}/ ∼,

where (u, v) ∼ (−u,−v) and RP(m)∗ is identified with the projective space of the
dual space (Rm)∗. Notice that u determines v, so that F is an R-bundle. One may
also identify M(U, V ) with the space of norms on U .

Then F is equipped with a natural R-action, given by

φt(U, V, (u, v)) = (U, V, (etu, e−tv)).

If ρ : Γ → SLm(R) is a projective Anosov representation and ξ and θ are the
associated limit maps, we consider the associated pullback bundle

Fρ = (ξ, θ)∗F

over ∂∞Γ(2) which inherits an R action from the action on F . The action of Γ on
∂∞Γ(2) extends to an action on Fρ. If we let

UρΓ = Fρ/Γ,

then the R-action on Fρ descends to a flow {φt}t∈R on UρΓ, which we call the
geodesic flow of the representation.

Proposition 4.1. [The geodesic flow] If ρ : Γ → SLm(R) is a projective Anosov
representation, then the action of Γ on Fρ is proper and cocompact. Moreover, the
flow {φt}t∈R on UρΓ is Hölder conjugate to a Hölder reparameterization of the
Gromov geodesic flow on U0Γ and the orbit associated to [γ], for any infinite order
primitive element γ ∈ Γ, has period Λ(ρ)(γ).
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We produce a Γ-invariant Hölder orbit equivalence between 'U0Γ and Fρ which

is a homeomorphism. Recall that 'U0Γ = ∂∞Γ(2)×R and that 'U0Γ/Γ = U0Γ. Since

the action of Γ on 'U0Γ is proper and cocompact, it follows immediately that UρΓ
is Hölder conjugate to a Hölder reparameterization of the Gromov geodesic flow on
U0Γ.

Proposition 4.2. If ρ : Γ → SLm(R) is a projective Anosov representation, there
exists a Γ-equivariant Hölder orbit equivalence

ν̃ : 'U0Γ → Fρ

which is a homeomorphism.

Let Eρ be the flat bundle associated to ρ on U0Γ. Recall that Eρ splits as

Eρ = Ξ⊕Θ.

Let {ψt}t∈R be the lift of the geodesic flow on U0Γ to a flow on Eρ. We first observe
that we may produce a Hölder metric on the bundle Ξ which is contracting on all
scales.

Lemma 4.3. There exists a Hölder metric τ0 on the bundle Ξ and β > 0 such that
for all t > 0 we have,

ψ∗
t (τ

0) < e−βtτ0.

Proof. Let τ be any Hölder metric on Ξ. Since ρ is projective Anosov, Lemma 2.4
implies that there exists t0 > 0 such that

ψ∗
t0(τ) !

1

4
τ.

Choose β > 0 so that 2 < eβt0 < 4 and, for all s, let τs = ψ∗
s (τ). Let

τ0 =

, t0

0

eβsτs ds.

Notice that τ0 has the same regularity as τ . If t > 0, then

ψ∗
t (τ

0) =

, t0

0

eβsτt+s ds

= e−βt

, t+t0

t

eβuτu du. (16)

Now observe that
, t+t0

t

eβuGu du = τ0 +

, t+t0

t0

eβuτudu−
, t

0

eβuτu du

= τ0 +

, t

0

eβuψ∗
u

9
eβt0ψ∗

t0(τ)− τ
:
du. (17)

But

eβt0ψ∗
t0(τ) !

eβt0

4
τ < τ.

Thus , t+t0

t

eβuτu du < τ0.

and the result follows from Inequality (16). □
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Proof of Proposition 4.2 Let τ0 be the metric provided by Lemma 4.3 and let β
be the associated positive number. Let Ξ̃ denote the line bundle over ∂∞Γ(2) × R
which is the lift of Ξ. Notice that τ0 lifts to a Hölder metric τ̃0 on Ξ̃. Our Hölder
orbit equivalence

ν̃ : ∂∞Γ(2) × R → Fρ

will be given by
ν̃(x, y, t) = (x, y, (u(x, y, t), v(x, y, t))) ,

where τ̃0(x,y,t)(u(x, y, t)) = 1 and τ̃0(x,y,t) is the metric on the line ξ(x) induced by

the metric G̃0 by regarding ξ(x) as the fiber of Ξ̃ over the point (x, y, t). The fact
that ψ∗

t τ
0 < τ0 for all t > 0 implies that ν̃ is injective. Since τ̃0 is Hölder and

Γ-equivariant, ν̃ is also Hölder and Γ-equivariant.
It remains to prove that ν̃ is proper. We will argue by contradiction. If ν̃ is

not proper, then there exists a sequence {(xn, yn, tn)}n∈N leaving every compact
subset of ∂∞Γ(2) × R, such that {ν̃(xn, yn, tn)}n∈N converges to (x, y, (u, v)) in Fρ.
Letting ν̃(xn, yn, tn) = (xn, yn, (un, vn)), we see immediately that

lim
n→∞

xn = x, lim
n→∞

yn = y, and lim
n→∞

(un, vn) = (u, v).

Writing ν̃(xn, yn, 0) = (xn, yn, (ûn, v̂n)) and ν̃(x, y, 0) = (x, y, (û, v̂)), we obtain, by
the continuity of the map ν̃,

lim
n→∞

(ûn, v̂n) = (û, v̂).

If t > 0, then

τ̃0(x,y,t)

τ̃0(x,y,0)
=

ψ∗
t

;
τ̃0(x,y,0)

<

τ̃0(x,y,0)
< e−βt.

In particular, &&&&
〈v | un〉
〈v | ûn〉

&&&& < e−βtn . (18)

Without loss of generality, either tn → ∞ or tn → −∞. If tn → ∞, then by
Inequality (18),

0 = lim
n→∞

〈v | un〉
〈v | ûn〉

,

on the other hand,

lim
t→∞

〈v | un〉
〈v | ûn〉

=
〈v | u〉
〈v | û〉 ∕= 0.

We have thus obtained a contradiction. Symmetrically, if tn → −∞, then

0 = lim
n→∞

〈v | ûn〉
〈v | un〉

=
〈v | û〉
〈v | u〉 ∕= 0,

which is again a contradiction.
The restriction of ν̃ to each orbit {(x, y)}× R is a proper, continuous, injection

into the fiber of Fρ over (x, y) (which is also homeomorphic to R). It follows that
the restriction of ν̃ to each orbit is a homeomorphism onto the image fiber. We
conclude that ν̃ is surjective and hence a proper, continuous, bijection. Therefore,
ν̃ is a homeomorphism. This completes the proof of Proposition 4.2.

In order to complete the proof of Proposition 4.1, it only remains to compute the
period of the orbit associated to [γ] for an infinite order primitive element γ ∈ Γ.
Since ρ is projective Anosov, Proposition 2.6 implies that ρ(γ) is proximal, ξ(γ+)
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is the attracting line and θ(γ−) is the repelling hyperplane. If u ∈ ξ(γ+) and
v ∈ θ(γ−) one sees that

ρ(γ)(u) = L(γ)(ρ) u and ρ(γ)(v) =
1

L(γ)(ρ)
v.

Thus, (γ+, γ−, (u, v)) and

(γ+, γ−, L(γ)(ρ)u,
1

L(γ)(ρ)
v) = φlog(Λ(γ)(ρ))(γ

+, γ−, (u, v))

project to the same point on UρΓ. (Recall that

(L(γ)(ρ)u,
1

L(γ)(ρ)
v) ∼ (−L(γ)(ρ)u,

−1

L(γ)(ρ)
v)

in M(ξ(γ+), θ(γ−)).) Since γ is primitive, this finishes the proof. □

5. The geodesic flow is a metric Anosov flow

In this section, we prove that the geodesic flow of a projective Anosov represen-
tation is a metric Anosov flow:

Proposition 5.1. [Anosov] If ρ : Γ → SLm(R) is a projective Anosov repre-
sentation, then the geodesic flow (UρΓ, {φt}t∈R) is a topologically transitive metric
Anosov flow.

The reader with a background in hyperbolic dynamics may be convinced by the
following heuristic argument: essentially the splitting of an Anosov representation
yields a section of some (product of) flag manifolds and the graph of this section
should be thought as a Smale locally maximal hyperbolic set; then the result follows
from the “fact” that the restriction of the flow on such a set is a metric Anosov
flow. However, the above idea does not exactly work, and moreover it is not easy
to extricate it from the existing literature in the present framework. Therefore, we
give a detailed and ad-hoc construction, although the result should be true in a
rather general setting.

The topological transitivity of (UρΓ, {φt}t∈R) follows immediately from the topo-
logical transitivity of the action of Γ on ∂∞Γ2. We define a metric on the geodesic
flow in Section 5.1, introduce the stable and unstable leaves in Section 5.2, explain
how to control the metric along the unstable leaves in Section 5.3 and finally pro-
ceed to the proof in Section 5.4. A more precise version of Proposition 5.1 is given
by Proposition 5.7.

5.1. The geodesic flow as a metric space. Recall that F is the total space of
an R-bundle over RP(m)(2) whose fiber at the point (U, V ) is the space

M(U, V ) = {(u, v) | u ∈ U, v ∈ V, 〈v|u〉 = 1}/ ∼ .

Since RP(m)(2) ⊂ RP(m) × RP(m)∗, any Euclidean metric on Rm gives rise to a
metric on F which is a subset of

RP(m)× RP(m)∗ ×
99
Rm × (Rm)

∗:
/± 1

:
.

The metric on F pulls back to a metric on Fρ. A metric on Fρ obtained by this
procedure is called a linear metric. Any two linear metrics are bilipschitz equivalent.

The following lemma allows us to use a linear metric to study Fρ.
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Lemma 5.2. There exists a Γ-invariant metric d0 on Fρ which is locally bilipschitz
equivalent to any linear metric.

The Γ-invariant metric d0 descends to a metric on UρΓ which we will also call
d0 and is defined for every x and y in Fρ by

d0(π(x),π(y)) = inf
γ∈Γ

(x, γ(y)),

where π is the projection Fρ → UρΓ.

Proof. We first notice that all linear metrics on Fρ are bilipschitz to one another,
so that it suffices to construct a metric which is locally bilipschitz to a fixed linear
metric d.

Let V be an open subset of Fρ with compact closure which contains a closed
fundamental domain for the action of Γ on Fρ. Since the action of Γ on Fρ is
proper, {Vγ = γ(V )}γ∈Γ is a locally finite cover of Fρ. Let {dγ = γ∗d}γ∈Γ be the
associated family of metrics on Fρ. Since each element of Γ acts as a bilipschitz
automorphism with respect to any linear metric, any two metrics in the family
{dγ = γ∗d}γ∈Γ are bilipschitz equivalent.

We will use this cover and the associated family of metrics to construct a
Γ-invariant metric on Fρ. A path joining two points x and y in Fρ is a pair of
tuples

P = ((z0, . . . , zn), (γ0, . . . , γn)),

where (z0, . . . , zn) is an n-tuple of points in Fρ and (γ0, . . . , γn) is an n-tuple of
elements of Γ such that

• x = z0 ∈ Vγ0 and y = zn ∈ Vγn ,
• for all n > i > 0, zi ∈ Vγi−1

∩ Vγi
.

The length of a path is given by

ℓ(P) =
1

2

3
n−1#

i=0

dγi(zi, zi+1) + dγi+1(zi, zi+1)

4

We then define

d0(x, y) = inf{ℓ(P) | P joins x and y}.
It is clear that d0 is a Γ-invariant pseudo metric. It remains to show that d0 is a
metric which is locally bilipschitz to d.

Let z be a point in Fρ. Then there exists a neighborhood Z of z so that

A = {γ | Vγ ∩ Z ∕= ∅},

is a finite set. Choose α > 0 so that
=

γ∈A

{x | dγ(z, x) ! α} ⊂ Z.

Let K be chosen so that if α,β ∈ A, then dα and dβ are K-bilipschitz. Finally, let

W =
*

γ∈A

>
x | dγ(z, x) !

α

10K

?
.

By construction, if x and y belong to W , then for all γ ∈ A,

dγ(x, y) !
α

5K
. (19)
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Let x be a point in W . Let P = ((z0, . . . , zn), (γ0, . . . , γn)) be a path joining x
to a point y.

If there exists j such that γj ∕∈ A, then

ℓ(P) " 1

2

i=j−1#

i=0

dγi(zi−1, zi)

" 1

2K

3
i=j−1#

i=0

dγj−1(zi, zi+1)

4

" 1

2K
dγj−1(z0, zj) "

1

2K

9
dγj−1(z, zj))− dγj−1(z0, z)

:

" 1

2K

;
α− α

10K

<
" α

5K
. (20)

If γj ∈ A for all j, then the triangle inequality and the definition of K immedi-
ately imply that for all γ ∈ A,

ℓ(P) " 1

K
dγ(x, y). (21)

Inequalities (20) and (21) imply that

d0(x, y) "
1

K
inf

;α
5
, dγ(x, y)

<
> 0, (22)

hence d0 is a metric. Moreover, if x, y ∈ W , then by inequalities (22) and (19),

d0(x, y) "
1

K
dγ(x, y). (23)

By construction, and taking the path P0 = ((x, y), (γ, γ)) with γ in A, we also get

d0(x, y) ! ℓ(P0) = dγ(x, y). (24)

As consequence of inequalities (23) and (24), d0 is bilipschitz on W to any dγ with
γ ∈ A.

Since d is bilipschitz to dγ for any γ ∈ A, we see that d0 is bilipschitz to d on W .
Since z was arbitrary, it follows that d0 is locally bilipschitz to d. □

5.2. Stable and unstable leaves. In this section, we define the stable and un-
stable laminations of the geodesic flow Fρ. Let

Z = (x0, y0, (u0, v0))

be a point in Fρ.

(1) The unstable leaf through Z is

L−
Z = {(x, y0, (u, v0)) | x ∈ ∂∞Γ, u ∈ ξ(x), 〈v0|u〉 = 1}.

The central unstable leaf through Z is

L−,c
Z = {(x, y0, (u, v)) | x ∈ ∂∞Γ, (u, v) ∈ M(ξ(x), θ(y0))}

=
=

t∈R
φt(LZ+).

(2) The stable leaf through Z is

L+
Z = {(x0, y, (u0, v)) | y ∈ ∂∞Γ, v ∈ θ(y), 〈v|u0〉 = 1}.

The central stable leaf through Z is

L+,c
Z = {(x0, y, (u, v)) | y ∈ ∂∞Γ, (u, v) ∈ M(ξ(x0), θ(y))}
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=
=

t∈R
φt(L−

Z ).

Observe that L+
Z is homeomorphic to ∂∞Γ \ {x0} and L−

Z is homeomorphic to
∂∞Γ \ {y0}.

The following two propositions are immediate from our construction.

Proposition 5.3. [Invariance] If γ ∈ Γ and t ∈ R, then

L±
γ(Z) = γ

9
L±
Z

:
and L±

φt(Z) = φt

9
L±
Z

:
.

Proposition 5.4. [product structure] The (two) pairs of lamination (L±,L∓,c)
define a local product structure on Fρ, and hence on UρΓ.

Remark: Throughout this section, we abuse notation by allowing {φt}t∈R to de-
note both the flow on UρΓ and the flow on Fρ which covers it and letting L± denote
both the lamination on Fρ and the induced lamination on UρΓ.

5.3. The leaf lift and the distance. In this section we introduce the leaf lift and
show that it helps in controlling distances in Fρ.

We first define the leaf lift for points in the bundle F . Let A = (U, V, (u0, v0))
be a point in F . We observe that there exists a unique continuous map, called the
leaf lift from

OA = {w ∈ RP(m)∗ | U ∩ ker(w) = {0}}.
to ((Rm)∗ \ {0}) /± 1 such that w is taken to Ωw,A such that

Ωw,A ∈ w, 〈Ωw,A|u0〉 = 1. (25)

In particular, Ωv0,A = v0. Observe that at this stage the leaf lift coincides with the
classical notion of an affine chart.

The following lemma records immediate properties of the leaf lift .

Lemma 5.5. Let ‖.‖1 be a Euclidean norm on Rn and d1 the associated metric on
RP(m)∗. If A = (x, y, (u, v)) ∈ F , then there exist constants K1 > 0 and α1 > 0
such that for w0, w1 ∈ RP(m)∗

• If d1(wi, y) ! α1, for i = 0, 1, then

‖Ωw0,A − Ωw1,A‖1 ! K1d1 (w0, w1) ,

• If ‖Ωwi,A − Ωy,A‖1 ! α1 for i = 0, 1, then

d1(w0, w1) ! K1‖Ωw0,A − Ωw1,A‖1.

If Z = (x, y, (u0, v0)) ∈ Fρ and W = (x,w, (u0, v)) ∈ L+
Z , then we define the leaf

lift

ωW,Z = Ωξ∗(w),(ξ(x),ξ∗(y),(u0,v0)) = v.

The following result allows us to use the leaf lift to bound distances in Fρ

Proposition 5.6. Let d0 be a Γ-invariant metric on Fρ which is locally bilipschitz
equivalent to a linear metric and let Z → ‖.‖Z be a Γ-invariant map from Fρ into
the space of Euclidean metrics on Rm. There exist positive constants K and α such
that for any Z ∈ Fρ and any W ∈ L−

Z ,

• if d0 (W,Z) ! α, then
@@ωW,Z − ωZ,Z

@@
Z
! Kd0 (W,Z) , (26)
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• if
@@ωW,Z − ωZ,Z

@@
Z
! α then

d0 (W,Z) ! K
@@ωW,Z − ωZ,Z

@@
Z
. (27)

Proof. Since Γ acts cocompactly on Fρ and both d0 and the section ‖.‖ are Γ-invariant,
it suffices to prove the previous assertion for Z in a compact subset R of Fρ. Ob-
serve first that d0 is uniformly C-bilipschitz on R to any of the linear metrics dZ
coming from ‖.‖Z for Z in R for some constant C.

Lemma 5.5 implies that, for all Z ∈ R, there exist positive constants KZ and
αZ such that if W0,W1 ∈ L−

Z ∩O, then

• If d0 (Wi, Z) ! αZ for i = 0, 1, then
@@ωW0,Z − ωW1,Z

@@
Z
! KZd0 (W0,W1) ,

• If
@@ωWi,Z − ωZ,Z

@@
Z
! αZ for i = 0, 1, then

d0 (W0,W1) ! KZ

@@ωW0,Z − ωW1,Z

@@
Z
.

Since R is compact, one may apply the classical argument which establishes that
continuous functions are uniformly continuous on compact sets, to show that there
are positive constants K and α which work for all Z ∈ R. □

5.4. The geodesic flow is Anosov. The following result completes the proof of
Proposition 5.1

Proposition 5.7. [Anosov property] Let ρ : Γ → SLm(R) be a projective Anosov
representation, and let L± be the laminations on UρΓ defined above. Then there
exists a metric on UρΓ, Hölder equivalent to the Hölder structure on UρΓ, such that

(1) L+ is contracted by the flow,
(2) L− is contracted by the inverse flow,

We first show that the leaf lift is contracted by the flow.

Lemma 5.8. There exists a Γ-invariant map Z (→ ‖.‖Z from Fρ into the space of
Euclidean metrics on Rm, such that for every positive integer n, there exists t0 > 0
such that if t > t0, Z ∈ Fρ, and W ∈ L+

Z then

@@ωφt(W ),φt(Z) − ωφt(Z),φt(Z)

@@
φt(Z)

! 1

2n
@@ωW,Z − ωZ,Z

@@
Z
. (28)

The following notation will be used in the proof.

• For a vector space A and a subspace B ⊂ A, let

B⊥ = {ω ∈ A∗ | B ⊂ ker(ω)}.

• We consider the Γ-invariant splitting of the trivial Rm-bundle

Fρ × Rm = Ξ̂⊕ Θ̂

– where Ξ̂ is the line bundle over Fρ such that the fiber above (x, y, (u, v))
is given by ξ(x) and

– Θ̂ is a hyperplane bundle over Fρ with fiber θ(y) above the point
(x, y, (u, v)) ∈ Fρ.
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Proof. Suppose that Z = (x, y, (u0, v0)) and W = (x,w, (u0, v)) ∈ L+
Z , then by the

definition of the leaf lift

(ωW,Z − ωZ,Z)(u0) = 0,

and thus

ωW,Z = αW,Z + ωZ,Z ,

where αW,Z ∈ ξ(x)⊥. Then

φt(ωW,Z) = φt(αW,Z) + φt(ωZ,Z).

We choose a Γ-invariant map from Fρ into the space of Euclidean metrics on Rm

so that for all Y ∈ Fρ @@ωY,Y

@@
Y
= 1.

Then

ωφt(Z),φt(Z) =
1@@φt(ωZ,Z)

@@
φt(Z)

φt(ωZ,Z),

hence

ωφt(W ),φt(Z) =
φt(αW,Z)@@φt(ωZ,Z)

@@
φt(Z)

+ ωφt(Z),φt(Z).

It follows that

@@ωφt(W ),φt(Z) − ωφt(Z),φt(Z)

@@
φt(Z)

=

@@φt(αW,Z)
@@
φt(Z)@@φt(ωZ,Z)

@@
φt(Z)

Since ρ is projective Anosov, and (UρΓ, {φt}t∈R) is a Hölder reparameterization of
(U0Γ, {ψt}t∈R), there exists t1 > 0 so that for all Z ∈ Fρ and for all t > t1, if

v ∈ Ξ̂⊥
Z and w ∈ Θ̂⊥

Z , then
@@φt(v)

@@
φt(Z)@@φt(w)
@@
φt(Z)

! 1

2

@@v
@@
Z@@w
@@
Z

.

Thus, since αW,Z ∈ Ξ̂⊥
Z and ωZ,Z ∈ Θ̂⊥

Z , for all n ∈ N and t > nt1, we have

@@ωφt(W ),φt(Z) − ωφt(Z),φt(Z)

@@
φt(Z)

! 1

2n

@@αW,Z

@@
Z@@ωZ,Z

@@
Z

.

Since αW,Z = ωW,Z − ωZ,Z and
@@ωZ,Z

@@
Z

= 1, the previous assertion yields the
result with t0 = nt1. □

We are now ready to establish Proposition 5.7.

Proof of Proposition 5.7: Let K and α be as in Proposition 5.6. Choose n ∈ N so
that

K

2n
! 1 and

K2

2n
! 1

2
. (29)

Let t0 be the constant from Lemma 5.8 with our choice of n.
Suppose that Z ∈ Fρ, W ∈ L+

Z , t > t0 and d0(W,Z) ! α. Then, by Inequality
(26), @@ωW,Z − ωZ,Z

@@ ! Kd0(W,Z). (30)

By Lemma 5.8,

@@ωφt(W ),φt(Z) − ωφt(Z),φt(Z)

@@
φt(Z)

! 1

2n
@@ωW,Z − ωZ,Z

@@
Z
. (31)
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In particular, combining Equations (30), (31) and (29),
@@ωφt(W ),φt(Z) − ωφt(Z),φt(Z)

@@
φt(Z)

! 1

2n
Kα ! α. (32)

Thus, using Inequality (27),

d0(φt(W ),φt(Z)) ! K
@@ωφt(W ),φt(Z) − ωφt(Z),φt(Z)

@@
φt(Z)

. (33)

Combining finally Equations (30), (31), (33) and (29), we get that

d0(φt(W ),φt(Z)) ! K2

2n
d0(W,Z) ! 1

2
d0(W,Z) (34)

for all t > t0.
Therefore L+ is contracted by the flow on Fρ.

Let us now consider what happens in the quotient UρΓ = Fρ/Γ. For any Z ∈ Fρ

and ε > 0, let
L±
ε (Z) = L±

Z ∩B(Z, ε).

and let
Kε(Z) = ΠZ

9
L+
ε (Z)× L−

ε (Z)× (−ε, ε)
:
,

where ΠZ is the product structure of Proposition 5.4. By Proposition 4.1, there
exists ε0 > 0 such that for all γ ∈ Γ \ {1} and Z ∈ Fρ,

γ(Kε0(X)) ∩Kε0 = ∅.
Let ε ∈ (0,min{ε0/2,α}) and Ẑ ∈ UρΓ. Choose Z ∈ Fρ in the pre image of Ẑ,
then inequality (34) holds for the flow on UρΓ for points in the chart which is the
projection of Kε(Z). Therefore, L+ is contracted by the flow on UρΓ.

A symmetric proof holds for the central unstable leaf.

6. Analytic variation of the dynamics

In order to apply the thermodynamic formalism we need to check that if {ρu}u∈M

is an analytic family of projective Anosov representations, then the associated limit
maps and reparameterizations of the Gromov geodesic flow may be chosen to vary
analytically, at least locally. Our proofs generalize earlier proofs of the stability of
Anosov representations, see Labourie [41, Proposition 2.1] and Guichard-Wienhard
[26, Theorem 5.13], and that the limit maps vary continuously, see Guichard-
Wienhard [26, Theorem 5.13]. In the process, we also see that our limit maps
are Hölder.

We will make use of the following concrete description of the analytic structure
of Hom(Γ,G). Suppose that Γ is a word hyperbolic group, hence finitely presented,
and let {g1, . . . , gm} be a generating set for Γ. If G is a real semi-simple Lie group,
then Hom(Γ,G) has the structure of a real algebraic variety. An analytic family
β : M → Hom(Γ,G) of homomorphisms of Γ into G is a map with domain an ana-
lytic manifold M so that, for each i, the map βi : M → G given by βi(u) = β(u)(gi)
is real analytic. If G is a complex Lie group, we may similarly define complex ana-
lytic families of homomorphisms of a complex analytic manifold into Hom(Γ,G).

We first show that the limit maps of an analytic family of Anosov homomor-
phisms vary analytically. We begin by setting our notation. If α > 0, X is a com-
pact metric space and D and M are real-analytic manifolds, then we let Cα(X,M)
denote the space of α-Hölder maps of X into M and let Cω(D,M) denote the space
of real analytic maps of D into M . If D and M are complex analytic manifolds,
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we will abuse notation by letting Cω(D,M) denote the space of complex analytic
maps.

Theorem 6.1. Let G be a real (or complex) semi-simple Lie group and let P be
a parabolic subgroup of G. Let {ρu}u∈D be a real (or complex) analytic family of
homomorphisms of Γ into G parameterized by a real (or complex) disk D about 0.
If ρ0 is a (G,P)-Anosov homomorphism with limit map ξ0 : ∂∞Γ → G/P, then there
exists a sub-disk D0 of D (containing 0), α > 0 and a continuous map

ξ : D0 × ∂∞Γ → G/P

with the following properties:

(1) If u ∈ D0, then ρu is a (G,P)-Anosov homomorphism with α-Hölder limit
map ξu : ∂∞Γ → G/P given by ξu(·) = ξ(u, ·).

(2) If x ∈ ∂∞Γ, then ξx : D0 → G/P given by ξx = ξ(·, x) is real (or complex)
analytic

(3) The map from ∂∞Γ to Cω(D0,G/P) given by x (→ ξx is α-Hölder.
(4) The map from D0 to Cα(∂∞Γ,G/P) given by u → ξu is real (or complex)

analytic.

Given a projective Anosov representation ρ : Γ → SLm(R), we constructed a ge-
odesic flow UρΓ which is a reparameterization of the Gromov geodesic flow U0Γ. In
Section 6.3, we show that given a real analytic family of projective Anosov repre-
sentions, one may choose the parameterizing functions to vary analytically.

Proposition 6.2. Let {ρu}u∈D be a real analytic family of projective Anosov ho-
momorphisms of Γ into SLm(R) parameterized by a disk about 0. Then, there exists
a sub-disk D0 about 0 and a real analytic family {fu : U0Γ → R}u∈D0 of positive
Hölder functions such that the reparametrization of U0Γ by fu is Hölder conjugate
to Uρu

Γ for all u ∈ D0.

We first observe that the real analytic case of Theorem 6.1 follows from the
complex analytic case, which we will establish in Section 6.2. If G is a real semi-
simple Lie group and P is a parabolic subgroup of G, we let GC and PC be the
complexification of G and P. Observe that a (G,P)-Anosov representation is au-
tomatically a (GC,PC)-Anosov representation. On a sub-disk D1 of D, containing
0, one may extend {ρu}u∈D1

to a complex analytic family {ρu}u∈DC
1
of homo-

morphisms of Γ into GC defined on the complexification DC
1 of D1. The map

ξ : DC
0 × ∂∞Γ → GC/PC provided by the complex analytic case of Theorem 6.1

restricts to a map ξ|D0
: D0×∂∞Γ → G/P with the desired properties. Notice that

the real analyticity in properties (2) and (4) follows from the fact that restrictions
of complex analytic functions to real analytic submanifolds are real analytic.

6.1. Transverse regularity. In this section, we set up our notation and establish
a version of the Cr-section Theorem of Hirsch-Pugh-Shub [29, Theorem 3.8] which
keeps track of the transverse regularity of the resulting section. Our version of
Hirsch, Pugh and Shub’s result will be the main tool in the proof of Theorem 6.1.

Definition 6.3. [transversely regular functions] Let D be a real (or com-
plex) disk, let X be a compact metric space and let M be a real (or complex) analytic
manifold. A continuous function f : D×X → M is transversely real (or complex)
analytic if
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(1) For every x ∈ X, the function fx : D → M given by fx(·) = f(·, x) is real
(or complex) analytic, and

(2) The function from X to Cω(D,M) given by x → fx is continuous.

Furthermore, we say that f is α-Hölder (or Lipschitz) transversely real (or complex)
analytic if the map in (2) is α-Hölder (or Lipschitz).

If we replace M with a Ck manifold, we can similarly define α-Hölder (or Lips-
chitz) transversely Ck functions by requiring that the maps in (1) are Ck and that
the map in (2) from X to Cp(D,M) is α-Hölder (or Lipschitz) for all p ≤ k,

Similarly, we define transverse regularity of bundles in terms of the transverse
regularity of their trivializations.

Definition 6.4. [tranversally regular bundles] Suppose that the fiber of a
bundle π : E → D ×X is a real (or complex) analytic manifold M and that D is
a real (or complex) disk. We say that E is transversely real (or complex) analytic
if it admits a family of trivializations of the form {D × Uα ×M} (where {Uα} is
an open cover of X) so that the the corresponding change of coordinate functions
are transversely real (or complex) analytic. We similarly say π : E → D ×X is
α-Hölder (or Lipschitz) transversely real (or complex) analytic if it admits a family
of trivializations which are α-Hölder (or Lipschitz) transversely real (or complex)
analytic.

In this case, a section of E is α-Hölder (or Lipschitz) transversely real (or com-
plex) analytic, if in any of the trivializations the corresponding map to M is α-
Hölder (or Lipschitz) transversely real (or complex) analytic.

Clearly, if M is a Ck-manifold, we can similarly define α-Hölder (or Lipschitz)
transversely Ck bundles and sections.

We are now ready to state our version of the Cr-Section Theorem.

Theorem 6.5. Let X be a compact metric space and let M be a complex analytic
(or Ck) manifold. Suppose that π : E → D × X is a Lipschitz transversely com-
plex analytic (or Ck) bundle with fibre M and D is a complex (or real) disk. Let
f : X → X be a Lipschitz homeomorphism and let F be a Lipschitz transversely
complex analytic (or Ck) bundle automorphism of E lifting id× f .

Suppose that σ0 is a section of the restriction of E over {0}×X which is fixed by
F and that F contracts along σ0. Then there exists a neighborhood U of 0 in D, a
positive number α > 0, an α-Hölder transversely complex analytic (or Ck) section
η over D0 ×X and a neighborhood B of η(U ×X) in π−1(U ×X) such that

(1) F fixes η,
(2) F contracts E along η,
(3) η|{0}×X = σ0, and
(4) if ν : U ×X → E is a section so that ν(U ×X) ⊂ B and ν is fixed by F ,

then ν = η.

We recall that if U is a subset of D, then a section σ over U ×X is fixed by F if
F (σ(u, x)) = σ(u, f(x)). In such a case, we further say that F contracts along σ if
there exists a continuously varying fibrewise Riemannian metric ‖ · ‖ on the bundle
E such that if

DfFσ(u,x) : Tσ(u,x)π
−1(u, x) → Tσ(u,f(x))π

−1(u, f(x))
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is the fibrewise tangent map, then

‖DfFσ(u,x)‖ < 1.

We will derive Theorem 6.5 from the following version of the Cr-section theorem
which is a natural generalization of the ball bundle version of the Cr-section theorem
in Shub [65, Theorem 5.18].

Theorem 6.6. [Fixed sections] Let X be a compact metric space equipped with
a Lipschitz homeomorphism f : X → X. Suppose that π : W → D × X is a
Lipschitz transversely complex analytic (or Ck) Banach space bundle, D is a com-
plex (or real) disk, B ⊂ W is the closed ball sub-bundle of radius r, and F is a
Lipschitz transversely complex analytic (or Ck) bundle morphism of B lifting the
homeomorphism id× f : D ×X → X.

If F contracts B, then there exists a unique α-Hölder transversely complex ana-
lytic (or Ck) section η of B which is fixed by F (for some α > 0).

Notice that we have not assumed that F is either linear or bijective.

Proof. Let σ be the zero section of B. Observe that σ has the same regularity as
W and is thus transversally complex analytic (or Ck).

We first assume that π : W → D × M is a Lipschitz transversely Ck-bundle.
The existence of a unique continuous fixed section η is a standard application of
the contraction mapping theorem. Explicitly, for all (u, x) ∈ D ×X, we let

η(u, x) = lim
n→∞

Fn(σ(u, f−n(x)). (35)

We must work harder to show that η is α-Hölder transversely complex analytic
(or Ck). We first assume that W is transversely Ck –and so is σ– and obtain the
Ck-regularity of η. For any p ∈ N, let Γp be the Lipschitz Banach bundle over
X whose fibers over a point x ∈ X is the Banach space Γp

x of Cp-sections of the
restriction of W to D × {x}. Let Bp be the sub-bundle whose fiber Bp

x over x is
the set of those sections with values in B.

Notice that each fiber Bp
x can be identified with Cp(D × {x}, B0) where B0 is a

closed ball of radius r in the fiber Banach space. Let F p
∗ be the bundle automor-

phism of Γp given by

[F p
∗ (ν)](u, x) = F (ν(u, f−1(x))).

We can renormalise the metric on D, so that all the derivatives of F of order n
(with p " n " 1) along D are arbitrarily small. Thus after this renormalisation the
metric on D, F p

∗ is contracting, since F is contracting. We now apply Theorem 3.8
of Hirsch-Pugh-Shub [29] (see also Shub [65, Theorem 5.18]) to obtain an invariant
α-Hölder section ω. By the uniqueness of fixed sections, we see that

η(u, x) = ω(x)(u)

for all 1 ≤ p ≤ k. It follows that η is α-Hölder transversely Ck.
Now suppose that D is a complex disk and π : E → D ×X is Lipschitz trans-

versely complex analytic bundle. We see, from the above paragraph, that there
exists a unique α-Hölder transversely Ck section ηk for all k. By the uniqueness ηk
is independent of k and we simply denote it by η. Then, by Formula (35), for all
x ∈ X, η|D×{x} is a Ck-limit of a sequence of complex analytic sections for all k,
hence is complex analytic itself. It follows that η is α-Hölder transversely complex
analytic. □
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We now notice that one may identify a neighborhood of the section σ0 in the
statement of Theorem 6.5 with a ball sub-bundle of a vector bundle.

Lemma 6.7. Let π : E → D×X be a transversely complex analytic (or Ck) bundle
over D×X, D is a complex (or real) disk about 0, and σ is a section of E defined
over {0}×X. Then there exists

(1) a neighborhood U of zero in D,
(2) a transversely complex analytic (or Ck) closed ball bundle B of radius R in

a complex (or real) vector bundle F ,
(3) a transversely complex analytic (or Ck) bijective map from B to a neigh-

borhood of the graph of σ0 so that
• the graph of σ0 = σ|{0}×X is in the image of the graph of the zero
section,

• the fibrewise metric on B coincides along σ0 with the fiberwise metric
on E.

Proof. We first give the proof in the case that σ is defined over D×X. Let Z be the
transversely complex analytic (or Ck) vector bundle over D ×X so that the fibre
over the point (u, x) is given by Tσ(u,x)(π

−1(u, x)). We equip Z with a Riemannian
metric coming from E and let B(r) be the closed ball sub-bundle of radius r > 0.

Using the trivializations, we can find, after restricting to an open neighborhood
U of 0 in D,

• a finite cover {Oi}1!i!n of X,
• an open neighborhood W of the graph of σ,
• transversely holomorphic (or Ck-diffeomorphic) bundle maps φi defined on

W |U×Oi
with values in Z|U×Oi

so that for all (u, x) ∈ U ×Oi

φi(σ(u, x)) = 0 ∈ Tσ(u,x)(π
−1(u, x))

Df
σ(u,x)φi = Id. (36)

Let {ψi}1!i!n be a partition of unity on X subordinate to {Oi}1!i!n and, for each

i, let ψ̂i : W → [0, 1] be obtained by composing the projection of W to X with ψi.
One may then define Φ : W → Z by letting

Φ =

n#

i=1

ψ̂iφi.

Since ψ̂i is constant in the direction of D, Φ is transversely holomorphic (or Ck-
diffeomorphic),

Φ(σ(u, x)) = 0 and Df
σ(y)Φ = Id.

It then follows from the implicit function theorem, that one may further restrict U
and W so that Φ is a transversely holomorphic (or Ck-diffeomorphic) isomorphism
of W with B(r) for some r.

If σ is only defined on {0} × X, it now suffices to extend the section σ0 to a
section σ defined over U ×X where U is a neighborhood of 0 in D. Composing π
with the projection π2 : D ×X → X, we may consider the bundle π2 ◦ π : E → X.
Then σ0 is a section of π2 ◦ π. We now apply the result of the previous paragraph,
in the case where the disk is 0-dimensional, to identify, in a complex analytic (or
Ck) way, a neighborhood of the graph of σ0 with a ball bundle B in a vector bundle
F over X.
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Now π restricts to a bundle morphism from π ◦ π2 : B → X to π2 : D ×X → X
which is a fiberwise complex analytic (or Ck) submersion and whose fiberwise
derivatives vary continuously. Let W be a linear sub-bundle of F , so that if Wx

and Fx are the fibers over x ∈ X, then

T(π−1(0, x))⊕Wx = Fx.

Thus, after further restricting B, π becomes a fiberwise complex analytic (or Ck)
injective local diffeomorphism from W ∩ B to D × X whose fiberwise derivatives
vary continuously.

Applying the Implicit Function Theorem (with parameter), we obtain a neigh-
borhood U of 0 and a map σ : U ×X → B which is fiberwise complex analytic (or
Ck) and whose fiberwise derivatives vary continuously, so that π ◦ σ = Id. Thus σ
is the desired section of E. □

Theorem 6.5 now follows from Theorem 6.6 and Lemma 6.7.

Proof of Theorem 6.5: Let V be the complex (or real) vector bundle provided by

Lemma 6.7. We know that ‖Df
σ0(x)

F‖ < 1 for all x in X. After further restraining

U and choosing r small enough, we may assume by continuity that for all y in B(r),
‖Df

yF‖ < K < 1.
After further restricting U , we may assume that for all u ∈ U and x ∈ X, we

have

‖F (σ(u, x))− σ(u, f(x))‖ ! (1−K)r,

In particular, if y ∈ B(r) is in the fiber over (u, x),

‖F (y)− σ(u, f(x))‖ ! ‖F (y)− F (σ(u, x))‖
+‖F (σ(u, x))− σ(u, f(x))‖

! Kr + (1−K)r = r.

Thus F maps B(r) to itself and is contracting. We can therefore apply Theorem
6.6 to complete the proof of Theorem 6.5. □

In the proof of Theorem 6.1, we will also need to use the fact that transverse reg-
ularity of a continuous function f : D ×X → M implies regularity of the associated
map of D into Cα(X,M).

Let X be a compact metric space and let M be a complex analytic (or Ck)
manifold. If U is an open subset of M and V is a relatively compact open subset
of X, then let

W(U, V ) = {g ∈ Cα(X,M) | g(V ) ⊂ U}.
We will say that a map f from D to Cα(X,M) is complex analytic (or Ck) if for any
U and V as above and any complex analytic function φ : U → C (or Ck function
φ : U → R), the function fφ defined on f−1 (W(U, V )), by

fφ(x) = φ ◦ f(x)|V ,
with values in Cα(V,C) (or Cα(V,R)) is complex analytic (or Ck). Recall that the
function fφ is complex analytic if and only if it has a a C-linear differential at each
point, see, for example, Hubbard [31, Thm. A5.3].

The following lemma shows that an α-Hölder transversely complex analytic map
from D×X to M gives rise to a complex analytic map from D to Cα(X,M). The
proof is quite standard so we will omit it, see Hubbard [31, Prop. A5.9] for a very
similar statement.
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Lemma 6.8. Suppose that D is a complex (or real) disk, M is a complex analytic
(or Ck) manifold, X is a compact metric space and f : D ×X → M is α-Hölder

transversely complex analytic (or Ck), then the map f̂ from D to Cα(X,M) given
by u → fu where fu(·) = f(u, ·) is complex analytic (or Ck−1).

6.2. Analytic variation of the limit maps. We are now ready for the proof of
Theorem 6.1 in the complex analytic case. Given a complex analytic family of rep-
resentations which contains an Anosov representation, we construct an associated
bundle where we can apply the results of the previous section to produce a family
of limit maps.

Let G be a complex Lie group and let P be a parabolic subgroup. Let {ρu}u∈D

be a complex analytic family of homomorphisms of Γ into G parameterized by a
complex disk D about 0 so that ρ0 is (G,P)-Anosov.

We construct a G/P-bundle over D × U0Γ. Let

Ã = D × 'U0Γ× G/P

which is a G/P-bundle over D × 'U0Γ. Then γ ∈ Γ acts on Ã, by

γ(u, x, [g]) = (u, γ(x), [ρu(γ)g])

and we let

A = Ã/Γ.

The geodesic flows on 'U0Γ and U0Γ lift to geodesic flows {Ψ̃t}t∈R and {Ψ̃t}t∈R
on Ã and A. (The flow {Ψ̃t}t∈R acts trivially on the D and G/P factors.)

Since ρ0 is (G,P)-Anosov there exists a section σ0 ofA over {0}×U0Γ. Concretely,

if ξ0 : ∂∞Γ → G/P is the limit map, we construct an equivariant section σ̃0 of Ã

over {0}× 'U0Γ of the form

(0, (x, y, t)) → (0, (x, y, t), ξ0(x)).

The section σ̃0 descends to the desired section σ0 of A over {0} × U0Γ. One may
identify the bundle over {0}× U0Γ with fiber Tσ0(x)π

−1(0, x) with N−
ρ . Since the

geodesic flow lifts to a flow on N−
ρ whose inverse flow is contracting, the inverse

flow {Φ−t}t∈R is contracting along σ0(U0Γ).
Theorem 6.5 then implies that there exists a sub-disk D1 ⊂ D containing 0,

α > 0, and an α-Hölder transversely complex analytic section η : D × U0Γ → A
that extends σ0, is fixed by {Φt}t∈R and so that the inverse flow {Φ−t}t∈R contracts
along η. (More concretely, Theorem 6.5 produces, for large enough t0, a section
fixed by Φ−t0 so that Φ−t0 contracts along η. One may then use the uniqueness
portion of the statement to show that η is fixed by Φt for all t.) We may lift η to

a section η̃ : D1 × 'U0Γ → Ã which we may view as a map η̄ : D1 × 'U0Γ → G/P.
We next observe that η̄(u, (x, y, t)) does not depend on either y or t. Since

η̄ is flow-invariant, η̄(u, (x, y, t)) does not depend on t. Fix u ∈ D1 and let

η̄u : 'U0Γ → G/P be given by η̄u(·) = η̄(u, ·). Let γ be an infinite order element
of Γ whose associated orbit in U0Γ has period tγ and let d be an arbitrary metric
on G/P. Since {Φ−t}t∈R is contracting along η, there exists a constant k0 > 0 such
that if {pn} is a sequence in G/P with d(η̄u(γ

+, γ−, 0), pn) ≤ k0 for all n, then

lim
n→∞

d(η̄u(γ
+, γ−, 0), γn(pn)) = lim

n→∞
d(η̄u(γ

n(γ+, γ−,−ntγ)), γ
n(pn)) = 0. (37)
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Given z ∈ ∂∞Γ, there exists tz ∈ R, so that, if d̄ denotes a Γ-invariant metric on
'U0Γ, then

lim
n→∞

d̄(γn(γ+, γ−, 0), (γ+, z, tz + ntγ)) = 0.

Therefore,

lim
n→∞

d̄((γ+, γ−, 0), γ−n(γ+, z, tz + ntγ)) = 0.

Applying (37) with pn = η̄(γ−n(γ+, z, tz + ntγ)), we see that

lim
n→∞

d(η̄u(γ
+, γ−, 0), γnη̄u(γ

−n(γ+, z, tz + ntγ))) = 0.

Since η̄u is Γ-equivariant, this implies that

lim
n→∞

d(η̄u(γ
+, γ−, 0), η̄u(γ

+, z, tz + ntγ)) = 0.

Since η̄u(γ
+, z, t) does not depend on t, we finally obtain that

η̄(u, (γ+, γ−, 0)) = η̄(u, (γ+z, t))

for any z ∈ ∂∞Γ, u ∈ D1 and t ∈ R. Since, fixed points of infinite order elements
are dense in ∂∞Γ and η̄ is continuous, we see that η̄(u, (x, y, t)) does not depend on
y or t.

Therefore, we obtain a transversely complex analytic map

ξ : D1 × ∂∞Γ → G/P

which extends ξ0. The map ξ satisfies properties (2) and (3), since ξ is α-Hölder
transversely complex analytic, while property (4) follows from Lemma 6.8.

It remains to prove that we may restrict to a sub disk D0 of D1 so that if u ∈ D0,
then ρu is (G,P)-Anosov with limit map ξu. Let Q be a parabolic subgroup of G
which is opposite to P. Then there exists a Lipschitz transversely complex analytic
G/Q-bundle A′ over D×U0Γ and we may lift the geodesic flow to a flow {Φ′

t} on A′.
Since ρ0 is (G,P)-Anosov, there exists a map θ0 : ∂∞Γ → G/Q which gives rise to a
section σ′

0 of A′ over {0}×U0Γ such that the flow is contracting on a neighborhood
of σ′

0({0} × U0Γ). We again apply Corollary 6.5 to find an α′-Hölder (for some
α′ > 0) transversely complex analytic flow invariant section η′ : D2 × U0Γ → A′

that extends σ′
0, for some sub-disk D2 of D which contains 0, such that the flow

{Ψ′
t}t∈R contracts along η′(D2 × U0Γ). The section η′ lifts to a section of η̃′ of Ã′

which we may reinterpret as a map η̄′ : D2 × 'U0Γ → G/Q so that η̄′(u, (x, y, t))
depends only on u and y. So we obtain an α′-Hölder transversely complex analytic
map

θ : D2 × ∂∞Γ → G/Q

which restricts to θ0. Since ξ0 and θ0 are transverse, we may find a sub-disk D0

of D1 ∩ D2 so that ξu and θu are transverse if u ∈ D0. It follows that if u ∈ D0,
then ρu is (G,P)-Anosov with limit maps ξu and θu. This completes the proof of
Theorem 6.1 in the complex analytic case.

Remark: Notice that the same proof applies to a Ck-family {ρu}u∈D of repre-
sentations of a hyperbolic group Γ into a real semi-simple Lie group G such that ρ0
is (G,P)-Anosov. It produces a sub-disk D0 and a α-Hölder transversely Ck map
ξ : D0 × ∂∞Γ → G/P so that if u ∈ D0, then ρu is (G,P)-Anosov with limit map
ξu.
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6.3. Analytic variation of the reparameterization. We now turn to the proof
of Proposition 6.2.

Let {ρu : Γ → SLm(R)}u∈D be a real analytic family of projective Anosov
representations and let DC be the complexification of D. We may extend {ρu}u∈D

to a complex analytic family {ρu : Γ → SLm(C)}u∈DC of homomorphisms. Theorem
6.1 implies that, after possibly restricting DC, there exists a α-Hölder transversely
complex analytic map

ξ : DC × ∂∞Γ → GC/PC = CP(m)

such that if u ∈ DC, then ρu is Anosov with respect to the parabolic subgroup
PC, which is the stabilizer of a complex line, with limit map ξu. (We call such
representations complex projective Anosov.)

We construct a Lipschitz transversely complex analytic Cm-bundle WC over

DC ×U0Γ which is the quotient of W̃C = DC × 'U0Γ×Cm associated to the family
{ρu}u∈DC . We can then lift the Gromov geodesic flow on U0Γ to a Lipschitz trans-
versely complex analytic flow {Ψt}t∈R on WC. Since the functions in the partition
of unity for our trivializations of WC are constant in the the DC direction, we have:

Proposition 6.9. After possibly further restricting DC, the bundle WC is equipped
with a Lipschitz transversely complex analytic 2-form ω of type (1, 1) such that

τ(u, v) = ω(u, v) + ω(v, u),

is Hermitian.

Let LC be the (complex) line sub-bundle of WC determined by ξ, i.e. LC is the

quotient of the line sub-bundle of W̃C whose fiber over (u, (x, y, t)) ∈ DC × 'U0Γ
is the complex line ξu(x). Then, LC is a α-Hölder transversely complex analytic
line bundle over DC × U0Γ. Since each ρu is complex projective Anosov with limit
map ξu, L

C is preserved by the flow {Ψt}t∈R. We restrict ω and τ to LC (and still
denote them by ω and τ).

Since LC is a line bundle, we can consider the function

a : DC × U0Γ → C

such that

ω(u, x)(v, v) = a(u, x)τ(u, x)(v, v).

whenever v is in the fiber of LC over (u, x). Concretely.

a(u, x) =
ω(v, v)

2ℜ(ω(v, v))
for any non-trivial v in the fiber over (u, x).

We observe that a is α-Holder transversely real analytic. If U is an open subset
of U0Γ in one of our trivializing sets, we can construct a non-zero section

V : DC × U → LC

which is α-Hölder transversely complex analytic. Then

ω(V, V ) : DC × U → C

is α-Hölder transversely complex analytic. Lemma 6.8 implies that the map from
DC to Cα(U,C) given by u → ω(V (u, ·), V (u, ·)) is complex analytic. Therefore,
the map from DC to Cα(U,R) given by u → ℜ(ω(V (u, ·), V (u, ·))) is real analytic.
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It follows that the map from DC to Cα(U,C) given by u → a(u, ·) is real analytic
since

a|DC×U =
ω(V, V )

2ℜ(ω(V, V ))
.

Since x was arbitrary the map from DC to Cα(U0Γ,C) given by u → a(u, ·) is real
analytic. Similarly, a itself is α-Holder transversely real analytic.

If we define, for all t, the map

ht : D
C × U0Γ → C

so that

Ψ∗
tω = htω,

then, we may argue, just as above, that ht is α-Hölder transversely complex analytic.
Lemma 6.8 guarantees that the map from DC to Cβ(U0Γ,C) given by u → ht(u, ·)
is complex analytic.

If t ∈ R,

Ψ∗
t τ(·) = 2ℜ(Ψ∗

tω(·)) = 2ℜ(ht(·)ω(·)) = 2ℜ (a(·)ht(·))G(·).

We define kt(·) = ℜ(aht)(·) and note that Ψ∗
t τ = ktτ . Then, kt is α-Hölder trans-

versely real analytic and the map from DC to Cα(U0Γ,R) given by u → kt(u, ·) is
real analytic (since it is the real part of a product of a real analytic and a complex
analytic function).

We apply the construction of Lemma 4.3 to produce an α-Hölder transversely
real analytic metric τ0 on L̂ such that

Ψ∗
t (τ

0) < e−βtτ0.

for some β > 0 and all t > 0. Concretely,

τ0 =

, t0

0

eβsΨ∗
s(τ)ds =

0, t0

0

eβsks ds

1
G

for some appropriately chosen t0 > 0.
We define, for all t, Kt : D

C × U0Γ → R by

Kt = e−βt

+ t0+t

t
eβsks ds

+ t0
0

eβsks ds
.

One then checks that

Ψ∗
t (τ

0) = Ktτ
0

for all t. Then, for each u ∈ DC we define fu : U0Γ → R, by setting

fu(·) =
∂Kt

∂t
(u, ·, 0) = −β +

eβt0kt0(·)− 1
+ t0
0

eβsks(·) ds
.

Then, since u → kt(u, ·) is real analytic for all t, our formula for fu guarantees that
the map from DC to Cβ(U0Γ,R) given by u → fu is real analytic. Therefore, the
restriction of this map to the real submanifold D is also real analytic.

To complete the proof of Proposition 6.2 we will show that, for each u ∈ D,
the periods of the reparameterization of U0Γ by fu and the periods of UρuΓ agree.
Livšic’s Theorem 3.3 then implies that the reparameterization of U0Γ by fu is
Hölder conjugate to UρuΓ as desired.
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For u ∈ D, let ju : U0Γ×R be given by ju(·, t) = logKt(u, ·). We can differentiate
the equality

ju(·, t+ s) = ju(Ψs(·), t) + ju(·, s)
with respect to t and evaluate at t = 0 to conclude that

fu(·, s) = fu(Ψs(·), 0).

In particular, for any t,
, t

0

(fu(Ψs(·), 0) ds = ju(·, t).

Let γ ∈ Γ and let x ∈ U0Γ be a point on the periodic orbit associated to γ (which

is simply the quotient of (γ+, γ−) × R ⊂ 'U0Γ). If tγ is the period of the orbit of
U0Γ containing x, then

e
! tγ
0 fu(Ψs(u,x))dsτ0(x, u) = Ψ∗

tγ τ
0(u, x) = eΛ(ρu,γ)τ0(u, x),

so , tγ

0

fu(Ψs(u, x))ds = Λ(ρu, γ)

is the period of the reparameterization of the flow U0Γ by fu, which agrees with the
period of the orbit in UρuΓ associated to γ (see Proposition 4.1). This completes
the proof of Proposition 6.2.

Remark: Notice that a simpler version of the above proof establishes that given
a Ck family of projective Anosov representations, one may, at least locally, choose
the reparameterization functions to vary Ck−1.

7. Deformation spaces of projective Anosov representations

In this section, we collect a few facts about the structure of deformation spaces
of projective Anosov representations of Γ into SLm(R) and their relatives.

7.1. Irreducible projective Anosov representations. We first observe that
our deformation spaces C(Γ,m) and Cg(Γ,G) are real analytic manifolds. Let
)C(Γ,m) ⊂ Hom(Γ, SLm(R)) denote the set of regular, irreducible, projective Anosov
representations and let

C(Γ,m) = )C(Γ,m)/SLm(R).

If G is a reductive subgroup of SLm(R), then we similarly let )Cg(Γ,G) ⊂ Hom(Γ,G)
denote the space of G-generic, regular representations which are irreducible and
projective Anosov when viewed as representations into SLm(R). Let

Cg(Γ,G) = )Cg(Γ,G)/G.

Proposition 7.1. Suppose that Γ is a word hyperbolic group. Then

(1) The deformation spaces C(Γ,m) and Cg(Γ, SLm(R)) have the structure of a
real analytic manifold compatible with the algebraic structure on Hom(Γ, SLm(R))

(2) If G is a reductive subgroup of SLm(R), then Cg(Γ,G) has the structure of a
real analytic manifold compatible with the algebraic structure on Hom(Γ,G).
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Proof. We may regard Hom(Γ, SLm(R)) as a subset of Hom(Γ, SLm(C)). We first
notice that an irreducible homomorphism in Hom(Γ, SLm(R)) is also irreducible
when regarded as a homomorphism in Hom(Γ, SLm(C)). Lubotzky and Magid ([51,
Proposition 1.21 and Theorem 1.28]) proved that the set of irreducible homomor-
phisms form an open subset of Hom(Γ, SLm(C)), so they also form an open subset of
Hom(Γ, SLm(R)). Results of Labourie [41, Prop. 2.1] and Guichard-Wienhard [26,
Theorem 5.13] imply that the set of projective Anosov homomorphisms is an open

subset of Hom(Γ, SLm(R)) (see also Proposition 6.1). Therefore, )C(Γ,m) is an open
subset of Hom(Γ, SLm(R)). Since the former consists of regular homomorphisms, it
is an analytic manifold.

Lubotzky–Magid ([51, Theorem 1.27]) also proved that SLm(C) acts properly
(by conjugation) on the set of irreducible representations in Hom(Γ, SLm(C)). It

follows that SLm(R) acts properly on )C(Γ,m). Schur’s Lemma guarantees that the
centralizer of an irreducible representation is contained in the center of SLm(R).
Therefore, PSLm(R) acts freely, analytically and properly on the analytic manifold
)C(Γ,m), so its quotient C(Γ,m) is also an analytic manifold.

Since the set of G-generic elements of G is an open G-invariant subset of G, we

may argue exactly as above to show that )Cg(Γ,G) is an open subset of Hom(Γ,G)

which is an analytic manifold. The action of G/Z(G) on )Cg(Γ,G) is again free,
analytic and proper, so its quotient Cg(Γ,G) is again an analytic manifold. □

If ρ ∈ )C(Γ,m), then one may identify Tρ
)C(Γ,m) with the space Z1

ρ(Γ, slm(R))
of cocycles and one may then identify T[ρ]C(Γ,m) with the cohomology group

H1
ρ(Γ, slm(R)) (see [51, 33]). In particular, the space B1

ρ(Γ, slm(R)) is identified

with the tangent space of the SLm(R)-orbit of ρ. Similarly, if ρ ∈ )Cg(Γ,G), we
identify Tρ

)Cg(Γ,G) with Z1(Γ, g) and T[ρ]Cg(Γ,G) with H1
ρ(Γ, g). More generally, if

ρ is an irreducible representation in Hom(Γ,G), the tangent vector to any analytic
path through ρ may be identified with an element of Z1

ρ(Γ, g) (see [33, Section 2]).
A simple calculation in cohomology gives that irreducible projective Anosov rep-

resentations of fundamental groups of 3-manifolds with non-empty boundary are
regular. These include free groups and fundamental groups of closed surfaces.

Proposition 7.2. If Γ is isomorphic to the fundamental group of a compact ori-
entable 3-manifold M with non empty boundary, then C(Γ,m) is the set of conjugacy
classes of irreducible projective Anosov representations.

Proof. Let Γ = π1(M) where M is a compact orientable 3-manifold with non-empty
boundary. It suffices to show that the open subset of Hom(Γ, SLm(R)) consisting
of irreducible projective Anosov homomorphisms consists entirely of regular points.
We recall that ρ0 ∈ Hom(Γ, SLm(R)) is regular if there exists a neighborhood U of
ρ0 so that dim(Z1

ρ(M, g)) is constant on U and the centralizer of any representation
ρ ∈ U is trivial [51].

If ρ0 is projective Anosov and irreducible, we can take U to be any open neigh-
borhood of ρ0 consisting of irreducible projective Anosov representations. Since
ρ ∈ U is irreducible, Schur’s Lemma guarantees that the centralizer of ρ(Γ) is the
center of SLm(R). Moreover, if ρ ∈ U , then

dim(H0
ρ(M, g))− dim(H1

ρ(M, g)) + dim(H2
ρ(M, g)) = χ(M) dim(G).
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Since the centralizer is trivial, dim(H0
ρ(M, g)) = 0. By Poincaré duality, dim(H2

ρ(M, g)) =

dim(H0
ρ(M, ∂M, g)). Since dim(H0

ρ(M, g)) = 0, the long exact sequence for relative

homology implies that dim(H0
ρ(M, ∂M, g)) = 0. Thus,

dim(H1
ρ(M, g)) = −χ(M) dim(G).

Therefore, dim(Z1
ρ(M, g)) = (1 − χ(M)) dim(G) for all ρ ∈ U , so ρ is a regular

point. □
7.2. Virtually Zariski dense representations. We recall that if Γ is a word
hyperbolic group, G is a semi-simple Lie group with finite center and P is a non-
degenerate parabolic subgroup, then Z(Γ;G,P) is the space of (conjugacy classes
of) regular virtually Zariski dense (G,P)-Anosov representations of Γ into G. We
will prove that Z(Γ;G,P) is a real analytic orbifold.

Proposition 7.3. Suppose that Γ is a word hyperbolic group, G is a semi-simple
Lie group with finite center and P is a non-degenerate parabolic subgroup of G. Then
Z(Γ;G,P) is a real analytic orbifold.

Moreover, if G is connected, then Z(Γ;G,P) is a real analytic manifold.

Proof. Let Hom∗(Γ,G) be the set of regular homomorphisms. By definition, Hom∗(Γ,G)
is an open subset of Hom(Γ,G) and hence it is an analytic manifold, since it is the
set of smooth points of a real algebraic variety. Results of Labourie [41, Prop.
2.1] and Guichard-Wienhard [26, Theorem 5.13] again imply that the set of (G,P)-
Anosov homomorphisms is open in Hom∗(Γ,G). The main difficulty in the proof is

to show that the set )Z(Γ;G,P) of virtually Zariski dense Anosov homomorphisms
is open in Hom∗(Γ,G) and hence an analytic manifold.

Once we have shown that )Z(Γ;G,P) is an analytic manifold, we may complete
the proof in the same spirit as the proof of Proposition 7.1. We observe that if

ρ ∈ )Z(Γ;G,P) then its centralizer is finite, since the Zariski closure of ρ(Γ) has

finite index in G. Then, G/Z(G) acts properly and analytically on )Z(Γ;G,P) with
finite point stabilizers, so the quotient Z(Γ;G,P) is an analytic orbifold. If G0

is the connected component of G, then the Zariski closure of any representation

ρ ∈ )Z(Γ;G,P) contains G0, so the intersection of the centralizer of ρ with G0 is

simply Z(G) ∩ G0. Therefore, )Z(Γ;G,P)/G0 is an analytic manifold. In particular,
if G is connected, Z(Γ;G,P) is an analytic manifold.

We complete the proof by showing that the set of virtually Zariski dense (G,P)-
Anosov homomorphisms is open in Hom∗(Γ,G). If not, then there exists a sequence
{ρm}m∈N of (G,P)-Anosov representations which are not virtually Zariski dense
converging to a virtually Zariski dense (G,P)-Anosov representation ρ0.

Since G has finitely many components, ρ−1
n (G0) has bounded finite index for all

n. Since Γ is finitely generated, it contains only finitely many subgroups of a given
index, so we may pass to a finite index subgroup Γ0 of Γ so that ρn(Γ0) is contained
in the identity component G0 of G for all n. Since each ρn|Γ0

is (G,P)-Anosov and
ρ0(Γ0) is also virtually Zariski dense, we may assume for the remainder of the proof
that G is the Zariski closure of G0.

Let Zn be the Zariski closure of Im(ρn) and let zn be the Lie algebra of Zn.
Consider the decomposition of the Lie algebra g of G

g =

p(

i=1

gi,
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where gi are simple Lie algebras. Let Gi = Aut(gi). We consider the adjoint repre-
sentation Ad : G → Aut(g). Let H be the subgroup of G consisting of all g ∈ G so
that Ad(g) preserves the factors of g. Then H is a finite index, Zariski closed sub-
group of G. Hence, with our assumptions, H = G. Therefore, we get a well-defined
projection map πi : G → Gi. If p is the Lie algebra of P, then p =

Ap
i=1 pi, where

pi is a Lie subalgebra of gi. Let Pi be the stabilizer of pi in Gi. Then we also obtain
a G-equivariant projection, also denoted πi,

πi : G/P → Gi/Pi = Gpi ⊂ Grdim(pi)(gi)

where Grdim(pi)(gi) is the Grassmanian space of dim(pi)-dimensional vector spaces
in gi.

If ξn : ∂∞Γ → G/P is the limit map of ρn, πi ◦ ξn is a ρn-equivariant map from
∂∞Γ to Gi/Pi. If πi ◦ ξn is constant, then ρn(Γ) would normalize a conjugate of
pi. So, if πi ◦ ξn is constant for infinitely many n, then ρ0(Γ) would normalize a
conjugate of pi,which is impossible since ρ0(Γ) is Zariski dense and Pi is a proper
parabolic subgroup of Gi. Therefore, we may assume that πi ◦ ξn is non-constant
for all i and all n. Since Γ acts topologically transitively on ∂∞Γ, we then know
that the image must then be infinite. Therefore, for all i and n,

dim(πi(zn)) > 0. (38)

We may thus assume that {zn} converges to a proper Lie subalgebra z0 which is
normalized by ρ0(Γ) with

dim(z0) > 0. (39)

Since ρ0 is virtually Zariski dense, z0 must be a strict factor in the Lie algebra g of
G. Thus, after reordering, we may assume that

z0 =

q(

i=1

gi. (40)

For n large enough, zn is thus a graph of an homomorphim

fn : z0 → h =

p(

i=q+1

gi.

Since there are only finitely many conjugacy classes (under the adjoint repre-
sentation) of homomorphisms of z0 into h, we may pass to a subsequence such
that

fn = Ad(gn) ◦ f0 ◦ πh1 ,

where f0 is a fixed isomorphism from an ideal h1 in z0 to an ideal h2 in h, πh1 is
the projection from z0 to h1 and gn ∈ H2 where Hi is the subgroup of G whose Lie
algebra is hi.

Let Z0 be the subgroup of G whose Lie algebra is z0 and consider A1 = exp aZ0
,

where aZ0 is a Cartan subspace of z0, and let A2 = exp aH2 , where the Cartan
subspace aH2 is chosen so that f0(πh1(A1)) = A2. Considering the Cartan de-
composition H2 = KA2K of H2 where K is a maximal compact subgroup, we
may write gn = knancn with an ∈ A2 and kn, cn ∈ K. Moreover we may write
Ad(cn) = f0(Ad(dn)), where dn lies in a fixed compact subgroup of H1. Thus, if
u ∈ aZ0

, since A2 is commutative, we have

fn(Ad(d−1
n )u) = Ad(gn)f0(Ad(d−1

n )u) = Ad(kn)f0(u).
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We may extract a subsequence so that that {kn}n∈N and {dn}n∈N converge respec-
tively to k0 and d0. Therefore,

{(Ad(d−1
0 )u,Ad(k0)f0(u)) | u ∈ aZ0} ⊂ z0,

which contradicts the fact that z0 =
Aq

i=1 gi. This contradiction establishes the
fact that the set of Anosov, virtually Zariski dense regular homomorphisms is open,
which completes the proof. □

We record the following observation, established in the proof of Proposition 7.3
which will be useful in the proof of Corollary 1.9.

Proposition 7.4. Suppose that Γ is a word hyperbolic group, G is a semi-simple
Lie group with finite center and P is a non-degenerate parabolic subgroup of G. Then
)Z(Γ;G,P)/G0 is an analytic manifold.

7.3. Kleinian groups. Let Cc(Γ,PSL2(C)) be the set of (conjugacy classes of) con-
vex cocompact representations of Γ into PSL2(C)). We say that a convex cocompact
representation ρ in PSL2(C) is Fuchsian if its image is conjugate into PSL2(R). Since
every non-elementary Zariski closed, connected subgroup of PSL2(C) is conjugate
to PSL2(R), we note that ρ ∈ Cc(Γ,PSL2(C)) is Zariski dense unless ρ is virtually
Fuchsian, i.e. there exists a finite index subgroup of ρ(Γ) which is conjugate into
PSL2(R) (see also Johnson-Millson [33, Lemma 3.2]). Notice that if ρ is virtually
Fuchsian, then ρ(Γ) contains a finite index subgroup which is isomorphic to a free
group or a closed surface group.

Bers [8] proved that Cc(Γ,PSL2(C)) is a complex analytic manifold. which has
real dimension −6χ(Γ) if Γ is torsion-free. (See also Kapovich [34, Section 8.8]
where a proof of this is given in the spirit of Proposition 7.1.) We summarize these
results in the following proposition.

Proposition 7.5. Let Γ be a word hyperbolic group. Then

(1) Cc(Γ,PSL2(C)) is a smooth analytic manifold.
(2) ρ ∈ Cc(Γ,PSL2(C)) is Zariski dense if and only if ρ is not virtuallyFuchsian.
(3) If Γ is torsion-free, then Cc(Γ,PSL2(C)) has dimension −6χ(Γ).

7.4. Hitchin components. Let S be a closed orientable surface of genus at least 2
and let τm : PSL2(R) → PSLm(R) be an irreducible homomorphism. If ρ : π1(S) →
PSL2(R) is discrete and faithful, hence uniformizes S, then τm◦ρ is called a Fuchsian
representation. A representation ρ : π1(S) → PSLm(R) that can be deformed into
a Fuchsian representation is called a Hitchin representation. Lemma 10.1 of [41]
implies that all Hitchin representations are irreducible.

Let Hm(S) be the space of Hitchin representations into PSLm(R) and let

Hm(S) = Hm(S)/PGLm(R).
Each Hm(S) is called a Hitchin component and Hitchin [30] proved that Hm(S) is

an analytic manifold diffeomorphic to R(m2−1)|χ(S)|.
One may identify the Teichmüller space T (S) with H2(S). The irreducible rep-

resentation gives rise to an analytic embedding that we also denote τm, of T (S)
into the Hitchin component Hm(S) and we call its image the Fuchsian locus of the
Hitchin component.

Each Hitchin representation lifts to a representation into SLm(R). Labourie [41]
showed that all lifts of Hitchin representations are irreducible and (SLm(R),B)-
Anosov where B is a minimal parabolic subgroup of SLm(R). In particular, lifts
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of Hitchin representations are projective Anosov. Moreover, Labourie [41] showed
that the image of every non-trivial element of π1(S) under the lift of a Hitchin
representation is diagonalizable with distinct eigenvalues. In particular, every lift
of a Hitchin representation is SLm(R)-generic, so is contained in Cg(π1(S), SLm(R)).
Moreover, notice that distinct lifts of a given Hitchin representation must be con-
tained in distinct components of Cg(π1(S), SLm(R)).

We summarize what we need from Hitchin and Labourie’s work in the following
result.

Theorem 7.6. Every Hitchin component lifts to a component of the analytic man-
ifold Cg(π1(S), SLm(R)).

8. Thermodynamic formalism on the deformation space of projective
Anosov representations

In Section 8.1, we show that entropy, intersection and renormalized intersection
vary analytically over C(Γ,m), then in section 8.2 we construct the thermodynamic
mapping of C(Γ,m) into the space of Livšic cohomology classes of pressure zero
functions on U0Γ and use it to define the pressure form on C(Γ,m) and Cg(Γ,G).

8.1. Analyticity of entropy and intersection. Let Γ be a word hyperbolic
group admitting a projective Anosov representation. By Proposition 5.7, the Gro-
mov geodesic flow on U0Γ admits a Hölder reparametrization which turns it into
a topologically transitive metric Anosov flow. Since the Gromov geodesic flow is
only well defined up to reparametrization, we choose a fixed Hölder reparametriza-
tion which gives rise to a topologically transitive metric Anosov flow, and use the
corresponding flow, denoted by ψ = {ψt}t∈R, as a background flow on U0Γ.

Let ρ : Γ → SLm(R) be a projective Anosov representation. By Proposition 4.1,
the geodesic flow (UρΓ, {φt}t∈R) of ρ is Hölder conjugate to a Hölder reparametriza-
tion of the flow {ψt}t∈R. Periodic orbits of {φt}t∈R are in one-to-one correspondence
with conjugacy classes of infinite order elements of Γ. The periodic orbit associated
to the conjugacy class [γ] has period Λ(ρ)(γ).

If ρ : Γ → SLm(R) is projective Anosov, let fρ : U0Γ → R be a Hölder function
such that the reparameterization of U0Γ by fρ is Hölder conjugate to UρΓ. Livšic’s
theorem 3.3 implies that the correspondence ρ (→ fρ is well defined modulo Livšic
cohomology and invariant under conjugation of the homomorphism ρ. Therefore,
we may define

h(ρ1) = h(fρ1
), (41)

I(ρ1, ρ2) = I(fρ1 , fρ2), and (42)

J(ρ1, ρ2) = J(fρ1
, fρ2

) =
h(ρ2)

h(ρ1)
I(ρ1, ρ2), (43)

for projective Anosov representations ρ1 : Γ → SLm(R) and ρ2 : Γ → SLm(R).
These quantities are well defined and agree with the definition given in the In-
troduction. Proposition 7.3.1 implies that

h(fρ1) = lim
T→∞

1

T
log &(RT (ρ1))
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while equation (12) implies that

I(fρ1 , fρ2) = lim
T→∞

!

" 1

&(RT (ρ1))

#

[γ]∈RT (ρ1)

log(Λ(γ)(ρ2))

log(Λ(γ)(ρ1))

$

% .

Proposition 6.2 implies that if {ρu}u∈D is an analytic family of of projective
Anosov homomorphisms defined on a disc D, then we can choose, at least locally,
the map u (→ fρu to be analytic. Proposition 3.12 then implies that entropy,
intersection and renormalized intersection all vary analytically.

Proposition 8.1. Given two analytic families {ρu}u∈D and {ηv}v∈D′ of projective
Anosov homomorphisms, the functions u (→ h(ρu), (u, v) (→ I(ρu, ηv) and (u, v) (→
J(ρu, ηv) are analytic on their domains of definition.

Combining Propositions 3.8, 3.9 and 3.11 one obtains the following.

Corollary 8.2. For every pair ρ1 : Γ → SLm(R) and ρ2 : Γ → SLm(R) of projective
Anosov representations, one has

J(ρ1, ρ2) " 1.

If J(ρ1, ρ2) = 1, then there exists a constant c " 1 such that

Λρ1(γ)
c = Λρ2(γ)

for every γ ∈ Γ.
Moreover, if {ρt} is a smooth one parameter family of projective Anosov repre-

sentations and {ft} is an associated smooth family of reparametrizations, then

∂2

∂t2

&&&&
t=0

J(ρ0, ρt) = 0

if and only if
∂

∂t

&&&&
t=0

(hρtft)

is Livšic cohomologous to 0.

8.2. The thermodynamic mapping and the pressure form. If ρ ∈ C(Γ,m)
and fρ is a reparametrization of the Gromov geodesic flow giving rise to the geodesic
flow of ρ, we define Φρ : U0Γ → R by

Φρ(x) = −h(ρ)fρ(x).

Lemma 3.1 implies that Φρ ∈ P(U0Γ). Let H(U0Γ) be the set of Livšic cohomology
classes of pressure zero function, we saw that the class of Φρ inH(U0Γ) only depends
on ρ. We define the thermodynamic mapping to be

T :

7
C(Γ,m) → H(U0Γ)

ρ (→ [Φρ]

By Proposition 6.2, the thermodynamic mapping is “analytic” in the following
sense: for every representation ρ in the analytic manifold C(Γ,m), there exists a
neighborhood U of ρ in C(Γ,m) and an analytic mapping from U to P(U0Γ) which
lifts the thermodynamic mapping.

We use the thermodynamic mapping to define a 2-tensor on our deformation
spaces.
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Definition 8.3. [Pressure Form] Let {ρu}u∈M be an analytic family of projective
Anosov homomorphims parametrized by an analytic manifold M . If z ∈ M , we
define Jz : M → R by letting

Jz(u) = J(ρz, ρu).

The associated pressure form p on M is the 2-tensor such that if v, w ∈ TzM , then

p(v, w) = D2
zJz(v, w).

Notice that, by Corollary 8.2, the pressure form is non-negative.

In particular, we get pressure forms on )C(Γ,m) and on )C(Γ,G) when G is a
reductive subgroup of SLm(R). Since J is invariant under the action of conjugation
on each variable, these pressure forms descend to 2-tensors, again called pressure
forms, on the analytic manifolds C(Γ,m) and Cg(Γ,G).

9. Degenerate vectors for the pressure metric

In this section, we analyze the norm zero vectors for the pressure metric. If Γ
is a word hyperbolic group, α is an infinite order element of Γ and {ρu}u∈M is an
analytic family of projective Anosov homomorphisms parameterized by an analytic
manifold M , one may view L(α) as an analytic function on M where we abuse
notation by letting L(α)(u) = L(α)(ρu) denote the eigenvalue of ρu(α) of maximal
modulus. The following is the main result of the section.

Proposition 9.1. Let Γ be a word hyperbolic group and let G be a reductive subgroup
of SLm(R). Suppose that {ρu : Γ → G}u∈D is an analytic family of projective
Anosov G-generic homomorphisms defined on a disc D with associated pressure
form p. Suppose that z ∈ D, v ∈ TzD and

p(v, v) = 0.

Then, for every element α of infinite order in Γ,

DzL(α)(v) = 0.

9.1. Log-type functions. We begin by showing that if v is a norm zero vector,
then each L(α) is of log-type Kat v for some fixed K.

Definition 9.2. We say that an analytic function f has log-type K at v ∈ TuM ,
if f(u) ∕= 0 and

Dulog(|f |)(v) = K log(|f(u)|),
and is of log-type if it is of log-type K for some K.

Lemma 9.3. Let {ρu}u∈M be an analytic family of projective Anosov homomor-
phims parametrized by an analytic manifold M and let p be the associated pressure
form. If v ∈ TzM and

p(v, v) = 0,

then there exists K ∈ R such that if α is any element of infinite order in Γ, then
L(α) is of log-type K at v.

Proof. Consider a smooth one parameter family {us}s∈(−1,1) in M such that u0 = z
and u̇0 = v. Let ρs = ρus and let fs = fus where {fus} is a smooth family of
reparametrizations obtained from Proposition 6.2. We define, for all s ∈ (−1, 1),

Φs = Φρs = −h(ρs)fs,
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By Corollary 8.2, Φ̇0 is Livšic cohomologous to zero. In particular, the integral of
Φ̇0 is zero on any φs-invariant measure. Thus for any infinite order element α ∈ Γ
one has

〈δα|Φ̇0〉 = 0.

By definition, Φs = −h(ρs)fρs and thus

〈δα|Φs〉 = −h(ρs) logΛ(α)(us).

It then follows that

0 = 〈δα|
dΦs(x)

ds

&&&&
s=0

〉 = d(〈δα|Φs〉)(x)
ds

&&&&
s=0

=
d (h(ρs) log(Λ(α)(us))

ds

&&&&
s=0

.

Applying the chain rule we get

0 =

0
dh(ρs)

ds

&&&&
s=0

1
log(Λ(α)(us)) + h(ρs)

0
d log(Λ(α)(us)

ds

&&&&
s=0

1
.

It follows that setting

K = − 1

h(ρ0)

d (h(ρs))

ds

&&&&
s=0

,

we get that for all α ∈ Γ,

Dz log(Λ(α))(v) =
d

ds

&&&&
s=0

(log(Λ(α)(ρs)) = K log (Λ(α)(z)) .

Since Λ(α) = |L(α)|, L(α) has log-type K at v. □

9.2. Trace functions. Recall, from Proposition 2.6, that if α is an infinite order
element of Γ and ρ is a projective Anosov representation in C(Γ,m), then we may
write

ρ(α) = L(α)(ρ)p(ρ(α)) +m(ρ(α)) +
1

L(α−1)(ρ)
q(ρ(α)),

where

(1) L(α)(ρ) is the eigenvalue of ρ(α) of maximum modulus and p(ρ(α)) is the
projection on ξ(α+) parallel to θ(α−)

(2) L(α−1)(ρ) is the eigenvalue of ρ(α−1) of maximal modulus and q(ρ(α)) is
the projection onto the line ξ(α−) parallel to θ(α+), and

(3) the spectral radius of m(ρ(α)) is less than δl(α)Λ(α)(ρ) for some δ = δ(ρ) ∈
(0, 1) which depends only on ρ.

It will be useful to define

r(ρ(α)) = m(ρ(α)) +
1

L(α−1)(ρ)
q(ρ(α))

which also has spectral radius less than δl(α)Λ(α)(ρ).
If {ρu}u∈D is an analytic family of projective Anosov G-generic homomorphisms

defined on a disc D and α and β are infinite order elements of Γ, we consider the
following analytic functions on D:

T(α,β) : u (→ Tr(ρu(α)ρu(β))
T(p(α),β) : u (→ Tr(p(ρu(α))ρu(β)),

T(p(α),p(β)) : u (→ Tr(p(ρu(α))p(ρu(β))),
T(p(α), r(β)) : u (→ Tr(p(ρu(α))r(ρu(β))),
T(r(α),p(β)) : u (→ Tr(r(ρu(α))p(ρu(β))),
T(r(α), r(β)) : u (→ Tr(r(ρu(α))r(ρu(β))).
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We say that two infinite order elements of Γ are coprime if they have distinct fixed
points in ∂∞Γ (i.e. they do not share a common power).

We then have

Proposition 9.4. Let {ρu}u∈D be an analytic family of projective Anosov homo-
morphisms defined on a disc D. If α and β are infinite order, coprime elements of
Γ, then

T(p(α),p(β)) = lim
n→∞

L(αnβn)

L(α)nL(β)n

and

T(p(α),β) = lim
n→∞

L(αnβ)

L(α)n
.

Moreover, if L(γ) has log-type K at v ∈ TuD for all infinite order γ ∈ Γ, then
both T(p(α),p(β)) and T(p(α),β) have log-type K at v.

We say that a family {fn}n∈N of analytic functions defined on a disk D decays
at v ∈ TzD if

lim
n→∞

fn(z) = 0 and lim
n→∞

Dzfn(v) = 0.

The following observation will be useful in the proof of Proposition 9.4.

Lemma 9.5. Let G be an analytic function that may be written, for all positive
integers n, as

G = Gn(1 + hn),

where Gn has log-type K and {hn}n∈N decays at v ∈ TuM , then G has log-type K.

Proof. Notice that

Du log(G)(v) = Du log(Gn)(v) +Du log(1 + hn)(v)

= K logGn(u) +
Duhn(v)

1 + hn(u)
.

We now simply notice that the right hand side of the equation converges toK logG(u)
□

Proof of Proposition 9.4: First notice that

T(αn,βn) = L(αnβn)(1 + gn)

where

gn =
Tr(r(αnβn))

L(αnβn)
.

Since r(αnβn)(ρu) has spectral radius at most δ(ρu)
ℓ(αnβn)|L(αnβn)|, δ(ρu) ∈ (0, 1),

and limn→∞ ℓ(αnβn) = +∞, we see that limn→∞ gn(ρu) = 0 for all ρu ∈ C(Γ,m).
Since {gn} is a sequence of analytic functions, gn decays at v.

On the other hand,

ρu(α
nβn) = L(α)nL(β)np(α)p(β)+L(α)np(α)r(βn)+L(β)nr(αn)p(β)+r(αn)r(βn),

so

T(αn,βn) = L(α)nL(β)nT(p(α),p(β))(1 + ĝn)
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where

ĝn =
L(α)nT(p(α), r(βn)) + L(β)nT(r(αn),p(β)) + T(r(αn), r(βn))

T(p(α),p(β))L(α)nL(β)n
.

and again ĝn decays at v. (Notice that, since α and β are co-prime, ξρu(β
+) is not

contained in θρu(α
−) for any u ∈ D, so T(p(α),p(β)) is non-zero on D.)

Combining, we see that

T(p(α),p(β)) =
L(αnβn)(1 + gn)

L(α)nL(β)n(1 + ĝn)
,

which implies, since lim gn = 0 and lim ĝn = 0, that

T(p(α),p(β)) = lim
n→∞

L(αnβn)

L(α)nL(β)n
.

Moreover, if L(γ) has log-type K at v for all infinite order γ ∈ Γ, then Gn =
L(αnβn)

L(α)nL(β)n has log-type K, being the ratio of log-type K functions and we may

apply Lemma 9.5 to see that T(p(α),p(β)) has log-type K.
We similarly derive the claimed facts about T(p(α),β) by noting that

T(αn,β) = L(αnβ)(1 + hn)

where

hn =
Tr(r(αnβ))

L(αnβ)
,

and that

T(αn,β) = L(α)nT(p(α),β)(1 + ĥn)

where

ĥn =
T(r(αn),β)

L(αn)T(p(α),β)

and applying an argument similar to the one above. □

Remark: Dreyer [23] previously established that
7
Λ(αnβ)(ρ)

Λ(α)(ρ)n

8

has a finite limit when ρ is a Hitchin representation.

9.3. Technical lemmas. We will need a rather technical lemma, Lemma 9.7, in the
proof of Lemma 9.8, which is itself the main ingredient in the proof of Proposition
9.1.

We first prove a preliminary lemma, which may be viewed as a complicated
version of the fact that exponential functions grow faster than polynomials. If as
is a polynomial in q variables and their conjugates, we will use the notation

‖as‖ = sup{|as(z1, . . . , zq)| | |zi| = 1}.

Lemma 9.6. Let (f1, . . . , fq) and (θ1, . . . , θq) be two q-tuples of real numbers and
let (g1, . . . , gq) be a q-tuple of complex numbers, such that

1 > f1 > · · · > fq > 0.
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Suppose that there exists a strictly decreasing sequence {µs}s∈N of positive real num-
bers so that µ1 < 1 and a sequence of complex-valued polynomials {as}s∈N in q
variables and their conjugates, such that, for all n ∈ N,

q#

p=1

nfn
p ℜ(einθpgp) =

∞#

s=1

µn
sℜ(as(einθ1 , . . . , einθq )), (44)

and there exists N such that
∞#

s=1

|µs|n‖as‖

is convergent for all n ≥ N . Then, for all p = 1, . . . , q,

ℜ(gp) = 0 if θp ∈ 2πQ,
gp = 0 if θp ∕∈ 2πQ.

Proof. There exists r ∈ N, so that, for all i, either rθi ∈ 2πZ or rθi ∕∈ 2πQ.
Equation (44) remains true if we replace (θ1, . . . , θq) with (rθ1, . . . , rθq), so we may
assume that either θi ∕∈ 2πQ or θi ∈ Z.

Let V be the set of accumulation points of {(einθ1 , . . . , einθq ) | n ∈ N}. We first
show that if (z1, . . . , zq) ∈ V , then ℜ(g1z1) = 0. This will suffice to prove our claim
if p = 1, since if θi ∈ 2πZ, then z1 = 1 and ℜ(g1) = 0. If not, any z1 ∈ S1 can arise
in such a limit, so ℜ(z1g1) = 0 for all z1 ∈ S1, which implies that g1 = 0.

So, suppose that {nm} is an increasing sequence in N and {(einmθ1 , . . . , einmθq )}
converges to (z1, . . . , zq). Then either

(1)

ℜ(as(z1, z2, . . . , zq)) = 0

for all s, or
(2) there exists s0 ∈ N so that

A0 = ℜ(as0(z1, z2, . . . , zq)) ∕= 0,

and for all s < s0

ℜ(as(z1, z2, . . . , zq)) = 0.

If (1) holds, then Equation (44) implies

lim
m→∞

nmℜ(einmθ1g1) + ε0(nm) = 0. (45)

where

ε0(nm) =

q#

p=2

nm

0
fp
f1

1nm

ℜ(einmθpgp).

Since, limm→∞ ℜ(einmθ1g1) = ℜ(z1g1) and limm→∞ ε0(nm) = 0, we conclude that
ℜ(z1g1) = 0.

If (2) holds, then Equation (44) implies that

lim
m→∞

nmℜ(z1g1) + ε0(nm)−
0
µs0

f1

1nm

Am(1 + ε1(nm)) = 0

where

Am = ℜ(as0(einmθ1 , einmθ2 , . . . , einmθq )),

Am,s =
1

Am

0
µs

µs0

1nm

ℜ
9
as(e

inmθ1 , . . . , einmθq )
:
, and
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ε1(nm) =

∞#

s=s0+1

Am,s. (46)

Observe that

lim
m→∞

Am = A0 ∕= 0

If m is large enough that |Am| " 1
2 |A0| and nm > N , then

|Am,s| !
µnm−N
s0+1

µnm
s0

Bs where Bs =
2

A0
|µs|N‖as‖.

Since limm→∞
µnm−N
s0+1

µnm
s0

= 0 and
B∞

s=1 Bs is convergent, limn→∞ ε1(nm) = 0. It then

follows that the sequence 7
1

nm

0
µs0

f1

1nm
8

m∈N

is bounded. Thus µs0 ! f1 and it follows that ℜ(z1g1) = 0.
Once we have proved that ℜ(z1g1) = 0 for all (z1, . . . , zq) ∈ V , we may use

the same argument to prove that ℜ(z2g2) = 0 for all (z1, z2, . . . , zq) and proceed
iteratively to complete the proof for all p. □

We are now read to prove the technical lemma used in the proof of Lemma 9.8

Lemma 9.7. Let {fp}qp=1 and {θp}qp=1 be 2 families of real analytic functions

defined on (−1, 1) such that, for all t ∈ (−1, 1),

1 > |f1(t)| > · · · > |fq(t)| > 0 and θ̇q(0) = 0

Let {gp}qp=1 be a family of complex valued analytic functions defined on (−1, 1) so

that gq(0) ∈ R \ {0}. For all n ∈ N, let

Fn = 1 +

q#

p=1

fn
p ℜ(einθpgp).

If there exists a constant K such that for all large enough n,

Ḟn(0) = KFn(0) log(Fn(0)).

Then, ḟq(0) = 0.

Proof. We first notice that it suffices to prove the lemma in the restricted setting
where fp(t) > 0 for all p and all t. In general, we can then replace each fp with f2

p

and each θp with 2θp and apply the restricted form of the lemma to conclude that
d
dt

&&
t=0

f2
q = 0, which implies that ḟq(0) = 0. For the remainder of the proof, we

will assume that fp(t) > 0 for all p and all t.
Let g(x) = K(1 + x)log(1 + x). Then g is analytic at 0. Consider the expansion

g(x) =
#

n>0

amxm

with radius of convergence δ > 0. Notice that there exists N such that if n ≥ N ,
then

q#

p=1

fp(0)
n|gp(0)| <

δ

2
.
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If n ≥ N , then

KFn(0) log(Fn(0)) = g

3
q#

p=1

fp(0)
nℜ(einθp(0)gp(0))

4

=
#

m>0

am

3
q#

p=1

fp(0)
nℜ(einθp(0)gp(0))

4m

.

If we expand this out, for each q-tuple of non-negative integers 9m = (m1, . . . ,mq),
we get a term of the form

am1+···+mq

9
Πq

p=1fp(0)
mp

:n
0
m1 + · · ·+mq

m1 m2 · · · mq

1;
Πq

p=1(ℜ(gp(0)einθp(0))mp

<
. (47)

Let

h/m = Πq
p=1fp(0)

mp < 1.

Using the equality ℜ(z(w+ w̄)) = 2ℜ(z)ℜ(w) repeatedly, we may rewrite the term
in (47) in the form

hn
/mℜ(H/m(einθ1(0), . . . , einθq(0))

where H/m is a complex polynomial in q variables and their conjugates. Since the
series

B
/m hn

/m‖H/m‖ is convergent for all n ≥ N , we are free to re-arrange the terms.
We group all terms where the coefficient h/m agrees (of which there are only finitely
many for each value of h/m) and order the resulting terms in decreasing order of
co-efficient to express

KFn(0) log(Fn(0)) =

∞#

s=0

hn
sℜ(Hs(e

inθ1 , . . . , einθq )),

where each Hs is a complex polynomial in q variables and their conjugates and
{hs}s∈N is a strictly decreasing sequence of positive numbers less than 1. Moreover,
for all n ≥ N the series

∞#

s=0

hn
s ‖Hs‖

is convergent.
On the other hand,

Ḟn(0) =

q#

p=1

nfn
p ℜ

3
einθpgp

3
ḟp
fp

+ iθ̇p

44
+

q#

p=1

fn
p ℜ(einθp ġp)

where all functions on the right hand side are evaluated at 0. Since Ḟn(0) =
KFn(0) log(Fn(0)) we see that

q#

p=1

nfn
p ℜ

3
einθpgp

3
ḟp
fp

+ iθ̇p

44
=

∞#

s=1

hn
sℜ(Hs(e

inθ1 , . . . , einθq )).

The previous lemma then implies that for all p

ℜ
3
gp

3
ḟp
fp

+ iθ̇p

44
= 0

Since gq(0) is a non zero real number, fq(0) ∕= 0 and θ̇q(0) = 0, we get that

ḟq(0) = 0. □
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9.4. Degenerate vectors have log-type zero. Proposition 9.1 then follows from
the following lemma and Lemma 9.3.

Lemma 9.8. Let Γ be a word hyperbolic group and let G be a reductive subgroup
of SLm(R). If {ρu}u∈D is an analytic family of projective Anosov G-generic homo-
morphisms defined on a disc D and L(α) has log-type K at v ∈ TzD for all infinite
order α ∈ Γ, then DzL(α)(v) = 0 for all infinite order α ∈ Γ.

Proof. Notice that if we replace the family {ρu}u∈D by a conjugate family {ρ′u = guρug
−1
u }u∈D

where {gu}u∈D is an analytic family of elements of SLm(R), then L(α)(ρu) =
L(α)(ρ′u) for all u ∈ D. Therefore, we are free to conjugate our original family
when proving the result.

By Proposition 2.21, we may choose β ∈ Γ, so that ρu(β) is generic. After
possibly restricting to a smaller disk about z, we may assume that ρu(β) is generic
for all u ∈ D. We may then conjugate the family so that ρu(β) lies in the same
maximal torus for all u, we can write

ρu(β
n) = L(β)np+

q−1#

p=1

λn
p (cos(nθp)pp + sin(nθp) -pp) +

1

L(β−1)n
q,

where L(β), L(β−1), λp, and θp are analytic functions of u and

|L(β)(u)| > |λ1(u)| > |λ2(u)| > · · · > |λq−1(u)| >
1

|L(β−1(u)| > 0

for all u ∈ D.
Choose an infinite order element α ∈ Γ which is coprime to β. Proposition 9.4,

implies that, for all n,

T(p(α),βn)

L(βn)T(p(α),p(β))
= 1 +

0
1

L(β)L(β−1)

1n 0
Tr(p(ρ(α))q))

T(p(α),p(β))

1

+

q−1#

p=1

0
λp

L(β)

1n

ℜ
0
einθp

0
Tr(p(ρ(α))pp)

T(p(α),p(β))
+ i

Tr(p(ρ(α)) -pp)
T(p(α),p(β))

11
.

has log-type K at v, since the numerator has log-type K at v and the denominator
is a product of two functions which have log-type K at v.

Since α and β are coprime and ρ is projective Anosov, ξ(β−) ⊕ θ(α−) = Rm,
so Tr(p(ρ(α)), q) ∕= 0 (since p(ρ(α)) is a projection onto the line ξ(α+) paral-
lel to θ(α−) and q = q(ρ(β)) is a projection onto the line ξ(β−)). Similarly,
T(p(α),p(β)) ∕= 0, since ξ(β+)⊕ θ(α−) = Rm.

Let {us}s∈(−1,1) be a smooth family in D so that u0 = z and u̇0 = v. We now
apply Lemma 9.7, taking

fp(s) =
λp(us)

L(β)(us)
,

gp(s) =

0
Tr(p(ρus

(α))pp)

T(p(α),p(β))(us)
+ i

Tr(p(ρus
(α)) -pp)

T(p(α),p(β))(us)

1
,

if p = 1, . . . , q − 1, and taking

fq(s) =
1

L(β)(us)L(β−1)(us)
,

gq(s) =
Tr(p(ρus

(α))q)

T(p(α),p(β))(us)
, and
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θq(s) = 0.

We conclude from Lemma 9.7 that ḟq = 0. Thus

DzL(β)(v) · L(β−1)(z) = −L(β)(z) ·DzL(β
−1)(v). (48)

Since L(β) and L(β−1) both have log-type K at v, we get that

DzL(β)(v)

L(β)(z)
= K log(|L(β)(z)|) and

DzL(β
−1)(v)

L(β−1)(z)
= K log(|L(β−1)(z)|). (49)

Combining (48) and (49) we see that

K log(|L(β)(z)|) = DzL(β)(v)

L(β)(z)
= −DzL(β

−1)(v)

L(β−1)(z)
= −K log(|L(β−1)(z)|).

Since log |L(β)(z)| > 0 and log |L(β−1)(z)| > 0, this implies that K = 0. Therefore,
L(α) has log-type 0 at v for all infinite order α ∈ Γ, so DzL(α)(v) = 0 for all infinite
order α ∈ Γ. □

10. Variation of length and cohomology classes

The aim of this section is to prove the following proposition.

Proposition 10.1. Let Γ be a word hyperbolic group and let G be a reductive
subgroup of SLm(R). Suppose that η : D → Hom(Γ,G) is an analytic map such
that for each u ∈ D, η(u) = ρu is irreducible, projective Anosov, and G-generic. If
v ∈ TzD and

DzL(α)(v) = 0

for all infinite order elements α ∈ Γ, then Dzη(v) defines a zero cohomology class
in H1

η(z)(Γ, g).

We recall that Dzη(v) defines a zero cohomology class in H1
η(z)(Γ, g) if and only

if it is tangent to the orbit Gη(z) in Hom(Γ,G) ⊂ Gr.
Propositions 9.1 and 10.1 together imply that the pressure form is non-degenerate

on Cg(Γ,G). More generally, we obtain the following corollary.

Corollary 10.2. Let Γ be a word hyperbolic group and let G be a reductive subgroup

of SLm(R). Suppose that η : D → )Cg(Γ,G) is an analytic map and p is the associated
pressure form on D. If v ∈ TzD and

p(v, v) = 0,

then Dzη(v) defines a zero cohomology class in H1
η(z)(Γ, g).

In the course of the proof of Proposition 10.1 we also obtain the following fact
which is of independent interest.

Proposition 10.3. Suppose that G is a reductive subgroup of SLm(R) and ρ ∈ Cg(Γ,G).
Then the set

{DρL(α) | α infinite order in Γ} ,
generates the cotangent space T∗

ρCg(Γ,G).

Both propositions will be established in section 10.3.
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10.1. Invariance of the cross-ratio. We recall the definition of the cross ratio
of a pair of hyperplanes and a pair of lines. First define

RP(m)(4) = {(ϕ,ψ, u, v) ∈ RP(m)∗
2 × RP(m)2 : (ϕ, v) and (ψ, u) span Rm}.

We then define b : RP(m)(4) → R by

b(ϕ,ψ, u, v) =
〈ϕ|u〉 〈ψ|v〉
〈ϕ|v〉 〈ψ|u〉 .

Notice that for this formula to make sense we must make choices of elements in ϕ,
ψ, u, and v, but that the result is independent of our choices.

If ρ is a projective Anosov representation with limit curves ξ : ∂∞Γ → RP(m)
and θ : ∂∞Γ → RP(m)∗, we define the associated cross ratio on ∂∞Γ(4), as in [42],
to be

bρ(x, y, z, w) = b(θ(x), θ(y), ξ(z), ξ(w)). (50)

We first derive a formula for the cross-ratio at points associated to co-prime
elements. This formula generalizes the formula in Corollary 1.6 from Benoist [4].

Proposition 10.4. If ρ : Γ → SLm(R) is a projective Anosov representation and
α and β are infinite order co-prime elements of Γ, then

bρ(α
−,β−,β+,α+) = T(p(α),p(β)) = lim

n→∞

L(αnβ)

L(α)n
.

Proof. Choose a+ ∈ ξ(α+), a− ∈ θ(α−), b+ ∈ ξ(β+) and b− ∈ θ(β−). Observe that

p(α)(u) =
〈a−|u〉
〈a−|a+〉 a+.

for all u ∈ Rm. In particular,

p(β)p(α)(u) =
〈b−|a+〉

〈a−|a+〉 〈b−|b+〉 〈a
−|u〉 b+.

Therefore,

T(p(α)p(β)) =
〈a−|b+〉 〈b−|a+〉
〈a−|a+〉 〈b−|b+〉 = bρ(α

−,β−,β+,α+).

The last equality in the formula follows immediately from Proposition 9.4. □

As a corollary, we see that if L(α) has log-type zero for all infinite order α ∈ Γ,
then the cross-ratio also has log-type zero.

Corollary 10.5. Let Γ be a word hyperbolic group and let G be a reductive subgroup
of SLm(R). Suppose that {ρu : Γ → G}u∈D is an analytic family of projective
Anosov G-generic homomorphisms parametrized by a disc D. If L(α) has log-type
0 at v ∈ TzD for all infinite order α ∈ Γ, then for all distinct collections of points
x, y, z, w ∈ ∂∞Γ, the function

u (→ bρu(x, y, z, w),

is of log-type 0 at v.

Proof. Suppose that α,β ∈ Γ have infinite order. Propositions 9.4 and 10.4 imply
that bρ(α

−,β−,β+,α+) has log-type 0.
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Since pairs of fixed points of infinite order elements are dense in ∂∞Γ(2) and ξu
and θu vary analytically by Proposition 6.1, we see that

ρ (→ bρ(x, y, z, w),

has log-type 0 for all pairwise distinct x, y, z, w ∈ ∂∞Γ. □

10.2. An useful immersion. We define a mapping from PSLm(R) into a quotient
W(m) of the vector space Mm+1 of all (m + 1) × (m + 1)-matrices and use it to
encode a collection of cross ratios.

Consider the action of the multiplicative group (R \ {0})2(m+1) on Mm+1 given
by

(a0, . . . , am, b0, . . . , bm)(Mi,j) = (aibjMi,j).

We denote the quotient by

W(m) = Mm+1/(R \ {0})2(m+1).

Given a projective frame F = (x0, . . . , xm) for RP(m) and a projective frame
F ∗ = (X0, . . . , Xm) for the dual RP(m)∗, let

• x̂i be non zero vectors in xi, such that

0 =

m#

i=0

x̂i, (51)

• X̂i be non zero covectors in Xi such that

0 =

m#

i=0

X̂i. (52)

Observe that x̂i, respectively X̂i, are uniquely defined up to a common multiple.
Then, the mapping

µF,F∗ : PSLm(R) → W(m)

given by

µF,F∗ : A (→ X̂i(A(x̂j))

is well defined, independent of the choice of x̂i and X̂i.

Lemma 10.6. The mapping µF,F∗ is a smooth injective immersion.

Proof. Since µF,F∗(A) determines the projective coordinates of the image of the
projective frame (x0, . . . , xn) by A, µF,F∗ is injective.

Let µ = µF,F∗ . Let {At}t∈(−1,1) be a smooth one-parameter family in PSLm(R)
such that

Ȧ ∈ TA0
(PSLm(R)) and Dµ(Ȧ) = 0.

Let {X̂t
i}t∈(−1,1) and {x̂t

j}t∈(−1,1) be time dependent families of covectors in Xi and
vectors xj respectively, and let

ati,j = X̂t
i (At(x̂

t
j)).

If Dµ(Ȧ) = 0, then there exists λi and µj such that

ȧi,j = λiai,j + µjai,j .

Multiplying each X̂t
i by e−λ0t and each x̂t

i by e−µ0t has the effect of replacing λi

and µj by λi−λ0 and µj−µ0 respectively. Thus, we may assume that λ0 = µ0 = 0.
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We now use the normalization (51) and (52), to see that
m#

i=1

λiai,j = 0 =

m#

j=1

µjai,j .

On the other hand, since the collections of vectors {vi = (ai,j)1!j!m} and {wj = (ai,j)1!i!m}
are linearly independent, this implies that λi = µj = 0 for all i and j. □

The following lemma relates the immersion µ and the cross ratio.

Lemma 10.7. Let {x0, . . . , xm} and {y0, . . . , ym} be collections of m+ 1 pairwise
distinct points in ∂∞Γ. Suppose that ρ : Γ → SLm(R) is projective Anosov with
limit maps ξ and θ and that

F = (ξ(x0), . . . , ξ(xm)),
F ∗ = (θ(y0), . . . , θ(ym)).

are projective frames for RP(m) and RP(m)∗. If α ∈ Γ, then

µF,F∗(πm(ρ(α))) = [bρ(yi, z,α(xj), w)]

where z and w are arbitrary points in ∂∞Γ.

Proof. Choose, for each i = 0, . . . ,m, φi ∈ θ(yi) and vi ∈ ξ(xi), and choose φ ∈ θ(z)
and v ∈ ξ(w). Then

µF,F∗(πm(ρ(α))) = [〈φi|α(vj)〉]
while

[bρ(yi, z,α(xj), w)] =

C
〈φi|α(vj)〉 〈φ|v〉
〈φi|v〉 〈φ|α(vj)〉

D
.

The equivalence is given by taking ai =
〈φ|v〉
〈φi|v〉 and bj =

1
〈φ|α(vj)〉 . □

10.3. Vectors with log type zero. Propositions 10.1 and 10.3 follow from Propo-
sition 9.1 and the following lemma.

Lemma 10.8. Let Γ be a word hyperbolic group and let G be a reductive subgroup
of SLm(R). Suppose that η : D → Hom(Γ,G) is an analytic map such that for each
u ∈ D, η(u) = ρu is irreducible, projective Anosov and G-generic. Suppose that
v ∈ TzD and that DzL(α)(v) = 0 for all infinite order α ∈ Γ. Then the cohomology
class of Dη(v) vanishes in H1

η(z)(Γ, g).

Proof. Let {ut}t∈(−1,1) be a path in D so that u0 = z and u̇0 = v. Let ρt = ρut
.

By Corollary 10.5,
d

dt

&&&&
t=0

(bρt
(x, y, z, w)) = 0

for any pairwise distinct (x, y, z, w) in ∂∞Γ.
Lemma 2.18 allows us to choose collections {x0, . . . , xm} and {y0, . . . , ym} of

pairwise distinct points in ∂∞Γ such that if

Ft = (ξt(x0), . . . ξt(xm)),
F ∗
t = (θt(y0), . . . θt(ym)).

then F0 and F ∗
0 are both projective frames. For some ε > 0, Ft and F ∗

t are projective
frames for all t ∈ (−ε, ε). (We will restrict to this domain for the remainder of the
argument.) We may then normalize, by conjugating ρt by an appropriate element
of SLm(R), so that Ft = F0 for all t ∈ (−ε, ε).
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Let

µt = µFt,F∗
t
◦ πm.

Then, by Lemma 10.7,

µt(ρt(α)) = [bρt(xi, z,α(yj), w)]

for all α ∈ Γ. Therefore,

d

dt

&&&&
t=0

µt(ρt(α)) = 0.

for all α ∈ Γ. Notice that if χ and χ∗ are projective frames, then

µχ,B∗χ∗(A) = µχ,χ∗(B−1 ◦A),

for all A,B ∈ SLm(R). If we choose Ct ∈ SLm(R) so that (C−1
t )∗(F ∗

t ) = F ∗
0 , then

0 =
d

dt

&&&&
t=0

(µt(ρt(α))) =
d

dt

&&&&
t=0

(µ0(Ctρt(α)))

= Dµ0

0
d

dt

&&&&
t=0

(Ct ◦ ρt(α))
1
.

Lemma 10.6 implies that µ0 is an immersion, so

d

dt

&&&&
t=0

(Ct ◦ ρt(α)) = 0

Thus,

C0 ◦
d

dt

&&&&
t=0

ρt(α) + Ċ0 ◦ ρ(α) = 0. (53)

Taking α = id in Equation (53), we see that Ċ0 = 0. Since C0 = I,

d

dt

&&&&
t=0

ρt(α) = 0

for all α ∈ Γ. Therefore the cohomology class of Dη(v) vanishes in H1
η(z)(Γ, slm(R)).

Since G is a reductive subgroup of SLm(R), slmR = g ⊕ g⊥, so H1
η(z)(Γ, g) injects

into H1
η(z)(Γ, sln(R)). Therefore, Dη(v) vanishes in H1

η(z)(Γ, g) as claimed. □

11. Rigidity results

In this section, we establish two rigidity results for projective Anosov represen-
tations. We first establish Theorem 1.2 which states that the signed spectral radii
determine the limit map of a projective Anosov representation, up to the action of
SLm(R), and that they determine the conjugacy class, in GLm(R), of an irreducible
projective Anosov representation.

Theorem 11.1. [Spectral rigidity] Let Γ be a word hyperbolic group and let
ρ1 : Γ → SLm(R) and ρ2 : Γ → SLm(R) be projective Anosov representations such
that

L(γ)(ρ1) = L(γ)(ρ2)

for all infinite order γ ∈ Γ. Then there exists g ∈ GLm(R) such that g ◦ ξ1 = ξ2.
Moreover, if ρ1 is irreducible, then ρ2 = gρ1g

−1.
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We next establish our rigidity result for renormalised intersection. If H is a
Lie group, denote by Z(H) its center and by H0 the connected component of the
identity. We denote by πm the projection from SLm(R) to PSLm(R). If H ⊂ SLm(R)
denote by PH = πm(H) the projectivised group. Finally, if ρ : Γ → SLm(R) is a
representation, denote by Gρ the Zariski closure of ρ(Γ).

Theorem 11.2. [Intersection rigidity] Let Γ be a word hyperbolic group and
let ρ1 : Γ → SLm1(R) and ρ2 : Γ → SLm2(R) be projective Anosov representations
such that

J(ρ1, ρ2) = 1.

If Gρ1 and Gρ2 are connected, then there exists an isomorphism σ : Gρ1/Z(Gρ1) → Gρ2/Z(Gρ2)
such that

σρ̄1 = ρ̄2,

where ρ̄i : Γ → Gρi
/Z(Gρi

) is the composition of ρi and the projection of Gρi
onto

Gρi/Z(Gρi).

Remarks:

(1) If either Gρ1
or Gρ2

is not connected, then Theorem 11.2 holds for the finite
index subgroup

Γ0 = Γ ∩ ρ−1
1 (G0

ρ1
) ∩ ρ−1

2 (G0
ρ2
).

Indeed, each ρi|Γ0 is again projective Anosov (see [26, Cor. 3.4]), and
Corollary 8.2 implies that J(ρ1|Γ0

, ρ2|Γ0
) = 1.

(2) Consequently, if G0
ρ1

and G0
ρ2

are not isomorphic, then Theorem 11.2 implies
that J(ρ1, ρ2) > 1.

(3) The representations need not actually be conjugate if J(ρ1, ρ2) = 1. Let ρ :
π1(S) → PSL2(R) be a Fuchsian representation and let τk : PSL2(R) → PSLk(R)
be the irreducible representation, then

J(τn ◦ ρ, τm ◦ ρ) = 1

but τn ◦ ρ and τm ◦ ρ are not conjugate if n ∕= m.

11.1. Spectral rigidity. Our spectral rigidity theorem will follow from Proposi-
tion 10.4 and work of Labourie [42].

Recall, from Section 10.1, that we defined the cross ratio b of a pair of hyper-
planes and a pair of lines. Then, given a projective Anosov representation ρ with
limit maps ξ and θ, we defined a cross ratio bρ on ∂∞Γ(4) by letting

bρ(x, y, z, w) = b(θ(x), θ(y), ξ(z), ξ(w)). (54)

Labourie [42, Theorem 5.1] showed that if ρ is a projective Anosov representation
with limit map ξ, then the dimension dim 〈ξ(∂∞Γ)〉 can be read directly from the
cross ratio bρ. (In [42], Labourie explicitly handles the case where Γ = π1(S),
but his proof generalizes immediately.) Consider Sp

∗ the set of pairs (e, u) =
(e0, . . . , ep, u0, . . . , up) of (p + 1)-tuples in ∂∞Γ such that ej ∕= ei ∕= u0 and uj ∕=
ui ∕= e0 when j > i > 0. If (e, u) ∈ Sp

∗ , he defines

χp
bρ
(e, u) = det

i,j>0
(bρ(ei, e0, uj , u0)).

Lemma 11.3. If ρ : Γ → SLm(R) is projective Anosov, then

dim 〈ξ(∂∞Γ)〉 = inf{p ∈ N : χp
bρ

≡ 0}− 1.



THE PRESSURE METRIC FOR ANOSOV REPRESENTATIONS 65

Lemma 4.3 of Labourie [42] extends in our setting to give:

Lemma 11.4. If ρ1 : Γ → SLm(R) and ρ2 : Γ → SLm(R) are projective Anosov
and bρ1 = bρ2 , then there exists g ∈ GLm(R) such that g ◦ ξ1 = ξ2.

Moreover, if ρ1 is irreducible, then g (πm ◦ ρ1) g−1 = πm ◦ ρ2.

Proof. Lemma 11.3 implies that

dim 〈ξ1(∂∞Γ)〉 = dim 〈ξ2(∂∞Γ)〉 = p.

Choose {x0, . . . , xp} ⊂ ∂∞Γ so that

{ξ1(x0), . . . , ξ1(xp)} and {ξ2(x0), . . . , ξ2(xp)}
are projective frames for 〈ξ1(∂∞Γ)〉 and 〈ξ2(∂∞Γ)〉 (see Lemma 2.17).

Choose u0 ∈ ξ1(x0) and {ϕ1, . . . ,ϕp} ⊂ (Rm)∗ such that ϕi ∈ θ1(xi) and
ϕi(u0) = 1. One may check that {ϕ1, . . . ,ϕp} is a basis for 〈θ1(∂∞Γ)〉 . Complete
{ϕ1, . . . ,ϕp} to a basis

B1 = {ϕ1, . . . ,ϕp,ϕp+1, . . . ,ϕm}
for (Rm)∗ such that ϕi(〈ξ1(∂∞Γ)〉) = 0 for all i > p. For y ∈ ∂∞Γ, the projective
coordinates of ξ1(y) with respect to the dual basis of B1 are given by

[. . . : 〈ϕi|ξ1(y)〉 : . . .] = [. . . :
〈ϕi|ξ1(y)〉
〈ϕ1|ξ1(y)〉

〈ϕ1|u0〉
〈ϕi|u0〉

: . . .]

which reduces to

[bρ1
(x1, x1, y, x0), . . . , bρ1

(xp, x1, y, x0), 0, . . . , 0].

Now choose v0 ∈ ξ2(x0) and {ψ1, . . . ,ψp} such that ψi ∈ θ2(xi) and ψi(v0) = 1.
One sees that {ψ1, . . . ,ψp} is a basis of 〈θ2(∂∞Γ)〉 .One can then complete {ψ1, . . . ,ψp}
to a basis

B2 = {ψ1, . . . ,ψp,ψp+1, . . . ,ψm}
for (Rm)∗ such that ψi(〈ξ2(∂∞Γ)〉) = 0 for all i > p. One checks, as above, that if
y ∈ ∂∞Γ, then the projective coordinates ξ2(y) with respect to the dual basis of B2

are given by
[bρ2(x1, x1, y, x0), . . . , bρ2(xp, x1, y, x0), 0, . . . , 0].

We now choose g ∈ GLm(R) so that gϕi = ψi for all i. It follows from the fact
that bρ1(xi, x1, y, x0) = bρ2(xi, x1, y, x0) for all i ! p, that g ◦ ξ1 = ξ2.

Assume now that ρ1 is irreducible, so that p = m. Lemma 2.17 implies that there
exists a (m+1)-tuple (x0, . . . , xm) of points in ∂∞Γ such that F = (ξ1(x0), . . . , ξ1(xm))
is a projective frame for RP(m) and F ∗ = (θ1(x0), . . . , θ1(xm)) is a projective frame
for RP(m)∗. Thus, using the notation of Lemma 10.7, we have that, given arbitrary
distinct points z, w ∈ ∂∞Γ,

µF,F∗(πm(ρ1(γ))) = [bρ1(xi, z, γ(xj), w)]

Similarly

µF,F∗(g−1πm(ρ2(γ))g) = µgF,gF∗(πm(ρ2(γ))) = [bρ2
(xi, z, γ(xj), w)]

Thus, since bρ1 = bρ2 ,

µF,F∗(ρ1(γ)) = µF,F∗(g−1ρ2(γ)g).

Since µF,F∗ is injective, see Lemma 10.6, it follows that

g (πm ◦ ρ1) g−1 = πm ◦ ρ2.



66 BRIDGEMAN, CANARY, LABOURIE, AND SAMBARINO

□
We can now prove our spectral rigidity theorem:

Proof of Theorem 11.1: Consider two projective Anosov representations ρ1 : Γ → SLm(R)
and ρ2 : Γ → SLm(R) such that L(γ)(ρ1) = L(γ)(ρ2) for all γ ∈ Γ. Suppose that α
and β are infinite order, co-prime elements of Γ. Proposition 10.4 implies that

bρ1
(β−,α−,α+,β+) = lim

n→∞

L(αnβn)(ρ1)

L(α)(ρ1)nL(β)(ρ1)n

= lim
n→∞

L(αnβn)(ρ2)

L(α)(ρ2)nL(β)(ρ2)n

= bρ2(β
−,α−,α+,β+).

Since pairs of fixed points of infinite order elements of Γ are dense in ∂∞Γ(2) [25]
and bρ1

and bρ2
are continuous, we see that bρ1

= bρ2
.

Lemma 11.4 implies that there exists g ∈ GLm(R) such that g ◦ ξ1 = ξ2. If ρ1 is
irreducible, then Lemma 11.4 guarantees that g (πm ◦ ρ1) g−1 = πm ◦ ρ2, so

πm ◦ (gρ1g−1) = πm ◦ ρ2.
Notice that if A and B are proximal matrices such that π(A) = π(B) and that the
eigenvalues of A and B of maximal absolute value have the same sign, then A = B.
Therefore, if α is any infinite order element of Γ, gρ2(α)g

−1 = ρ1(α). It follows
that gρ2g

−1 = ρ1 as claimed. □
11.2. Renormalized intersection rigidity. Theorem 11.2 follows from Corollary
2.20, Corollary 8.2 and Corollary 11.6 below, which is a consequence of a deep result
of Benoist [3].

If G is a real-algebraic semi-simple Lie group, let aG be a Cartan subspace of the
Lie algebra g of G and let a+G be a Weyl Chamber. Let µG : G → a+G be the Jordan
projection.

Let
(a+G )

∗ = {ϕ ∈ a∗G : ϕ|a+G " 0}.
If ϕ lies in the interior int(a+G )

∗ of (a+G )
∗, then if v ∈ a+G and ϕ(v) = 0, then v = 0.

For a subgroup ∆ of G the limit cone L∆ of ∆ is the smallest closed cone in a+G
that contains

{µ(g) : g ∈ ∆}.
Benoist [3] proved that Zariski dense subgroups have limit cones with non-empty

interior.

Theorem 11.5. [Benoist] If ∆ is a Zariski dense subgroup of a connected real-
algebraic semi-simple Lie group G, then L∆ has non empty interior.

Benoist’s theorem implies the following corollary, which was explained to us by
J.-F. Quint. This corollary is a stronger version of a result of Dal’Bo-Kim [21] (see
also Labourie [47, Prop. 5.3.6]).

Corollary 11.6. [Quint] Suppose that ∆ is a group, Gρ and Gη are center-
free connected real-algebraic semi-simple Lie groups without compact factors, and
ρ : ∆ → Gρ and η : ∆ → Gη are Zariski dense representations. If there exist ϕ1 ∈ int(a+Gρ

)∗

and ϕ2 ∈ int(a+Gη
)∗ such that for all g ∈ ∆ one has

ϕ1(µGρ(ρ(g))) = ϕ2(µG2(η(g))),
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then η ◦ ρ−1 : ∆ → ∆ extends to an isomorphism Gρ → Gη.

Proof. Let H be the Zariski closure of the image of the product representation
ρ× η : ∆ → Gρ × Gη, defined by g (→ (ρg, ηg). Since the equation

ϕ1(µGρ(g1)) = ϕ2(µGη (g2)) (55)

holds for every pair (g1, g2) ∈ ρ × η (∆), Benoist’s [3] Theorem 11.5 implies that
the same relation holds for every pair (g1, g2) ∈ H.

The group H∩(Gρ×{e}) is a normal subgroup of Gρ, it is hence (up to finite index)
a product of simple factors. Equation (55) implies that for all (g, e) ∈ H∩(Gρ×{e})
necessarily one has ϕ1(µGρg) = 0. Since ϕ1(v) > 0 for all v ∈ a+Gρ

− {0}, one has

µGρ(g) = 0. This implies that H ∩ (Gρ × {e}) is a normal compact subgroup of
Gρ. Since Gρ does not have compact factors and is center free one concludes that
H ∩ (Gρ × e) = {e}.

The same argument implies that H∩ ({e}×Gη) = {e} and hence H is the graph
of an isomorphism extending η ◦ ρ−1. □
11.3. Rigidity for Hitchin representations. O. Guichard [27] has announced a
classification of the Zariski closures of lifts of Hitchin representations.

Theorem 11.7. [Guichard] If ρ : π1(S) → SLm(R) is the lift of a Hitchin repre-
sentation and H is the Zariski closure of ρ(π1(S)), then

• If m = 2n is even, H is conjugate to either τm(SL2(R)), Sp(2n,R) or
SL2n(R).

• If m = 2n+1 is odd and m ∕= 7, then H is conjugate to either τm(SL2(R)),
SO(n, n+ 1) or SL2n+1(R).

• If m = 7, then H is conjugate to either τ7(SL2(R)), G2, SO(3, 4) or SL7(R).
where τm : SL2(R) → SLm(R) is the irreducible representation.

Notice in particular, that the Zariski closure of the lift of a Hitchin represen-
tation is always simple and connected. We can then apply our rigidity theorem
for renormalized intersection to get a rigidity statement which is independent of
dimension in the Hitchin setting.

Corollary 11.8. [Hitchin rigidity] Let S be a closed, orientable surface and let
ρ1 ∈ Hm1(S) and ρ2 ∈ Hm2(S) be two Hitchin representations such that

J(ρ1, ρ2) = 1.

Then,

• either m1 = m2 and ρ1 = ρ2 in Hm1
(S),

• or there exists an element ρ of the TeichmÃ 1
4 ller space T (S) so that ρ1 =

τm1
(ρ) and ρ2 = τm2

(ρ).

Observe that the second case in the corollary only happens if both ρ1 and ρ2 are
Fuchsian.

Proof. In order to apply our renormalized intersection rigidity theorem, we will
need the following analysis of the outer automorphism groups of the Lie algebras of
Lie groups which arise as Zariski closures of lifts of Hitchin representations. This
analysis was carried about by Gündoğan [28] (see Corollary 2.15 and its proof).

Theorem 11.9. [Gündoğan [28]] Let Out(g) be the group of exterior automor-
phism of the Lie algebra g. Then, if n > 0,
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(1) If g = sl2n+2(R), then Out(g) is isomorphic to (Z/2Z)2 and is generated
by X (→ −Xt, and conjugation by an element of GL2n+2(R).

(2) If g = sl2n+1(R), then Out(g) is isomorphic to Z/2Z and is generated by
X (→ −Xt.

(3) If g = so(n, n+ 1,R), then Out(g) is isomorphic to Z/2Z and is generated
by conjugation by an element of SL2n+1(R).

(4) If g = sp(2n + 2,R), then Out(g) is isomorphic to Z/2Z and is generated
by conjugation by an element of GL2n+2(R).

(5) If g = g2 then Out(g) is trivial.
(6) If g = sl2(R), then Out(g) is isomorphic to Z/2Z and is generated by

conjugation by an element of GL2(R).
(7) If g = so(n, 1,R), then Out(g) is isomorphic to Z/2Z and is generated by

conjugation by an element of GLn+1(R).

Let ρ1 : π1(S) → PSLm1
(R) and ρ2 : π1(S) → PSLm2

(R) be two Hitchin repre-
sentations such that

J(ρ1, ρ2) = 1.

Theorem 11.7 implies that Gρ1
and Gρ2

are simple and connected and have center
contained in {±I}.

Theorem 11.2 implies that there exists an isomorphism σ : Gρ1 → Gρ2 such that
ρ2 = σ ◦ ρ1. If G1 is not conjugate to τm1(SL2(R)), then it follows from Theorem
11.7, that m1 = m2 = m, and that, after conjugation of ρ1, Gρ1

= Gρ2
= H so that

σ is an automorphism of H.
We first observe that, since H is connected, there is an injective map from Out(H)

to Out(h). We now analyze the situation in a case-by-case manner using Gündoğan’s
Theorem 11.9.

(1) If H = PG2, then σ is an inner automorphism, so ρ1 = ρ2 in H7(S).
(2) If H = PSO(n, n + 1) or H = PSp(2n,R), σ is either the identity or the

conjugation by an element of PGL2n+1(R) or PGL2n(R), so ρ1 = ρ2 in H2n+1(S) or
H2n(S).

(3) If H = SLm(R), then, after conjugation of ρ1 by an element of PGLm(R), σ
is either trivial or ρ2 = η ◦ ρ1 where η(g) = transpose(g−1). If σ is non-trivial, then
since J(ρ1, ρ2) = 1 Corollary 8.2 implies that there exists c > 0 so that

cµ1(ρ1(γ)) = µ1((ρ2(γ)) = −µm(ρ1(γ))

for all γ ∈ Γ, where

(µ1, . . . , µm) : SLm(R) → {(a1, . . . , am) ∈ Rm :
#

ai = 0 and a1 " · · · " am}

is the Jordan projection of SLm(R). Thus, the limit cone of ρ1(Γ) has empty interior.
Since ρ1(Γ) is Zariski dense, this contradicts Benoist’s Theorem 11.5. Therefore,
ρ1 = ρ2 in Hm(S) in this case as well.

(4) If Gρ1 is conjugate to τm1(SL2(R)), then Gρ2 is conjugate to τm2(SL2(R)).
So, after conjugation, there exist Fuchsian representations, η1 : π1(S) → SL2(R)
and η2 : π1(S) → SL2(R), such that ρ1 = τm1 ◦ η1, ρ2 = τm1 ◦ η1 and there exists
an automorphism of σ of SL2(R) such that σ ◦ η1 = η2. Case (6) of Gündoğan’s
Theorem then implies that η1 is conjugate to η2 by an element of GL2(R). Therefore,
we are in the second case of Theorem 11.8. This completes the proof.

□
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11.4. Benoist representations. We say that an open subset Ω of RP(m) is prop-
erly convex if its intersection with any projective line is connected and its closure
Ω̄ is contained in the complement of a projective hyperplane. Moreover, a properly
convex open set Ω is said to be strictly convex if its boundary ∂Ω does not contain
a projective line segment. A subgroup ∆ ⊂ Aut(Ω) = {g ∈ PGLm(R) : gΩ = Ω} is
said to divide the open properly convex set Ω if the quotient ∆\Ω is compact.
Benoist [6, Thm. 1.1] proved that if ∆ divides the properly convex open set Ω,
then Ω is strictly convex if and only if ∆ is hyperbolic.

Definition 11.10. If Γ is a torsion-free hyperbolic group, a faithful representation
ρ : Γ → PGLm(R) is a Benoist representation if ρ(Γ) divides an open strictly convex
set Ω ⊂ RP(m).

It is a consequence of Benoist’s work [6] that a Benoist representation is irre-
ducible and projective Anosov (see Guichard-Wienhard [26, Proposition 6.1] for a
detailed explanation).

Benoist [7, Corollary 1.2] (see also Koszul [40]) proved that the space Bm(Γ)
of Benoist representations of Γ into PSLm(R) is a collection of components of
Hom(Γ,PSLm(R)). Let

Bm(Γ) = Bm(Γ)/PGLm(R).

We call the components of Bm(Γ) Benoist components.
Benoist [5, Theorem 1.3] proved that the Zariski closure of any Benoist repre-

sentation is either PSLm(R) or is conjugate to PSO(m− 1, 1). We may thus apply
the technique of proof of Theorem 11.8 to prove:

Corollary 11.11. [Benoist rigidity] Let ρ1, ρ2 ∈ Bm(Γ). If J(ρ1, ρ2) = 1, then
ρ1 = ρ2 in Bm(Γ).

The same techniques also provide the following related rigidity result for Benoist
representations. Observe that if ρ is a projective Anosov representation, then so is
Ad ρ : Γ → PGL(sl(m,R)) (see the discussion in Guichard-Wienhard [26, Section
10.2]) If η(g) = (g−1)t for all g ∈ PGLm(R), and ρ ∈ Bm(Γ), then η ◦ ρ is the dual
(or contragredient) representation of ρ.

Corollary 11.12. If ρ1, ρ2 ∈ Bm(Γ), then J(Ad ρ1,Ad ρ2) = 1 if and only if either
ρ1 = ρ2 or ρ2 = η ◦ ρ1.

As a consequence, we recover a result of Cooper-Delp [18] and Kim [38] which
asserts that if ρ1, ρ2 ∈ Bm(Γ) are the holonomies of strictly convex projective struc-
tures with the same Hilbert marked length spectrum, then ρ1 and ρ2 either agree
or are dual. Recall that if ρ ∈ Bm(Γ) and γ ∈ Γ, then the length, in the Hilbert
metric, of the closed geodesic on ρ(Γ)\Ωρ associated to [γ] is

µ1(ρ(γ))− µm(ρ(γ))

2

(see, for example, Benoist [6, Proposition 5.1]). Furthermore, if g ∈ PGLm(R) then

log(Λ(Ad g)) = µ1(g)− µm(g).

Hence if ρ1 and ρ2 are the holonomies of strictly convex projective structures with
the same Hilbert marked length spectrum, then Λ(Ad ρ1(γ)) = Λ(Ad ρ2(γ)) for all
γ ∈ Γ. Hence, J(Ad ρ,Ad ρ2) = 1, so the result follows from Corollary 11.12.
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12. Proofs of main results

In this section, we assemble the proofs of the results claimed in the introduction.
Several of the results have already been established.

The inequality in Theorem 1.1 follows from Corollary 8.2 and rigidity follows
from Theorem 11.2. Theorem 1.2 is proven in Section 11 as Theorem 11.1, while
Corollary 1.5 is proven as Corollary 11.8.

Theorem 1.3 follows from Proposition 8.1 and Corollary 8.2. Theorem 1.10
combines the results of Propositions 4.1 and 5.7.

The proof of Theorem 1.4 is easily assembled.

Proof of Theorem 1.4: Consider the pressure form defined on Cg(Γ,G) as in Defini-
tion 8.3. Recall that by Corollary 8.2 the pressure form is non-negative. Moreover,
by Corollary 10.2 the pressure form is positive definite, so gives a Riemannian
metric. The invariance with respect to Out(Γ) follows directly from the definition.

Proof of Corollary 1.6: Corollary 7.6 implies that every Hitchin component lifts to
a component of Cg(π1(S), SLm(R)) which is an analytic manifold. Theorem 1.4 then
assures that the pressure form is an analytic Riemannian metric which is invariant
under the action of the mapping class group. Entropy is constant on the Fuchsian
locus, so if ρ1, ρ2 ∈ T (S), the renormalized intersection has the form

J(τm ◦ ρ1, τm ◦ ρ2) = lim
T→∞

1

#(Rτm◦ρ1
(T ))

#

[γ]∈Rτm◦ρ1

logΛ(τm ◦ ρ2)(γ)
logΛ(τm ◦ ρ1)(γ)

= lim
T→∞

1

#(Rρ1
(T ))

#

[γ]∈Rρ1

logΛ(ρ2)(γ)

logΛ(ρ1)(γ)

Wolpert [68] showed that the Hessian of the final expression, regarded as a func-
tion on T (S), is a multiple of the Weil-Petersson metric (see also Bonahon [11] and
McMullen [53, Theorem 1.12]).

Proof of Corollary 1.7: We may assume that Γ is the fundamental group of a com-
pact 3-manifold with non-empty boundary, since otherwise Cc(Γ,PSL2(C)) consists
of 0 or 2 points.

We recall, from Theorem 7.5, that the deformation space Cc(Γ,PSL2(C)) is an
analytic manifold. Let α : PSL2(C) → SLm(R) be the Plücker representation given
by Proposition 2.13.

If we choose co-prime infinite order elements α and β of Γ, we may define a
global analytic lift

ω : Cc(Γ,PSL2(C)) → Hom(Γ,PSL2(C))

by choosing ω([ρ]) to be a representative ρ ∈ [ρ] so that ρ(α) has attracting fixed
point 0 and repelling fixed point ∞ and ρ(β) has attracting fixed point 1. Then

A = α ◦ ω : Cc(Γ,PSL2(C)) → Hom(Γ, SLm(R))

is an analytic family of projective Anosov homomorphisms.
We define the associated entropy h̄ and renormalised intersection J̄ functions on

Cc(Γ,PSL2(C)) by setting

h̄([ρ]) = h(A([ρ])) and J̄([ρ1], [ρ2]) = J(A([ρ1]), A([ρ2)]).
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Since ω is analytic, both h̄ and J̄ vary analytically over Cc(Γ,PSL2(C)) and we may
again define a non-negative 2-tensor on the tangent space TCc(Γ,PSL2(C)) which
we again call the pressure form, by considering the Hessian of J̄.

Let G = α(PSL2(C)). Then G is a reductive subgroup of SLm(R). If ρ(Γ) is
Zariski dense, then A(ρ)(Γ) is Zariski dense in G, so Lemma 2.21 implies that ρ(Γ)
contains a G-generic element. Since α is an immersion,

α∗ : H1
ρ(Γ, sl2(C)) → H1

α([ρ])(Γ, g)

is injective where g is the Lie algebra of G. Corollary 10.2 then implies that the
pressure form on TρCc(Γ,PSL2(C)) is Riemannian if ρ is Zariski dense.

If ρ = ω([ρ]) is not Zariski dense, then its limit set is a subset of R̂ ⊂ Ĉ, and the
Zariski closure of ρ(Γ) is either H1 = PSL(2,R) or H2 = PSL(2,R) ∪ (z → −z)PSL(2,R).
Since each Hi is a real semi-simple Lie group, Proposition 7.2 then implies that the
subset of non-Zariski dense representations in Cc(Γ,PSL2(C)) is an analytic subman-
ifold. We then again apply Corollary 10.2 to see that the restriction of the pressure
form to the submanifold of non-Zariski dense representations is Riemannian.

The pressure form determines a path pseudo-metric on the deformation space
Cc(Γ,PSL2(C)), which is a Riemannian metric off the analytic submanifold of non-
Zariski dense representations and restricts to a Riemannian metric on the subman-
ifold. Lemma 13.1 then implies that the path metric is actually a metric. This
establishes the main claim.

Theorem 7.5 implies that if Γ is not either virtually free or virtually a surface
group, then every ρ ∈ Cc(Γ,PSL2(C)) is Zariski dense. Auxiliary claim (1) then
follows from our main claim.

In the case that Γ is the fundamental group of a closed orientable surface, then
the restriction of the pressure metric to the Fuchsian locus is given by the Hessian
of the intersection form I. It again follows from work of Wolpert [68] that the
restriction to the Fuchsian locus is a multiple of the Weil–Petersson metric. This
establishes auxiliary claim (2).

Proof of Corollary 1.8: Let α : G → SLm(R) be the Plücker representation given
by Proposition 2.13. An analytic family {ρu : Γ → G}u∈M of convex cocompact ho-
momorphisms parameterized by an analytic manifold M , gives rise to an analytic
family {α ◦ ρu}u∈M of projective Anosov homomorphisms of Γ into SLm(R). Theo-
rem 1.3, and Corollary 2.14 then imply that topological entropy varies analytically
for this family. Results of Patterson [56], Sullivan [66], Yue [69] and Corlette-Iozzi
[20] imply that the topological entropy agrees with the Hausdorff dimension of the
limit set, so Corollary 1.8 follows.

Proof of Corollary 1.9: Given a semi-simple real Lie group G with finite center
and a non-degenerate parabolic subgroup P, let α : G → SLm(R) be the Plücker
representation given by Proposition 2.13. Then H = α(G) is a reductive subgroup
of SLm(R).

We will adapt the notation of Proposition 7.3. Let

-Z(Γ;G,P) = Z̃(Γ;G,P)/G0

where G0 is the connected component of G. Then, -Z(Γ;G,P) is a finite analytic
manifold cover of the analytic orbifold Z(Γ;G,P) with covering transformations

given by G/G0, see Proposition 7.4. Since G0 acts freely on Z̃(Γ;G,P), the slice
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theorem implies that if [ρ] ∈ -Z(Γ;G,P), then there exists a neighborhood U of [ρ]
and a lift

β : U → Z̃(Γ;G,P) ⊂ Hom(Γ,G).

Then ω = α◦β is an analytic family of H-generic projective Anosov homomorphisms
parameterized by U . The Hessian of the pull-back of the renormalized intersection
gives rise to an analytic 2-tensor, again called the pressure form, on TU . Suppose
that v ∈ TzŨ has pressure norm zero. Then Corollary 10.2 implies that Dω(v) is
trivial in H1

ω(z)(Γ, h) where h is the Lie algebra of H. Since α is an immersion,

α∗ : H1
β(z)(Γ, g) → H1

ω(z)(Γ, h)

is an isomorphism. Since β∗ identifies TzU with H1
β(z)(Γ, g) this implies that v = 0,

so the pressure form on TU is non-degenerate. Therefore, the pressure form is

an analytic Riemannian metric on -Z(Γ;G,P). Since the pressure form is invariant

under the action of G/G0 it descends to a Riemannian metric on -Z(Γ;G,P) This
completes the proof.

13. Appendix

We used the following lemma in the proof of Corollary 1.7.

Lemma 13.1. Let M be a smooth manifold and let W be a submanifold of M .
Suppose that g is a smooth non negative symmetric 2-tensor g such that

• g is positive definite on TxM if x ∈ M \W ,
• the restriction of g to TxW is positive definite if x ∈ W .

Then the path pseudo metric defined by g is a metric.

Proof. It clearly suffices to show that if x ∈ M , then there exists an open neigh-
borhood U of M such that the restriction of g to U gives a path metric on U . If
x ∈ M \W , then we simply choose a neighborhood U of x contained in M \W and
the restriction of g to U is Riemannian, so determines a path metric.

If x ∈ W we can find a neighborhood U which is identified with a ball B in Rn

so that W ∩ U is identified with B ∩ (Rk × {0n−k}). Possibly after restricting to
a smaller neighborhood, we can assume that there exists r > 0 so that if v ∈ TzB
and v is tangent to Rk × {(zk+1, . . . , zn)}, then g(v, v) ≥ r2||v||2, where ||v|| is the
Euclidean norm of v. If z, w ∈ B, z ∕= w and one of them, say z, is contained
in M \W , then g is Riemannian in a neighborhood of z, so dU,g(z, w) > 0 where
dU,g is the path pseudo-metric on U induced by g. If z, w ∈ W , then the estimate
above implies that dU,g(z, w) ≥ rdB(z, w) where dB is the Euclidean metric on B.
Therefore, dU,g is a metric on U and we have completed the proof. □
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