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For Olaf, who said yes to all my crazy ideas 1

I take the opportunity here to warmly thank all the contributors to this volume, all
the participants in this birthday conference, not forgetting the organizers, for their

amazing contributions.

This short note is meant as an appendix to Nicolas Tholozan’s article [13] in
the same volume. The point here is to present arguments relating volumes of
anti-de-Sitter manifolds of dimension 3 to Chern-Simons invariants, and to give as a
corollary Tholozan’s volume formula from his thesis [14], later extended to higher
dimensions in [15]. After hearing his defence, I presented this proof in a seminar in
MSRI in 2015 and was planning to save the writing of it for Nicolas’s 60th birthday
conference, but finally decided against it.

Following here the convention of [7, 9, 5, 12], an anti-de-Sitter 3-manifold (In
short AdS manifold) is a manifold of dimension 3, modelled on PSL2(R) equipped
with its Killing metric normalised so that the projection from PSL2(R) to H2,
equipped with its hyperbolic metric, is a metric submersion. Hence, PSL2(R) is a
Lorentz 3-manifold whose group of isometries is, up to finite covers and quotients,
PSL2(R) × PSL2(R) where each factor corresponds respectively to the action on the
right and on the left on the group PSL2(R). From the homogeneity of the action on
timelike vectors, it follows that PSL2(R), hence any AdS 3-manifold, has constant
curvature.

Recall that by a theorem of Bruno Klingler [6] every closed AdS 3-manifold is
complete, and thus a quotient of the universal cover M0 of PSL2(R) by a discrete
subgroup of M0 ×M0.

Ravi Kulkarni and Frank Raymond [7], followed by François Salein [11], have
obtained further restrictions on the possible discrete subgroups appearing, and large
classes of examples were constructed in [12]. Later Fanny Kassel [5] obtained the
full classification. Namely, any closed AdS 3-manifold M is, up to finite covering, a
quotient of PSL2(R) by a discrete subgroup Γ of PSL2(R) × PSL2(R) isomorphic to
the fundamental group π1(S) of a closed surface S of negative Euler characteristic.
The group Γ is the image by (ρ, σ) of π1(S) where ρ and σ are representations of
π1(S) in PSL2(R), respectively Fuchsian a non-Fuchsian and satisfying the following
extra condition: there exists a (ρ, σ)-equivariant map from H2 to H2 with Lipschitz
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constant less than 1. This easily implies that M =M(S, k) is a circle bundle over S,
of Euler number k , 0 (see [4]).

Nicolas Tholozan [14], answering a question in [1], gave the following striking
formula for the volume of the circle bundle M(S, k) of Euler characteristic k over a
surface S of Euler characteristic e, with an AdS structure associated to representations
ρ and σ of π1(S) in PSL2(R) of respective Euler class e and f :

Vol (M(S, k)) =
4π2

k

(
e2
− f 2

)
. (1)

As a corollary of his formula, Tholozan obtains a rigidity result: the volume is
constant under continuous deformation of any AdS 3-manifold. Tholozan later on
generalised this formula and rigidity to higher dimensions.

We will show how this low dimensional case of Tholozan’s general result follows
from considerations on the Chern–Simons invariant. We will omit important technical
details.

I thank Bill Goldman, Fanny Kassel, Nicolas Tholozan and Jérémy Toulisse for
their help and interest.

1. Chern–Simons invariant in dimension 3

We present a short and condensed version of the theory and refer to the original
article by Shiing Shen Chern and James Simons [2] for a more careful description or
[8] for an elementary one in dimension 3.

Let M be a closed oriented 3-manifold equipped with a vector bundle E. We
denote by D the affine space of connections on E and define the tangent space to D
at a connection ∇ as TD B Ω1(M,End(E)).

1.1. Chern–Simons form. Given a connection ∇, we now consider the linear map
ωCS from TD to R, given by

A 7→
∫

M
trace (A ∧ R∇) ,

where R∇ is the curvature of ∇ seen as an element of Ω2(M,End(E)), and A ∧ R∇

the 3-form on M with value in End(E) given by

A ∧ R∇(X1,X2,X3) =
1
6

∑
σ∈S3

(−1)ε(σ)A(Xσ(1))R∇(Xσ(2),Xσ(3)) .

The starting result of Chern–Simons theory is

Proposition 1.1.1. Given two gauge equivalent connections ∇0 and ∇1 and a path γ
of connections joining ∇0 to ∇1 then

1
8π2

∫
γ
ωCS
∈ Z . (2)

Proof. We only sketch the proof: we interpret a path {∇t
}t∈[0,1] between two gauge

equivalent connections as a connection ∇ on the bundle E on W B M × S1 [8,
proposition 7.2.6.]. More precisely ∇ is defined by the following procedure: for (m, s)
in M × S1, we write T(m,s)W = TM ⊕R thus writing a generic tangent vector to W
as (U, λ) with U in TM and λ in R; then we identify the space of sections of E on
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W, as C∞(S1,Γ(M,E)), finally we define for a section σ of E its derivative at a point
(m, s0) as

∇(U,λ)σ B ∇
s0
Uσ + λ

(
∂σ
∂s

)
(s0) .

From this interpretation, we get∫
γ
ωCS =

∫
M×S1

trace
(
R∇ ∧ R∇

)
= 8π2p1(E) , (3)

where p1(E) is the first Pontryagin number. Thus

1
8π2

∫
γ
ωCS
∈ Z .

□

However when E has rank 3 and is equipped with a quadratic form of signature
(2, 1), we have a stronger result:

Proposition 1.1.2. If E is equipped with a quadratic q form of signature (2, 1), if ∇1
and ∇2 are two q-connections gauge equivalent (when the gauge group is SO0(2, 1)),
then ∫

γ
ωCS = 0 . (4)

Proof. We can always choose a Euclidean metric on E and combining with the
quadratic form q, we obtain, by finding a common orthogonal basis, a splitting of E
as two subbundles

E = L ⊕ L⊥ ,

where L is the line bundle generated by the timelike vector of the base. Denoting by
p1 the first Pontryagin class on M × S1, by additivity of the first Pontryagin class
[10] we get

p1(E) = p1(L) + p1(L⊥) .

Observe now that since L and L⊥ have dimension 1 and 2 respectively, p1(L) =
p1(L⊥) = 0. Thus p1(E) = 0. The result now follows. □

From equation (2), one deduces that ωCS is exact: the integral of ωCS on a path
of connections only depends on the end points of the path. We then define, given
two connections ∇1 and ∇2, the Chern–Simons invariant of the pair (∇1,∇2) by

CSM

(
∇1,∇2

)
B

1
8π2

∫
γ
ωCS,

Moreover, if ∇1 and ∇2 are two q-flat connections with holonomy ρ1 and ρ2 with
values in SO0(2, 1), we define

CSM

(
ρ1, ρ2

)
B CSM

(
∇1,∇2

)
.

The definition is unambiguous: observe that by proposition 1.1.2, CSM

(
ρ1, ρ2

)
is

well defined for representations defined up to conjugacy by the group SO0(2, 1).
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1.2. Some properties. As an immediate consequence of the definition, we have the
following easy results:

Lemma 1.2.1 (Chasles relation). We have

CSM

(
∇1,∇2

)
= CSM

(
∇1,∇3

)
+ CSM

(
∇3,∇2

)
.

Lemma 1.2.2. Let γ be a path of flat connections joining ∇1 to ∇2, then

CSM

(
∇1,∇2

)
=

∫
γ
ωCS = 0 .

Lemma 1.2.3. Let M and N be two closed 3-manifolds. Let π be a degree q map
from M to N, ∇1 and ∇2 two connections on a bundle over N,

CSM

(
π∗(∇1), π∗(∇2)

)
= q CSN

(
∇1,∇2

)
.

2. Volumes and Chern–Simons

2.1. Volumes. Let us consider the bundle E B TM0 over M0, where M0 is the
universal cover of PSL2(R). The bundle E carries a natural Lie bracket defined
fiberwise. Let us now consider the 3-form on M0 defined by

Ω(X,Y,Z) = trace(X[Y,Z)]) ,

where the trace is taken on the (adjoint) 3-dimensional representation of PSL2(R).
Now observe that Ω is invariant by the isometry group. An explicit computation
relates Ω to the volume form:

Ω(X,Y,Z) =
1
2

Vol(X,Y,Z) . (5)

2.2. Back to Chern-Simons. The bundle E = TM0 can be trivialized in two ways:
the left trivialization for which left invariant vector fields are constant, the right
trivialization for which right invariant vector fields are constant. In other words,
E carries two flat connections ∇L and ∇R which are respectively the left and right
invariant connections. These two connections exist on the tangent bundle of any
AdS manifold M and the holonomy of ∇L (on M) is ρ, while the holonomy of ∇R is
σ.

Our first goal is to show the following proposition that initiated [13, Theorem
2.10].

Proposition 2.2.1. On a closed AdS manifold M :

CSM

(
∇L,∇R

)
= −

1
24π2 Vol(M) .

One should not take the sign too seriously here, it is a matter of convention.

Proof. We first have
∇L − ∇R = A ,

where A, related to the Maurer–Cartan form, is the element of Ω1(X,End(E)) given
by

A(X) : Y 7→ [X,Y] .
When we compute the curvature we get

R∇L = R∇R + d∇R A +
1
2

[A ∧ A] ,
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where
[A ∧ B](X,Y) = [A(X),B(Y)] − [A(Y),B(X)] .

and since both ∇L and ∇L are trivial hence flat, we obtain the Maurer–Cartan
equation

d∇R A +
1
2

[A ∧ A] = 0 .

Let us now consider the affine path between ∇R and ∇L given by

γ : t 7→ ∇t = t∇L + (1 − t)∇R = ∇R + tA .

Then one then sees that

R∇t = t d∇R A + t2 1
2

[ A ∧ A] =
(t2
− t)
2

[A ∧ A] .

It follows that ∫
γ
ωCS = −

1
3

∫
M

trace(A[A ∧ A]) = −
1
3

Vol(M) .

The result now follows. □

3. Computing Chern-Simons invariants

We finally need to compute explicitly the Chern–Simons invariant using Guéritaud–
Kassel description.

Let us consider the circle bundle M(S, k) of Euler characteristic k, with k , 0, over
a surface S, and let ρ be a representation of π1(S) in PSL2(R) of Euler class f .

Our goal is to show

Proposition 3.0.1. We have for M =M(S, k) with k , 0

CSM

(
ρ, Id

)
= −

f 2

6k
.

Observe that in this formula the Euler characteristic e of S does not appear,
except that by Milnor–Wood inequality one has f ⩽ e.

We start with a special case. Let us first remark that if Se is a surface of Euler
characteristic e, then the unit tangent bundle USe of Se identifies with M(Se, e).
Moreover, if Se is equipped with a hyperbolic metric, and if we denote by ρe the
associated monodromy, then M(Se, e) is modelled on PSL2(R) and the pair (ρ, σ) in
the Kulkarni–Raymond description is (ρe, Id) where Id is the trivial representation.

We therefore obtain using this observation

Lemma 3.0.2. We have on M=M(Se, 1)

CSM

(
ρe, Id

)
= −

1
6

e2 .

Proof. We first have
Vol USe = 4π2e .

Thus on N =M(Se, e) by proposition 2.2.1, we have

CSN

(
ρe, Id

)
= −

1
6

e .

Since we have a degree e map from M =M(Se, 1) to N =M(Se, e) we get the result
from lemma 1.2.3. □

Finally
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Proof of proposition 3.0.1. By lemma 1.2.2 and Goldman’s theorem [3] that de-
scribes connected components of the space of representations of π1(S) in PSL2(R),
CSM

(
ρ, Id

)
only depends on e.

Let us just choose a degree 1 map π from the surface S Euler characteristic e, to
the surface S f of Euler characteristic f , with f ⩽ e, for instance a map obtained by
”collapsing handles” as in figure (1)) .

Figure 1. Collapsing handles

Let us equipped S f with a hyperbolic metric with monodromy ρ f . We then
deduce a degree 1 map from π from M(S, 1) to M(S f , 1) and π∗ρ f has Euler class f .
Thus using lemma 1.2.3, we have on M =M(S, 1)

CSM

(
ρ, Id

)
= CSM

(
ρ f , Id

)
= −

1
6

f 2,

where the last equality comes from proposition 3.0.2. Finally since we have a degree
k map from M(S, 1) to M(S, k) we get the result from lemma 1.2.3. □

3.1. Tholozan’s volume formula. We can now prove formula (1). Let S be a surface
of negative characteristic e. Let M =M(S, k) be equipped with an AdS structure de-
scribed by the representations ρ of Euler characterstic e and σ of Euler characteristic
f . It follows from proposition 2.2.1, that

CSM

(
ρ, σ

)
= −

1
24π2 Vol(M) .

On the other hand, from the definition of the Chern–Simons invariant, we have

CSM

(
ρ, σ

)
= CSM

(
ρ, Id

)
− CSM

(
σ, Id

)
=

1
6k

(
f 2
− e2

)
.

where we used Chasles relation (lemma 1.2.1) in the first equality and the last
equality comes from proposition 3.0.1. It follows that

Vol(M) =
4π2

k

(
e2
− f 2

)
.

which is what we wanted to prove.
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