Abstract. The purpose of this note is to provide an introduction to several articles
concerning k-surfaces [3], [6], and more specially random ones [4]. Recall briefly that
a k-surface is an immersed surface in M, a Riemannian manifold with curvature
less than -1, such that the product of the principal curvatures is k, where k &€
10, 1[. Following these articles, we explain that k-surfaces possess (like geodesics) a
“genuine” laminated phase space which has chaotic properties similar to those of
the geodesic flow, and that, furthermore, the dynamics on this space can be coded,
hence producing transversal measures.
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1 Presentation

This paper will be mainly expository, and will not contain any new material
except in section 7 where we shall see a particular and easy case of the
constructions of [4]. The first two sections contain an elementary discussion
of rather general nature of what a phase space for a PDE could be. We then
concentrate on k-surfaces.

I would like to thank the organizers of the Cambridge March Workshop,
M. Burger, S. Dani, A. Eskin and G. Margulis for giving me the opportunity
to talk and to learn beautiful mathematics in this very enjoyable conference.

2 The geodesic flow

Let’s start with classical Riemannian differential geometry. From this view-
point, the geodesic flow is associated to a second order differential differ-
ential equation. More precisely, geodesics in a Riemannian manifold can be
described as curves tangent to a vector field in a phase space, the unit tangent
bundle. Cauchy-Lipschitz theorem then tells us that through every point in
the phase space runs one and exactly one geodesic: the phase space is foliated
by geodesics.

It is well known, in the negatively curved context, that the geodesic flow is
a central geometric object, in studying properties of the fundamental group
for instance. It is therefore very desirable to have an object analogous to
the geodesic flow in the more general context of metric length spaces such
as graphs, simplex. At first glance, the construction explained above does
not make sense in our new context. However, it is easy and now classical to
bypass this difficulty. The trick is the following. One should not forget that
geodesics are locally length minimizing curves. Now, this last notion makes
sense in the context of metric length spaces such as graphs, simplices, etc.
Then, the phase space of the geodesic flow in our length space is going to be
the space of pairs (z,v) where v is a geodesic and z is a point of v. We recover
our picture: the phase space is foliated by geodesics. Indeed each geodesic ~y
gives a curve in our phase space, namely the set (z,7) when & moves along
v, and the collection of all these curves (that we may call again geodesics)
foliates, or more precisely laminates the phase space. As expected, this phase
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space is the right counterpart of the geodesic flow. One should stress that
such spaces are even useful in classical differential geometry: it is known
(thanks to the work of Bowen, Ratner) that the geodesic flow of a compact
negatively curved Riemannian manifold is efficiently described (or coded) by
the (oriented) geodesic flow of a finite oriented graph. Among the many uses
of this coding, one should notice the construction of a large family of invariant
measures for the geodesic flow, and the thermodynamic formalism.

Before proceeding any further, I should say I have been extremely lousy
in describing the phase space, since I said nothing about it’s topology. When
one is more precise, one has to pay a little attention to multiple covers of
closed geodesics in order to obtain a Hausdorff space.

3 One more dimension

Geodesics are one dimensional objects. Now we shall turn to 2-dimensional
objects and start again with differential geometry. Differential geometers have
always been interested in surfaces solutions of partial differential equations,
mainly elliptic, and usually coming from variational problems, such as mini-
mal surfaces, holomorphic curves ... The main focus is to describe solutions
with such and such property, for instance compactness. This study can be
considered as the analog of the study of closed geodesics. The main difficulty is
that there is no such a powerful and versatile theorem as is Cauchy-Lipschitz’s
for ODE.

Statistical Field Theory and String Theory have made us used to the idea
that it is important to study the space of all solutions of a given PDE and to
try to obtain statistical informations about them; what is a random minimal
surface, or a random holomorphic curve 7 In other words to study the phase
space for the PDE, whatever it could be.

Let’s start with an elementary remark. Recall that for an ODE, the phase
space is the space of admissible initial solutions. For an elliptic PDE, the
analogous of an initial condition is, for instance, a boundary value. It follows
that a phase space for a PDE is expected to be infinite dimensional. As a
consequence there is no hope that an interesting phase space could be a finite
dimensional manifold with an integral plane distribution and the picture of
the unit tangent bundle with a vector field is certainly too naive and cannot
be reproduced.

I sketch now two approaches aiming at the construction of a phase space,
trying to keep in mind our now familiar picture the phase space is foliated by
solutions.

e As I underlined above, lots of the thermodynamical properties of a hyper-
bolic dynamical system, such as the geodesic flow of a negatively curved
manifold, can be described using only closed orbits. For instance the par-
tition function or the random value of an observable are limit of similar
objects on finite dimensional spaces spaces of closed orbits of growing
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length. Hence, by analogy, a very powerful approach is then to describe
the system, and more specifically random variables, by approaching it by
finite dimensional moduli spaces, or, roughly saying, spaces of compact
solutions of growing complexity. Notice here that the lamination picture
is not clear.

e Another idea in order to build a phase space, is to use the same trick

as we did to study the geodesic flow of a length space. We can set our
phase space to be the set of pairs (x,X), where X is a solution of the
PDE, correctly interpreted as a submanifold in a jet space, and x a point
of Y. Each solution X is now interpreted as a leaf in the phase space,
namely the set of all the (z, X') for x running on X'. As it was before, the
collection of all these leaves give a partition of the phase space.
This construction is very natural and appealing, but in its full generality,
it raises difficulties which cannot be discarded as mere technical prob-
lems. Let us state at least one: in some case, like holomorphic curves for
instance, singularities and ramified coverings of a solution have to be con-
sidered; it is therefore not clear how to make the phase space Hausdorff.
Nevertheless, this approach has been used very fruitfully from a measure
theoretical point of view by M. Gromov in [2]. What I will explain later
follows that line.

To conclude this general discussion, let’s move aside from differential ge-
ometry and consider combinatorial questions. Start a finite 2-dimensional
simplicial complex. The analog of a surface solution of a PDE is a simplicial
mapping of a combinatorial surface in the complex, satisfying certain local
rules. In the case of geodesics in a finite graph, we required for the local
rule: geodesics do not go backwards. In this situation, it is again natural to
study the phase spaces as a space of pairs as before. The interest of this
construction is that is easy to build transversal measures in that situation
by projective constructions, even though the leaves do not have polynomial
growth. It follows that if we can code in some way the phase space of a PDE
by that of a combinatorial object, we would obtain transversal measures.

So far, the discussion has been very general and very uneffective. However,
the aim of this note is not to speculate about the existence of a general theory,
but to concentrate on a specific example. This preliminary exposition of well
known facts and principles is just meant as a justification of the constructions
we shall now concentrate on.

4 A hyperbolic example

The geometric situation I want to discuss is the following. Let M be a compact
3-manifold with curvature less than -1, and M its universal cover. Let k be
a fixed number in ]0,1[. A k-surface is a surface whose extrinsic curvature (
i.e the product of the principal curvatures) is k. I will describe a compact
phase space with a laminated structure for this equation, and explain how
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to code such a space and thus describe transversal measures. The content of
this note is as follows:

5 GEOMETRIC PROPERTIES OF k-SURFACES AND EXAMPLES: In particular,
we explain how a k-surface is described by a local homeomorphism of a
surface in the boundary at infinity of M as is shown in [3].

6 PHASE SPACE: We describe the phase space M of k-surfaces using the
construction alluded above. In this context, this phase space makes sense,
and furthermore it has a natural compactification, which has the structure
of a lamination. This behavior is specific to a class of elliptic problems,
usually associated to Monge-Ampere equations and studied in [6]. Fur-
thermore this phase space has “chaotic” properties as described by the
main result of [3].

7 TRANSVERSAL MEASURES AND CODING: In this section, we state the
main result of [4] asserting the existence of many transversal ergodic
and full support measures on M, when the metric of M is homotopic,
through negatively curved metrics, to a hyperbolic one. This is achieved
through a “coding” argument. We explain a specific construction of one
such measure.

8 QUESTIONS: We list several questions about that construction.

The general conclusion is that the phase space for k-surfaces presents lot’s
of similarity with the geodesic flow and has characteristics (coding, chaos, and
stability) which are usually associated with hyperbolic dynamics.

5 Geometric properties of k-surfaces and examples

Let M be a compact 3-manifold with curvature less than —1. Let k €]0, 1]
be a real number. All definitions and results are expanded in [3].

5.1 Definition

If S is an immersed surface in M, it carries several natural metrics. By
definition, the u-metric is the metric induced from the immersion in the unit
tangent bundle given by the Gauss map. We shall say a surface is u-complete
if the u-metric is complete.

A k-surface is an immersed u-complete connected surface such that the
determinant of the shape operator (i.e. the product of the principal curva-
tures) is constant and equal to k, where k €]0, 1[.

Since k-surfaces are solutions of an elliptic problem, the germ of a k-
surface determines the k-surface. It follows that a k-surface is determined by
its image, up to coverings. More precisely, for every k-surface S immersed by
fin N, there exists a unique k-surface X', the representative of S, immersed
by ¢, such that for every k-surface S immersed by f satisfying f(S) = f(S),
there exists a covering 7 : § — X such that f = ¢o .

By a slight abuse of language, the expression “k-surface” will generally
mean “representative of a k-surface”.
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5.2 Local convexity

From the inequality £ < 1 and from Gauss equation, we see that k-surfaces
have intrinsic negative curvature. If M has constant curvature kg, then a
k-surface has intrinsic curvature k& + kg. On the other hand, the inequality
k > 0, implies that a k-surface S is locally convez, that is: every point in S
has a neighborhood in S, which is included in the boundary of a geodesically
convex set of M.

5.3 Examples

In the hyperbolic 3-space, the surfaces equidistant to a totally geodesic plane
are negatively curved and have extrinsic constant curvature. These are the
simplest examples of k-surfaces, and justify the idea that k-surfaces are gen-
eralisations of totally geodesic surfaces.

More generally, the observation of the previous paragraph 5.2 will allow us
to describe various ways of constructing k-surfaces following [3], as solutions
of an asymptotic Plateau problem.

Let S be a locally convex surface immersed in M. Let vg be the exterior
normal vector field to S. The Gauss-Minkowski (Figure 1) map from S to the
boundary at infinity s M of M is the local homeomorphism ng:

{S — OsM
x — ng(z) = exp(oovs(z)).

Fig. 1. Gauss-Minkowski map

An asymptotic Plateau problem is a pair (i,U) where U is a surface, and
i is a local homeomorphism from U to 8, M. A k-solution to an asymptotic
Plateau problem (i, U), is a k-surface S immersed in M, such that there exists
a homeomorphism ¢ from U to S such that i =ngog.
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We now state existence and uniqueness results for k-surfaces from [3] using
this terminology.

Theorem 1. There exists at most one solution of a given asymptotic Plateau
problem.

Theorem 2. Let (i,S) be an asymptotic Plateau problem. Assume OsoM \
i(S) contains at least three points, then (i,S) admits a solution.

Notice that 2 points in the boundary at infinity are associated with a
geodesic, and this last result says more points can be represented by a k-
surface.

Theorem 3. Let I" be a group acting on S. Assume S/I" is a compact surface
of genus at least 2. Let p be a representation of I" in the isometry group of
M. If i satisfies

Vyel, ioy=p(y)oi,
then (i,S) admits a solution.

Theorem 4. Let (i,U) be an asymptotic Plateau problem. Let S be a rela-
tively compact open subset of U. Then (i,S) admits a solution.

On the other hand, an asymptotic Plateau problem does not always have
a solution:

Theorem 5. Let S be 5‘09]\2 with zero, one or two points removed. Let ¢ be
the injection of S in Oxx M, then (i,S) does not have a solution.

Thus, these results provide the existence of many k-surfaces. Next, we
will examine the collection of all these objects.

6 Phase space

6.1 Description of the phase space

First, let’s introduce a definition. The tube of a geodesic is the set of normal
vectors to this geodesic. It is a 2-dimensional submanifold of the unit tangent
bundle.

The phase space for k-surfaces is the space of pairs (X, z) where x € X
and X is either the representative of a k-surface or a tube. We denote it by
M. Tt inherits a topology coming from the topology of pointed immersed
2-manifolds in the unit tangent bundle (¢f section 2.3 of [3]). Each k-surface
(or tube) Sy determines a leaf Lg, defined by

Ls, = {(So,z)/x € So}.

We proved in [6] that M is compact. Furthermore, the partition of M
into leaves is a lamination, i.e. admits a local product structure. Notice that
M has two parts:



The phase space of k-surfaces 9

(1) a dense set which turns out to be infinite dimensional, and which truly
consists of k-surfaces,

(2) a “boundary” consisting of the reunion of tubes, closed, finite dimen-
sional, and which is a S' fibre bundle over the geodesic flow.

Therefore, in some sense, M is an extension of the geodesic flow. To enforce
this analogy, one should also notice that the 1-dimensional analogue, namely
the space of curves of curvature k in a hyperbolic surface is precisely the
geodesic flow.

The fact that the phase space can be compactified in such a way is shared
by a class of elliptic equations on surfaces, which I called Monge-Ampere and
studied in [6]. Roughly these are holomorphic curves transverse to a totally
real foliation.

The existence of this space M is a fancy way to state a compactness theo-
rem for k-surfaces. The underlying compactness phenomenon is the following:
k-surfaces degenerate by rolling around a geodesic as shown in figure 2.

Fig. 2. rolling around a geodesic

6.2 Chaotic properties

The main theorem of [3] which we quote now shows that M, as a dynamical
system, enjoys the chaotic properties of the geodesic flow:

Theorem 6. Let k €]0,1[. Let M be a compact 8-manifold. Let h be a Rie-
mannian metric on M with curvature less than —1. Let My, be the space of
k-surface of M. Then

(i) a generic leaf of My, is dense,
(i1) for every positive number g, the union of compact leaves of My, of genus
greater than g is dense,
(iii) if h is close to h, then there exists a homeomorphism from My, to Nj,
sending leaves to leaves.

This last property will be called the stability property.
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7 'Transversal measure and coding

7.1 First examples

Let’s first show some simple examples of natural transversal measures on M.
The first three ones are ergodic. They all come from the existence of natural
finite dimensional subspaces in M.

e Dirac measures supported by closed leaves. By theorem 6 (i), there are
plenty of them.

e Ergodic measures for the geodesic flow. Indeed, ergodic and invariant
measures for the geodesic flow give rise to transversal measures on the
space of tubes, hence on the space of k-surfaces.

e Haar measures for totally geodesic planes. Assume M has constant curva-
ture. Then, the space of oriented totally geodesic planes carries a transver-
sal measure. Indeed, the Haar measure for SL(2,C)/m1(N) is invariant
under the SL(2,R) action. But every oriented totally geodesic plane gives
rise to a k-surface, namely the equidistant one to the geodesic plane. This
way, we can construct an ergodic transversal measure on M, when M has
constant curvature. Its support is finite dimensional.

o Measures on spaces of ramified coverings. We sketch briefly here a con-
struction yielding transversal, but non ergodic, measures on M. Let Do M
be the boundary at infinity of the universal cover M of M. Let X be an
oriented surface of genus g. Let m be a a topological ramified covering,
defined up to homeomorphism of the source, of X into O,H?. Let Sy
be the set of singular points of 7 and s, its cardinal. Let S be a set of
extra marked points of cardinal s. Assume 29 + s, + s. One can show
following the ideas of the proof of theorem 7.3.3 of [3] that such a ramified
covering can be represented by a k-surface. More precisely, there exists a
solution to the asymptotic Plateau problem (as described in paragraph
5.3) represented by (m, X\ (Sz US)). Let now [r] be the space of rami-
fied coverings equivalent up to homeomorphisms of the target, to m. The
group w1 (V) acts properly on [r], and explicit invariant measures can
be obtained using equivariant family of measures (as defined in [9]) and
configuration spaces of finite points. Since [r]/71(N) is a space of leaves
of NV, this yields transversal measures on this latter space.

None of these examples have full support, and they all have finite dimen-
sional support. So far, apart from these and the construction I will present in
the article [4], T do not know of other examples of transversal measures easy
to construct.

7.2 Main theorem

We now quote the main theorem of [4].
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Theorem 7. Let M be a compact 3-manifold with curvature less than —1.
Assume the metric on M can be deformed, through negatively curved metrics,
to a constant curvature one. Then the space of k-surfaces admits infinitely
many mutually singular, ergodic transversal finite measures of full support.

7.3 First remarks

Restriction to the constant curvature case The restriction upon the
metric is a severe one. Actually, thanks to the stability property (iii) of
theorem 6, in order to prove our main result, it suffices to show the existence
of transversal ergodic finite measures of full support in the case of constant
curvature manifolds.

Choices made in the construction The measure we construct on M
depends on several choices, and various choices lead to mutually singular
measures.
We describe now one of the crucial choices needed in the construction.
Let M be the universal cover of M. Let d-oH? be its boundary at infinity.
Let P(0sH?) be the space of probability Radon measures on 9., H?. Let

Os = {(2,y,2) € 0 H® /2 # y # 2 # x}.

The construction requires a map v, invariant under the natural action of
§! (N)a
O3 — P(0-H?).

Here, v(x,y, z) is assumed to be of full support, and to fall in the same mea-
sure class, independently of (x,y, z). Such maps are easily obtained through
equivariant family of measures (also described in F. Ledrappier’s article [9]
as Gibbs current, crossratios etc) and a barycentric construction.

7.4 Strategy of the proof

As we said in the introduction, the construction is obtained through a coding
of the space of k-surfaces. We give now a heuristic, non rigorous, outline of a
special case of the construction.

From the stability property, we can assume M has constant curvature.

Pleated and k-surfaces The limit case £ = 0 corresponds to locally con-
vex pleated surfaces. Here is a more precise statement, which may help in the
visualisation: we proved in [8] that a geometrically finite end is foliated by k
surfaces for k varying in ]0, 1[, furthermore when k goes to zero, the corre-
sponding sequence of k-surfaces converge to the pleating locus associated to
the convex core of the end.

We shall soon describe an interesting “coded” family of pleated surfaces.
Let’s first start with some definitions.
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The infinite trivalent planar tree Let T be the infinite trivalent planar
tree. Let A be the set of edges of T'. It is useful now to consider T as the
dual tree of a triangulation of H? by ideal triangles. Let B = QP' be the set
of vertices at infinity of this triangulation. The set B can also be understood
as the set of connected components of H? \ T'. From this last observation we
deduce that each vertex of T' corresponds to three points of B (the connected
components having this vertex in the closure), and an edge of T' corresponds
to four points in B. The corresponding sets of three and four points in B are
called respectively tribones and quadribones, as seen in figure 3.

Cc . &
a >—— a d
7b D TN

Fig. 3. tribone (a,b, ¢) and quadribone (a, b, ¢, d)

Labelled trees and pleated surfaces Let C* be the the set of complex
numbers with positive imaginary part. Define a positively labelled tree to
be an element of (C*)4, that is a tree such that each edge is labelled by
a complex number with positive imaginary part. We claim now that each
positively labelled tree represents a locally convex pleated surface, up to an
isometry of H2. For the construction, we need to specify a vertex vy in the
tree corresponding to a tribone (a, b, ¢), and three points (a1, by, c1) in OsH;
different choices leading to the same surface up to an element of PSL(2,C).

Our data leads to the construction by induction of a map from B to
OsoH3, in the following way: assume we know the images (ay,b1,c1) of the
first three points of a quadribone (a, b, ¢, d) associated to an edge ! with label
A, then we map d to the point dy such that the crossratio of (ai,b1,¢1,d1) is
A

Next this map defines a pleated surface: namely, we glue along edges the
ideal triangles in H® whose vertices at infinity are the images of tribones.
The fact that the label of an edge is in CT tells us that the pleated surface
obtained this way is locally convex.

Construction of the measure So far, we have just coded some locally
convex pleated surfaces. We have now to link these pleated surfaces to k-
surfaces.

Notice first that, for pleated locally convex surfaces, there exists an ana-
logue of the Gauss-Minkowski map, which maybe described as the boundary
at infinity of the end associated to a pleated surface. One can prove now
that the asymptotic Plateau problem associated to the pleated surfaces de-
scribed above indeed as a solution, and that furthermore the corresponding
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set of k-surfaces obtained this way is dense in the phase space of k-surfaces.
We have in some sense “coded”the space of k-surfaces by the combinatorial
object (CT)4.

Last to obtain an transverse invariant measure ergodic and of full support
in M, it suffices to build measures of full support, ergodic and invariant under
the action of PSL(2,7Z) = Aut(T) on (C*)4, and this is easy to do.

The general construction in [4] generalizes this construction, which cor-
responds to the Lebesgue measure on the geodesic flow, to other Gibbs mea-
sures.

8 Questions

The main theorem of [4] suffers from a severe restriction: the 3-manifold M
is in particular assumed to be hyperbolisable. This is of course a hypothesis
we would like not to rely on. It could be interesting to understand measures
which are weak limits of measures supported on closed leaves. Almost all
our questions are concerned with the growth and the measure theoretical
repartition of closed leaves.

For any real number A, let S(A) defined by

S(A) = {closed leaves S / Area(S) < A}.

In this definition, the area is computed as the area of the k-surface seen as
a surface in the unit tangent bundle. In other words, the area of S is the
integral of the mean curvature. Using the techniques of [3] and [6], it is not
difficult to show that N(A) = #S(A) is finite.

One of the main question, is first to understand the growth of N(A),
which I presume exponential, and then to understand the repartition of closed
leaves. More specifically, let dg be the transversal measure associated with
the closed leaf S . Let also

_ZSGS(A)65
A= TN@)

The question is whether or not the sequence of transverse measures {114} acr
weakly converges as A goes to infinity.
We may ask these two questions also for various subsets of S(A).

e Fixed genus. We can define
Sy(A) = {closed leaves S of genus g / Area(S) < A}.

The case g = 1 is well understood. Indeed closed leaves of genus 1 are
tubes, and correspond to closed geodesics. In this situation, the area of
the tube is the length of the underlying closed geodesic multiplied by
27. In this special case, we therefore recover classical problems for closed
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geodesics solved by Bowen and Margulis. For higher genus, I suspect
strongly that all limits measures are supported by the space of tubes,
hence corresponding to invariant measures for the geodesic flow, but I
have no idea whether or not we recover Bowen-Margulis measure this
way.

Fixed homotopy type. We may of course consider fixed homology type
but the question concerning fixed homotopy type seems more appealing.
Let I" be a subgroup of w1 (M) which is either free, or a surface group.
Now we may consider

Sr(A) = {closed leaves S /m1(S) = I" and Area(S) < A},
and
Sr,g(A) = {closed leaves S of genus g /m1(S) = I" and Area(S) < A}.

In this case, I have no feelings of what may happen. A more tractable
case seems to be when M has constant curvature and I is a Fuchsian
group. In this situation all closed leaves whose m; is I" are understood:
they correspond to CP'-structures with Fuchsian holonomy and they have
been described by W. Goldman [1].

These were precise questions. A more vague one is the following: can we

use some version of the thermodynamical formalism in this situation and
produce invariant measures by a variational approach ?
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