
POSITIVITY, CROSS-RATIOS, PHOTONS,
AND THE COLLAR LEMMA

JONAS BEYRER, OLIVIER GUICHARD, FRANÇOIS LABOURIE,
BEATRICE POZZETTI, AND ANNA WIENHARD

Abstract. We prove that Θ-positive representations of fundamental groups of
surfaces (possibly cusped or of infinite type) satisfy a collar lemma, and their
associated cross-ratios are positive. As a consequence we deduce that Θ-positive
representations form closed subsets of the representation variety. Along the way
we systematically study a class of curves inside general flag manifolds that we call
photons. Using their interplay with transversality in the flag manifold, we construct
photon projections, which we use to relate the cross-ratios on the photons to the
cross-ratios on the flag manifolds.
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Introduction

The use of cross-ratios in hyperbolic dynamics was initiated by Otal [34] and
notably used by Hamenstädt [23] and Ledrappier [29]. For the purpose of this intro-
duction, let us recall that they consider real valued functions of generic quadruples
of points in the boundary at infinity ∂∞Γ of a hyperbolic group Γ satisfying certain
additive (or multiplicative) cocycle identities.

These additive functions arise as logarithms of what we will call cross-ratios
in this paper. Given a cross-ratio b, and a non-trivial element γ in Γ, the period
of γ is p(γ) B b(γ+, γ−, x, γ(x)), where γ− and γ+ are respectively the repelling and
attracting fixed points of γ in ∂∞Γ and x is any element of ∂∞Γ not fixed by γ. In the
context of plane hyperbolic geometry, when Γ is the fundamental group of a closed
hyperbolic surface S, ∂∞Γ is identified with the projective line overR and the period
of the projective cross-ratio of an element γ in Γ is the exponential of the length of
the associated closed geodesic on S. For Anosov representations cross-ratios have
been introduced by Labourie in [27] (see Section 2.4); they have since become a
standard tool.

In this paper we concern ourselves with special classes of discrete subgroups
of semisimple Lie groups, the images of the so-called positive representations
[20]. It has been recognized that for special families of Lie groups some classes
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of representations of fundamental groups of surfaces have a unique behaviour:
when the surface is closed, they form entire connected components of the space of
homomorphisms; as a corollary one finds components consisting entirely of discrete
and faithful representations. For PSL2(R), positive representations are precisely the
holonomy representations of hyperbolic structures.

More generally, for split real Lie groups, Hitchin representations give rise to
connected components consisting entirely of discrete and faithful representations,
see [16, 26], and the same is true for maximal representations in groups of Hermitian
type [12, 10]. Even though these spaces of representations were introduced and
investigated using very different techniques, Guichard and Wienhard unveiled a
common structure —calledΘ-positivity— that underlies them all [21] and generalizes
the total positivity à la Lusztig [31], which played a central role in work of Fock
and Goncharov [16]. Lie groups admitting a positive structure relative to Θ exist
beyond the above mentioned examples, see [21], and Guichard, Labourie, and
Wienhard started the study of Θ-positive representations of surface groups in [20].
Θ-Positivity is defined with respect to a subset Θ of simple roots (or equivalently
with respect to the choice of a conjugacy class of parabolic groups), and it is shown
in [20] that, for closed surface groups, Θ-positive representations are in particular
Anosov with respect to Θ. For the purpose of this introduction, we don’t recall
the precise definition of Θ-positivity, but just recall that it can be described by a
subset of quadruples, called positive quadruples, in the flag manifoldFΘ defined byΘ,
and positive representations preserve a cyclically ordered subset of FΘ for which
ordered triples and quadruples are positive (see Section 4).

In this paper we explore cross-ratios on general flag manifolds and in particular
cross-ratios associated toΘ-positive representations. We show that these cross-ratios
are positive, namely the cross-ratio of a cyclically oriented 4-tuple is bigger than 1, so
its logarithm is positive. We further prove a Collar Lemma in the spirit of hyperbolic
geometry. We use these results in combination with a result from [20], to show that
the space ofΘ-positive representations of the fundamental group of a closed surface
is open and closed in the space of homomorphisms, thus establishing a conjecture
of Guichard, Labourie and Wienhard (cf. [20, 21, 22, 38]), extending previous results
of the authors in [20] and [6]. Along the way we introduce new objects —called
photons— that might be useful for the study of surface group representations in
wider settings.

Let us describe the results in more detail. Recall that the projective cross-ratio on
the projective space associates to a pair (x, y) of lines and a pair (X,Y) of hyperplanes
with suitable transversality properties the real number

b(x, y,X,Y) B
⟨x̄ | X̄⟩ ⟨ȳ | Ȳ⟩
⟨ȳ | X̄⟩ ⟨x̄ | Ȳ⟩

,

where X̄, Ȳ, x̄ and ȳ are (any) non-zero elements in X, Y, x and y respectively.
Let now Θ be a subset of the set ∆ of simple roots of G; we assume that Θ is

symmetric with respect to the opposition involution. Let FΘ be the associated
generalized flag manifold. For an element θ of Θ, the fundamental weight ωθ
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defines a (projective) representation of G on a vector space V and G-equivariant
maps Ξθ and Ξ∗θ from FΘ to the projective space of V and its dual. The associated
cross-ratio on FΘ is

bωθ(x, y, z,w) B b(Ξθ(x),Ξθ(y),Ξ∗θ(z),Ξ∗θ(w)) .

Our first result is

Theorem A (Positivity of the cross-ratio). Let G be a semisimple group admitting a
positive structure relative to Θ, FΘ be the generalized flag manifold associated to Θ, ωθ the
fundamental weight associated to θ in Θ. Then for every positive quadruple (x, y,X,Y) in
F

4
Θ

bωθ(x, y,X,Y) > 1 .

In Section 2 we extend the construction of cross-ratios to all positive linear
combinations of the fundamental weights ωΘ for θ inΘ (we call thoseΘ-compatible
dominant weights, cf. Section 1.9) without assuming Θ being invariant under the
opposition involution. Theorem A is proved in Section 5.

Special cases of this theorem were known before. This was established in [27, 30]
for the cross-ratios of PSLn(R), in [10] for maximal representations in Sp(2n,R), and
in [6] for 4-tuples in the limit curve of a Θ-positive representations in SO(p, q).

In [8] Theorem A is used by Bridgeman and Labourie to obtain the convexity of
length functions on moduli spaces of positive representations.

In [28] Labourie and Mc-Shane showed that positive cross-ratios imply the
existence of generalized McShane–Mirzakhani identities. In particular, Theorem A
implies that Theorem 1.0.1 of [28] holds for all positive representations.

In [32] Martone and Zhang introduced the notion of positively ratioed representa-
tions with respect to a parabolic subgroup PΘ, and showed that the set of positively
ratioed representations admits appropriate embeddings into the space of geodesic
currents. Theorem A implies:

Corollary B. Let ρ be a Θ-positive representation of a closed surface group, then ρ is
PΘ-positively ratioed.

Theorem A is also a crucial ingredient for the following Collar Lemma.
For every η in G with attracting and repelling fixed points η+ and η− in FΘ, the

period of η with respect to the cross-ratio bωθ is

pωθ(η) B bωθ(η+, η−, y, η(y)),

where one checks that the right hand term does not depend on the choice of y in FΘ
transverse to η+ and η−.

Any linear form λ in a∗ gives rise to a character χλ : G → R given by χλ(η) B
exp(⟨h | λ⟩) where h is the Jordan projection of η in the Weyl chamber a+ of G. When
λ is a weight, periods and characters are related by the following formula:

pλ(g) = χλ(g)χλ(g−1) .

Theorem C (Collar Lemma in the Lie group). Let G be a semisimple Lie group
admitting a positive structure relative to Θ. Let A and B be Θ-loxodromic elements of G.
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Denote by (a+, a−) and (b+, b−) the pair of attracting and repelling fixed points of A and B
respectively in the flag variety FΘ. Assume that the sextuple

(a+, b−, a−, b+,B(a+),A(b+))

is positive. Then for any θ in Θ, the following holds
1

pωθ (B)
+

1
χθ (A)

< 1 .

When S is an oriented surface of negative Euler characteristic (not necessarily of
finite type) we obtain the following consequence:

Corollary D (CollarLemma). Let G a semisimple Lie group admitting a positive structure
relative to Θ. Let ρ : π1(S)→ G be a Θ-positive homomorphism. Let γ0 and γ1 be elements
of π1(S) whose associated free homotopy classes intersect geometrically. Let θ be in Θ, then

1
pωθ

(
ρ(γ0)

) + 1
χθ

(
ρ(γ1)

) < 1 .

The first Collar Lemma for representations of fundamental groups of closed
surfaces in groups of higher rank is a generalization of the Hyperbolic Collar
Lemma (cf. [24]) and is due to Lee and Zhang [30]. Since this seminal work, the
subject of Collar Lemmas has attracted a lot of attention. We discuss in Section 9.1
the relation of our work with the works of Burger and Pozzetti [13], Beyrer and
Pozzetti [4, 6], Tholozan [36] and Collier, Tholozan and Toulisse [15].

Combining Corollary D with a result of [20], we deduce the closedness of positive
representations of surface groups into Lie groups admitting a positive structure
relative to Θ.

Corollary E. Let G be a semisimple Lie group admitting a positive structure relative toΘ. If
{ρm}m∈N is a sequence of Θ-positive homomorphisms from a surface group to G converging
to a homomorphism ρ, then ρ is Θ-positive.

We insist that in this corollary as well as in Corollary D, we do not restrict
ourselves to closed surfaces nor to surfaces of finite type.

As a corollary, combining with [20, Corollary C], we obtain a solution to the
mentioned conjecture of Guichard, Labourie, and Wienhard [21] refining results in
[20] and generalizing results of [6].

Corollary F. The set of Θ-positive representations is a union of connected components of
the space of all representations of a closed surface group.

In order to prove Theorem A, we investigate the symplectic geometry of products
of flag manifolds. The proof of the Collar Lemma itself relies on the positivity of the
cross-ratio as well as a new tool: the study of θ-photons for θ in Θ, a study that we
hope will be useful in future research.

We summarize briefly the construction of θ-photons given in details in Section
3. Associated to a root θ in Θ is a conjugacy class of subgroups Hθ in G isogenic
to PSL2(R). A θ-photon is a closed orbit of a group Hθ, hence isomorphic to P1(R)
(Proposition 3.6). In the special case of the Hermitian group G = SO(2,n), Θ is
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reduced to one element, the Θ-flag manifold is the Einstein universe equipped with
a conformal structure of type (1,n − 1) and the θ-photons are the closed light-like
geodesics as described for instance in [1] and [15]. Given a θ-photon Φθ, we
construct a projection from an open set of the flag manifold to Φθ and are able to
use this projection to relate the classical (projective) cross-ratio on the photon to the
cross-ratio introduced in Theorem A and from this deduce bounds on the character
χθ in terms of cross-ratios (Theorem 6.1).

In the Appendix A, we show how our results extend when R is replaced by any
real closed field.

1. Preliminaries

In this section we recall some facts on semisimple Lie groups and Lie algebras
and introduce some notation.

1.1. Roots. Let G0 be a semisimple Lie group1 (by this we mean a connected Lie
group whose Lie algebra is semisimple) with finite center. Let g0 be its Lie algebra
and k the Lie algebra of a maximal compact subgroup K. The associated Cartan
involution σ is the Lie algebra involution of g0 whose fixed point set is equal to k.
We fix a Cartan subspace a inside the orthogonal complement of k with respect to
the Killing form on g0. Throughout this article, scalar products, and in particular the
Killing form, as well as the induced forms on a and on a∗ will be denoted by ⟨·, ·⟩.

Let Σ be the subset of a∗ consisting of the restricted roots of G0: Σ is the set of
non-zero weights for the adjoint action of a on the Lie algebra g0 of G0; explicitly,
β belongs to Σ if and only if β , 0 and

gβ B {v ∈ g0 | ∀u ∈ a, [u, v] = β(u) v}

is not reduced to {0}. We will often denote the quantity β(u) by ⟨u | β⟩ and use a
similar notation for every duality.

Let Σ+ be a fixed choice of positive roots and ∆ the corresponding set of simple
roots. Later on, we will need to distinguish between the “long roots” and the
“short roots”, the understood notion of length behind this comes from the Euclidean
structure on a∗ induced by the Killing form.

1.2. Weyl group. The (closed) Weyl chamber is the cone a+ in a defined by the
equations α(a) ⩾ 0 for all α in Σ+ (equivalently, for all α in ∆).

The (restricted) Weyl group W of G0 is the quotient of the normalizer of a in K by
the centralizer of a in K; it identifies with the subgroup of GL(a) of automorphisms
of Σ. The Weyl group is a Coxeter group generated by hyperplane reflections {sα}α∈∆
characterized (among hyperplane reflections that induce a permutation of Σ) by
sα(α) = −α. We will sometimes use representatives in K of elements s of W and we
shall often denote them

q
s.

1In Section 1.6 we will consider a group G isomorphic to G0 to have a treatment of flag manifolds
suited to our purposes.
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The longest element w in the Weyl group W (with respect to the generating family
{sα}α∈∆) sends Σ+ to Σ− B Σ ∖ Σ+ = −Σ+ and the mapping ι : α 7→ ι(α) B −w · α
induces a permutation of Σ+ and a permutation of ∆, called the opposition involution.

1.3. sl2-triples. For any positive root β, choose (xβ, x−β, hβ) an associated sl2-triple.
This means that hβ belongs to a, that x±β belongs to g±β, and that the relations
[hβ, x±β] = ±2x±β and [xβ, x−β] = hβ hold. These elements can be used to construct
representatives in K of the reflections sα: indeed

q
sα = exp(π2 (xα − x−α)) represents the

element sα of the Weyl group.
The family {hθ}θ∈∆ is a basis of the Cartan subspace a, the elements of the dual

basis {ωθ}θ∈∆ are called the fundamental weights.

1.4. Parabolic subgroups. Every subset Θ of ∆ defines a parabolic subgroup PΘ in
the following manner. First we consider

Σ+Θ B Σ
+ ∖ span(∆ ∖Θ) .

This is the set of positive roots whose decomposition as a sum of simple roots
contains at least one element of Θ. Equivalently, Σ+

Θ
is the smallest subset of Σ

containing Θ and invariant by β 7→ β + α for every α in ∆. In particular Θ itself is a
subset of Σ+

Θ
. We set

uΘ B
⊕
α∈Σ+

Θ

gα , u
opp
Θ
B

⊕
α∈Σ+

Θ

g−α .

The parabolic group PΘ is the normalizer of uΘ in G0. The unipotent radical
of PΘ is the group UΘ = exp(uΘ). In this convention P∅ = G0, while P∆ is the
minimal parabolic. Similarly we define the opposite parabolic subgroup Popp

Θ
.

Let LΘ = PΘ ∩ Popp
Θ

be the reductive part in the Levi decomposition of PΘ and
SΘ B [L◦

Θ
,L◦
Θ

] be the semisimple part of L◦
Θ

, the connected component of the
identity of LΘ. The opposite parabolic group Popp

Θ
is conjugate to Pι(Θ): for every

representative
q

w of the longest element w of W, one has
q

wPopp
Θ

q
w−1
= PΘ. A Cartan

subspace of SΘ is
aΘ =

⊕
β∈∆∖Θ

R hβ ,

and the Lie algebra of SΘ is

sΘ = aΘ ⊕mΘ ⊕
⊕

β∈Σ∩Span(∆∖Θ)

gβ ,

where mΘ is a compact Lie algebra. Hence ∆ ∖Θ is a set of simple positive roots for
SΘ and the Dynkin diagram of SΘ is completely determined. We have the following
:

Proposition 1.1. Let bΘ be the orthogonal complement of aΘ in a (with respect to the Killing
form). Then bΘ is the intersection of the spaces ker(β) for β varying in ∆ ∖Θ. Moreover
the elements of bΘ commute with all elements of lΘ, and BΘ B exp(bΘ) is a central factor
in LΘ.
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1.5. Irreducible factors for the action of the Levi. For every θ in Σ+
Θ

, we set

Σθ B
{
β ∈ Σ+ | β − θ ∈ Span(∆ ∖Θ)

}
,(1)

uθ B
⊕
α∈Σθ

gα , u−θ B
⊕
α∈Σθ

g−α.(2)

We will often use that, for an element β of Σ+, β belongs to Σθ if and only if β − θ is
zero in restriction to bΘ. When θ belongs toΘ, Σθ is the set of roots of the form θ+α
where α is a linear combination of simple roots in ∆ ∖Θ. Obviously Σθ is disjoint
from Ση when η and θ are distinct elements of Θ, and for arbitrary η and θ in Σ+

Θ
,

the sets Σθ and Ση are either disjoint of equal.
The following result was established by Kostant [25].

Theorem 1.2. The subspaces uβ (resp. u−β), for β varying in Σ+
Θ

, are the irreducible factors
of the action of LΘ on uΘ (resp. uopp

Θ
).

The Weyl group WSΘ is generated by the sα for α in ∆ ∖Θ, we then have:

Proposition 1.3. The Weyl group WSΘ of SΘ satisfies

WSΘ (Σθ) ⊂ Σθ
for every θ in Θ.

Finally, for any θ in Θ, we introduce the following subalgebra. Let gH
θ B x⊥

−θ ∩ gθ

—we denote by x⊥
−θ the orthogonal for the Killing form—, this is a hyperplane in gθ

—hence the choice of the superscript H— not containing xθ, and let

vθ B g
H
θ ⊕

∑
β∈Σ+

Θ
∖{θ}

gβ .

Then uΘ = Rxθ ⊕ vθ. We set Vθ = exp(vθ). We denote by Hθ the connected Lie group
(isogenic to SL2(R)) whose Lie algebra is generated by the sl2-triple (xθ, x−θ, hθ).

Proposition 1.4. For any θ in Θ, the vector space vθ is an ideal in the Lie-algebra uΘ. In
particular, we have

UΘ = exp(gθ) ⋉ Vθ .
The conjugates, by elements of Hθ, of the group Vθ are contained in PΘ.

Proof. Since θ is a simple root, Σ+
Θ
⊂ Σ+, and [gα, gβ] ⊂ gα+β, we have [vθ, vθ] ⊂ vθ,

and [xθ, vθ] ⊂ vθ. Thus, vθ is an ideal.
Let

q
sθ be an element of Hθ representing the non-trivial element of the Weyl group

of Hθ (one can choose for example
q

sθ = exp(π2 (xθ−x−θ))). The group Hθ is generated
by

q
sθ and exp(⟨xθ⟩) ⊂ exp(gθ). Since Vθ is invariant by conjugation by exp(gθ), it

remains to prove that the conjugate of Vθ by
q

sθ is contained in PΘ.
Let V = exp(

∑
α∈Σ+∖{θ} gα). By the inclusions Vθ ⊂ exp(gH

θ )V ⊂ U∆ ⊂ P∆ ⊂ PΘ, it
is enough to prove that V and exp(gH

θ ) are invariant by conjugation by
q

sθ. For V,
this follows from the well known fact that

q
sθ induces a permutation of Σ+ ∖ {θ}; for

exp(gH
θ ), this follows from the fact that gH

θ is the trivial Hθ-module. The proposition
is proved. □
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1.6. Parabolic subgroups and flag manifolds. We consider the partial flag variety
associated to PΘ. We choose a setup that allows us to identify the tangent spaces
at points z in the flag variety with the Lie algebra uopp

Θ
. For this we consider a

group G isomorphic to G0 and we let I be the space of isomorphisms from G0
to G. On I the group G0 acts on the right by pre-conjugation and G acts on the
left by post-conjugation (in fact the groups of automorphisms of G and of G0 act
respectively on the left and on the right). We also fix once and for all G a connected
component of I. As G and G0 are connected, G is invariant by the actions of G
and G0. For example, one could choose G to be equal to G0 andG to be the connected
component of the identity in the group of automorphisms of G0. In general, the
space G identifies (not naturally) with the adjoint form of G0.

The left and right actions of G and G0 onG being locally free, we have, for every φ
in G, natural identifications TφG ≃ g and ιGφ : TφG ≃ g0; the composition of these
identifications gives a map g0 → g which is precisely the differential φ∗ B Teφ of φ
at the identity.

We consider the flag varietyFΘ B G/PΘ, which can be identified with a connected
component in the set of subalgebras u of g isomorphic to uΘ. The group G acts
on the left on FΘ. Let πF be the projection from G to FΘ. For every φ in G and
x = πF (φ), the differential TφπF is a map from TφG to TxF ; composing this map
with the identification g0 ≃ TφG gives a projection

πFφ : g0 −→ TxFΘ ,

whose kernel is pΘ. This gives us, by restriction, an identification of uopp
Θ

with TxFΘ

whose inverse will be denoted by ιFφ : TxFΘ → u
opp
Θ

.
Similarly, we introduce the opposite flag variety F opp

Θ
B G/Popp

Θ
. As a G-space, it is

isomorphic to G/Pι(Θ) and the G-isomorphism is unique. The projection G → F opp
Θ

will be denoted by πF
opp

, and for every φ in G, letting y = πF
opp

(φ), we have
isomorphisms ιF

opp

φ : TyF
opp
Θ
→ uΘ and πF

opp

φ : uΘ → TyF
opp
Θ

.
The stabilizer in G of a point z in FΘ (or in F opp

Θ
) will be denoted by Pz, the

unipotent radical of Pz will be denoted by Uz. Their Lie algebras are denoted pz
and uz respectively.

We say that a point z in FΘ and a point w in F opp
Θ

are transverse, and write z ⋔ w,
if

pz ⊕ uw = g .

This is equivalent to the fact Pz ∩ Pw is a Levi factor of both Pz and Pw. Let finally

LΘ B {(z,w) ∈ FΘ × F
opp
Θ
| z ⋔ w} ,

and observe that LΘ is canonically isomorphic to G/LΘ. The natural map G → LΘ
will be denoted by πL, it is the corestriction of the map (πF , πF

opp
). The differential

of πL induces an onto morphism between the vector bundles TG and πL∗TLΘ
that induces an isomorphism TG/lΘ ≃ πL∗TLΘ. The differential of πL at a point
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(z,w) = πL(φ), composed with the identification of g0 with TφG induces a map

πLφ : g0 −→ T(z,w)LΘ ,

which gives rise to an identification ιLφ : T(z,w)LΘ = TzFΘ ⊕ TwF
opp
Θ
→ u

opp
Θ
⊕ uΘ,

more precisely the map ιLφ is equal to (ιFφ , ι
F

opp

φ ) where ιFφ and ιF
opp

φ are given above.
We denote by Lz,w = Pz ∩ Pw the stabilizer of a pair (z,w) of transverse points

in FΘ × F
opp
Θ

.
It will very often be the case in this paper that we are in the situation that the

opposite parabolic Popp
Θ

is conjugate to PΘ. In such case we will use the natural
identification F opp

Θ
≃ FΘ and use the notion of transversality and the maps ιF

opp

φ

with elements of FΘ as well.

1.7. Loxodromic elements. An element g in G is Θ-loxodromic if and only if g has
an attracting fixed point in FΘ. In this case, g has exactly one attracting fixed point z
in FΘ and one repelling fixed point w in F opp

Θ
, and those fixed points z and w are

transverse.
An element g0 is hyperbolic if we can find an isomorphism ψ from G0 to G such

that g0 = ψ(exp(a)) where a is in the closed Weyl chamber. Recall that a is uniquely
determined.

The Kostant–Jordan decomposition of g is the unique commuting product g = ghgkgu
where gu is unipotent, gk generates a subgroup whose closure is compact, and
gh is hyperbolic. The unique element a of the closed Weyl chamber such that
ψ(exp(a)) = gh is called the Jordan projection of g.

We observe that we have the following:

Proposition 1.5. An element g is Θ-loxodromic if and only if its hyperbolic part h is
Θ-loxodromic. In that case both g and h have the same repelling and attracting fixed points.

An algebraic definition is given by:

Proposition 1.6. Let x in FΘ and y in F opp
Θ

be transverse points.
(1) Let h be an hyperbolic element of G, which is Θ-loxodromic with attracting fixed

point x in FΘ and repelling fixed point y in F opp
Θ

. Let ψ be an isomorphism from G0

to G such that ψ(PΘ) = Px, ψ(Popp
Θ

) = Py, h = ψ(exp(a)) with a in a. Then we
have

⟨a | θ⟩ > 0,
for all θ in Θ,

(2) Conversely, assume that ψ is an isomorphism from G0 to G satisfying ψ(PΘ) = Px,
ψ(Popp

Θ
) = Py, let a be an element of the (closed) Weyl chamber a+ such that for all

θ in Θ, we have ⟨a | θ⟩ > 0 then ψ(exp(a)) is Θ-loxodromic with attracting fixed
point x and repelling fixed point y.

Proof. This follows from the fact that the tangent space to FΘ at x identifies with
u

opp
Θ

and the tangential action of h given by exp(Ad(a)). We refer to [19, Proposition
3.3]. □
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Remark 1.7. Of course the condition ψ(PΘ) = Px is equivalent to πF (ψ) = x, and the
conditions ψ(PΘ) = Px, ψ(Popp

Θ
) = Py are equivalent to πL(ψ) = (x, y).

1.8. Characters. If a linear form η on a is given, the η-character of g is the exponential
of the evaluation of η on the Jordan projection a of g, it will be denoted by

χη(g) = exp(⟨a | η⟩) .

1.9. Dominant forms. We introduce the notion of Θ-compatible dominant forms and
weights in the dual of the Cartan subspace.

Definition 1.8 (Θ-compatible dominant form). An element η of a∗ is called
• dominant if ⟨η, θ⟩ ⩾ 0 for all θ in ∆;
• Θ-compatible if ⟨η, β⟩ = 0 for all β in ∆ ∖Θ.

Equivalently, η is a Θ-compatible dominant form if and only if the restriction of η
to aΘ is zero and ⟨hθ | η⟩ ⩾ 0 for all θ in Θ, since ⟨hθ | η⟩ = 2 ⟨η,θ⟩

⟨θ,θ⟩ (recall that aΘ is
the intersection

⋂
β∈∆∖Θ ker β). When η is a weight we will speak of a Θ-compatible

dominant weight.
Observe that if a non-zero dominant form isΘ-compatible, there exists θ inΘ such

that ⟨η, θ⟩ > 0. Among those Θ-compatible dominant forms are the fundamental
weights {ωθ}θ∈Θ; more generally a linear form η isΘ-compatible and dominant if and
only if it belongs to the convex cone generated by {ωθ}θ∈Θ (since η =

∑
θ∈∆ ⟨hθ | η⟩ωθ).

2. Cross-ratios

In this section we associate to everyΘ-compatible dominant weight η a cross-ratio
bη defined on the flag varieties FΘ = G/PΘ and F opp

Θ
= G/Popp

Θ
. This family of

cross-ratios satisfies the following multiplicative properties

(3) bη1bη2 = bη1+η2 , bnη = (bη)n .

Up to restricting the domain of definition of these cross-ratios, we give an integral
formula that allows us to give a construction of bη for everyΘ-compatible dominant
form η. This is possible due to a symplectic reinterpretation of such cross-ratio,
which generalizes results of [27].

2.1. Cross-ratios and periods. Let F and F′ be sets, which could be either a flag
manifold and its opposite, or the boundary at infinity of a hyperbolic group (and
itself). Let U be a subset of F × F′. For flag manifolds, U will be the set of pairs of
transverse points; for the boundary at infinity, U will be the set of pairs of distinct
points. We consider the subset O of F2

× (F′)2 defined by

O B
{
(x, y,X,Y) ∈ F2

× (F′)2
| (x,Y) ∈ U, (y,X) ∈ U

}
.

We recall from [27] that a cross-ratio is a non-constant function b defined on O, taking
values in a field F, and satisfying the two cocycle identities

b(x,w,X,Y) b(w, y,X,Y) = b(x, y,X,Y) ,
b(x, y,X,W) b(x, y,W,Y) = b(x, y,X,Y) .
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Observe that, in these equations, if the left-hand side is defined, so is the right and
that the cocycle identities imply the equalities b(x, x,X,Y) = 1 and b(x, y,X,X) = 1.
Our cocycle identities are multiplicative and, when F is R, the cross-ratio may also
be negative. This is the definition from [27] (up to the ordering of the arguments).
It differs from Hamenstädt [23] since we do not impose additional restrictive
symmetries; it also differs from Otal [35] where the cocycle identities are additive
and symmetries are imposed as well.

Example 2.1. For a field F, the classical projective cross-ratio on P1(F) is a cross-ratio
in this sense. In projective coordinates it is defined by

[x, y,X,Y] =
(X − x)(Y − y)
(X − y)(Y − x)

.

The convention for the order of elements in the projective cross-ratio is characterized
by the fact that [∞, 0, 1, z] = z. The projective cross-ratio is PGL2(F)-invariant.

We assume from now on that F and F′ are topological spaces and U is open. We
also assume that, for every x and y in F, there is X in F′ such that (x,X) and (y,X)
are in U.

Let also γ act on F and on F′ with exactly one attracting fixed point γ+ and one
repelling fixed point γ− on F and such that its diagonal actions preserve U and b;
then the period of γ with respect to b is

p(γ) B b(γ+, γ−, y, γ(y)) ,

for any y in F′ such that (γ+, y) and (γ−, y) belong to U (this is independent of the
choice of y thanks to the cocycle identities).

Example 2.2. When F is a valued field and if we take γ acting on P1(F) defined by
γ(z) = λ z with the absolute value of λ being > 1 so that 0 is the repelling fixed point
of γ and∞ is the attracting fixed point, the period of γ is given by

p(γ) = λ .

2.2. Projective cross-ratios. The cross-ratio on the projective line generalizes to
higher dimension. Let E be a vector space over a field F. We apply the general
setting above to F = P(E), F′ = P(E∗) and U the set of pairs of transverse elements,
so that

O = {(x, y,X,Y) | X ⋔ y and Y ⋔ x}.
The projective cross-ratio is the F-valued function on the open subset O given by

(4) bE(x, y,X,Y) =
⟨x̄ | X̄⟩ ⟨ȳ | Ȳ⟩
⟨ȳ | X̄⟩ ⟨x̄ | Ȳ⟩

,

where ū denotes a non-zero vector in the line u. This does not depend on the choice
of x̄, ȳ, X̄ and Ȳ.

When E is finite dimensional and when F is a valued field, P(E) and P(E∗) have
natural topologies. In this case, the period of an element g of PGL(E) for bE is the
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ratio between the eigenvalue of greatest modulus and the eigenvalue of lowest
modulus of one (any) representative of g in GL(E).

The projective cross-ratio behaves well under tensor product.

Lemma 2.3. Let E1 and E2 be vector spaces over a field F, and let E = E1 ⊗ E2. The
natural maps E1 × E2 → E and E∗1 × E∗2 → E∗ induce maps P(E1) × P(E2) → P(E) and
P(E∗1) × P(E∗2) → P(E∗). All these maps will be denoted (a, b) 7→ a ⊗ b. One then has the
identities

bE(x1 ⊗ x2, y1 ⊗ y2,X1 ⊗ X2,X1 ⊗ X2) = bE1(x1, y1,X1,Y1)bE2(x2, y2,X2,Y2)

for all (x1, y1,X1,Y1) and (x2, y2,X2,Y2) such that X1 ⋔ y1, Y1 ⋔ x1, X2 ⋔ y2, and
Y2 ⋔ x2.

Proof. Using that ⟨v1 ⊗ v2 | φ1 ⊗ φ2⟩ = ⟨v1 | φ1⟩ ⟨v2 | φ2⟩, this comes from a direct
calculation. □

2.3. The cross-ratio associated to a dominant weight. Let G0 be a semisimple Lie
group, Θ ⊂ ∆ a subset of simple roots, we do not assume here that Θ is invariant
under the involution opposition. We denote, as usual, byFΘ = G/PΘ the flag variety
associated to PΘ and by F opp

Θ
= G/Popp

Θ
the flag variety associated to Popp

Θ
. The

space LΘ = G/LΘ is the unique open G-orbit in FΘ × F
opp
Θ

.
For a Θ-compatible dominant weight η, let τ be the associated representation

G → PGL(E) on a real vector space E [19, Lemma 3.2] (thus τ is the irreducible
proximal representation with highest weight η, well defined up to isomorphism).
This means that, for every ψ in G, there is a (unique up to scalar) vector v in E
such that, for every X in a, τ∗ ◦ ψ∗(X)(v) = ⟨X | η⟩ v; this vector v is mapped to 0 by
τ∗ ◦ ψ∗(uΘ) and is also an eigenvector of τ∗ ◦ ψ∗(lΘ). From this we deduce that there
are unique equivariant maps Ξη : FΘ → P(E) and Ξ∗η : F opp

Θ
→ P(E∗). If we consider

an element of FΘ as a nilpotent Lie algebra in g, its image under Ξη is the unique
eigenline in E for this subalgebra.

The cross-ratio associated to η is (with F = FΘ, F′ = F opp
Θ

, and U = LΘ)

(5) bη(u, v,w, z) B bE
(
Ξη(u),Ξη(v),Ξ∗η(w),Ξ∗η(z)

)
,

for all (u, v,w, z) ∈ O ⊂ FΘ × FΘ × F
opp
Θ
× F

opp
Θ

(i.e. such that (v,w) and (u, z)
belong to LΘ), where bE is the R-valued projective cross-ratio defined in Equation
(4). It follows directly from the definition that the cross-ratio associated to η is a
semi-algebraic function.

Assume now that h in G is such that both h and h−1 are Θ-loxodromic elements
(equivalently, h is (Θ ∪ ι(Θ))-loxodromic) and denote their attracting fixed points in
FΘ respectively h+ and h−. Hence h− is the repelling fixed point of h. The η-period
of h is

pη(h) = bη(h+, h−, x, h(x)) ,
for (any) x in F opp

Θ
transverse to both h− and h+ (i.e. the η-period is the period with

respect to the cross-ratio bη).
The periods are related to the η-characters (Section 1.8).
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Proposition 2.4. For any element h such that both h and h−1 are Θ-loxodromic, we have

pη(h) = χη(h) · χη(h−1) .

Note that χη(h−1) = χι(η)(h) where ι is the opposition involution.

Proof. Let h+ and h− be the attracting fixed points for the respective action of h and
h−1 on FΘ and let Lh−,h+ be the subgroup of G stabilizing them, this subgroup is
isomorphic to LΘ. The cocycle identities and the G-invariance of bη imply that
Ψ : g 7→ bη(h+, h−, x, g(x)) is a homomorphism defined on Lh−,h+ . ThusΨ(g) = 1 for
g in the semisimple part of Lh−,h+ and for g in the compact factor of the center of
Lh−,h+ . The result now follows from an explicit computation for the elements g of the
form exp(a) with a in the Weyl chamber, using that the highest eigenvalue of exp(a)
on E is exp(⟨a|η⟩) (cf. Section 2.2). □

By construction the cross-ratio is multiplicative in η:

Lemma 2.5. For every Θ-dominant weights η1, η2 and any integer n it holds

bη1bη2 = bη1+η2 , bnη = (bη) n .

Proof. This follows readily since, if τi : G→ PGL(Ei) are the representations associ-
ated to the weights ηi for i = 1, 2, then the representation τ associated to η = η1 + η2
can be realized as an irreducible factor of E1 ⊗ E2 and the associated equivariant
maps Ξη, Ξ∗η are given by Ξη1 ⊗ Ξη2 , respectively Ξ∗η1

⊗ Ξ∗η2
. The claim then follows

from Lemma 2.3. The second claim follows from the first by induction on n. □

2.4. A symplectic reinterpretation. We now give a symplectic reinterpretation of
the cross-ratio bη in analogy with [27, Section 4.4]. We first consider the case of
the projective cross-ratio. The product E × E∗ of the real vector space E and its
dual carries a canonical symplectic form; this is the natural symplectic form ωE

on the cotangent bundle T∗E = E × E∗, one has also ωE = −dβE where βE is the
canonical 1-form (or Liouville 1-form); explicitely, for (v, φ) in E × E∗ and (

q
v,

q
φ) in

T(v,φ)(E × E∗) ≃ E × E∗, one has βE
(v,φ)(

q
v,

q
φ) = ⟨

q
v | φ⟩. The real multiplicative group R∗

acts symplectically on E × E∗ by λ(x,X) = (λx, λ−1X), with a moment map given by
µ(x,X) = ⟨x | X⟩. The symplectic reduction at 1 —that is the space µ−1(1)/R∗— then
identifies with

U = {(x,X) ∈ P(E) × P(E∗) | ⟨x̄ | X̄⟩ , 0} ,

which hence carries a symplectic form that we call ω. More explicitly [27, Section
4.4.3], if we identify the tangent space to P(E) × P(E∗) at a pair (L,P) —where L is a
line transverse to the hyperplane P— with (L∗ ⊗ P) ⊕ (P∗ ⊗ L) we have

ω
(
( f , g), (h, j)

)
= Trace( f ◦ j) − Trace(h ◦ g) .(6)

The following is proved in [27, Proposition 4.7].
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Proposition 2.6. Let f be a continuous, piecewise C1 map from [0, 1]2 to U such that, for
every t in [0, 1], f (0, t) = (x, ∗) and f (1, t) = (y, ∗), and for every s in [0, 1], f (s, 0) = (∗,X)
and f (s, 1) = (∗,Y). Then

bE(x, y,X,Y) = exp
(∫

[0,1]2
f ∗ω

)
.

A map f satisfying the conditions in Proposition 2.6 can be constructed if and
only if there are vectors x̄, ȳ, X̄, Ȳ representing x, y,X,Y such that the pairings
⟨x̄ | X̄⟩ , ⟨ȳ | X̄⟩ , ⟨x̄ | Ȳ⟩ , ⟨ȳ | Ȳ⟩ are all positive.

The goal of the section is to obtain a version of Proposition 2.6 that calculates the
cross-ratios bη defined on other flag varieties. We will introduce a “curvature” form
Ω on LΘ = G/LΘ with values in bΘ and show:

Proposition 2.7. Let η be aΘ-compatible dominant weight. Let f be a continuous, piecewise
C

1 map from [0, 1]2 to LΘ such that, for every t in [0, 1], f (0, t) = (x, ∗) and f (1, t) = (y, ∗),
and for every s in [0, 1], f (s, 0) = (∗,X) and f (s, 1) = (∗,Y). Then

bη(x, y,X,Y) = exp
(∫

[0,1]2
f ∗

(
⟨Ω | η⟩

))
.

Remark 2.8. If, as above, τ : G→ PGL(E) is a representation on a real vector space E
with highest weight η, ⟨Ω | η⟩ is the curvature form associated to the action of LΘ on
the vector space E.

Proposition 2.7 enables us to extend the definition of bη for every Θ-compatible
dominant form η. For a general η, the cross-ratio bη is defined on the subspace O□

of O consisting of all quadruples (x, y,X,Y) bounding a continuous, piecewise C1

square as in the assumptions of Proposition 2.7 and bη(x, y,X,Y) is defined by the
integral formula in that proposition. Note that the conditions (x, y,X,Y) in O□ and
(y, z,X,Y) in O□ imply (x, z,X,Y) in O□ (respectively (x, y,X,Y) in O□ and (x, y,Y,Z)
in O□ imply (x, y,X,Z) in O□) and that the cocycles identities also hold. This family of
cross-ratios is multiplicative in η (i.e. bt1η1+t2η2 = (bη1)t1(bη2)t2) so that it is completely
determined by the cross-ratios {bωθ} associated to the fundamental weights.

2.4.1. The curvature form. Recall that, for every φ in G, we have isomorphisms
ιGφ : TφG → g0, ιLφ : TwLΘ → u

opp
Θ
⊕ uΘ (where w = πL(φ)).

We introduce the following bΘ-valued forms on G: for φ in G and v in TφG

βGφ(v) = p
(
ιGφ(v)

)
, ΩG = −dβG ,

where p : g0 → bΘ is the orthogonal projection.
One has ΩGφ(v,w) = p

(
[ιGφ(v), ιGφ(w)]

)
for φ in G and v, w in TφG.

The form βG is a section of the vector bundle (TG)∗ ⊗ bΘ. As βG is equivariant and
as the action of LΘ on bΘ is trivial (Proposition 1.1), the form βG, seen as a section of
(TG)∗⊗bΘ, descends to a section of the vector bundle (TG/lΘ)∗⊗bΘ ≃ (πL∗TLΘ)∗⊗bΘ
over G. This section is also equivariant and, again by triviality of the action of LΘ on
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bΘ, it descends to a section of the vector bundle (TLΘ)∗ ⊗ bΘ, that is, to a bΘ-valued
1-form β on LΘ = G/LΘ. One has πL∗β = βG. We then define Ω = −dβ.

From the construction, one has:

Proposition 2.9. The forms ΩG and Ω are closed, one has ΩG = πL∗Ω.

We call Ω the curvature form on G/LΘ. Some readers will recognize a curvature
form of some bundle as in [3].

We describe now a special case for the group SLm(R). Using the standard
numbering for the simple roots, let Θ0 consist of the first simple root so that
G/PΘ0 = Pm−1(R). The quotient U = G/LΘ0 is the space of pairs of a line and a
hyperplane transverse to each other. In this case bΘ0 ≃ R.

Proposition 2.10 ([27, Proposition 4.7]). In the case thatG/PΘ = Pm−1(R), the curvature
form on U coincides with the symplectic form as in Equation (6).

2.4.2. Linear representations and cross-ratios. Let η be aΘ-compatible dominant weight
and let τ : G→ PGL(E) be the associated irreducible representation. The equivariant
maps Ξη : FΘ → P(E) and Ξ∗η : F opp

Θ
→ P(E∗) combine to an equivariant map

Ψη : LΘ → U, where U is the space of pairs of transverse points in P(E) × P(E∗).

Proposition 2.11. If ω is the symplectic form on the open subset U of P(E) × P(E∗) (cf.
Proposition 2.10), thenΨ∗η(ω) = ⟨Ω | η⟩, where Ω is the curvature form on G/LΘ.

Proof. Assume for simplicity that τ : G → PGL(E) lifts to GL(E), the general case
follows through covering theory, by observing that all our computations are local.

Let βE be the Liouville form on E × E∗ and let µ the moment map for the R-action.
Let us fix an equivariant map ζ : G → E × E∗ lifting the map Ψη ◦ πL and with

values in µ−1(1), i.e. in the space of pairs (v, ℓ) such that ⟨v | ℓ⟩ = 1. It is then enough
to check that ζ∗βE = ⟨βG | η⟩.

Letφ be inG. By construction ζ(φ) = (v, ℓ) where v is an eigenvector with weight η
for the action of the Cartan subspace a under τ∗ ◦ φ∗, and ℓ in E∗ is an eigenvector
with weight ι(η), in other words the kernel of ℓ is the sum of the weight spaces
associated to the weights different from η. This means that

βE
(v,ℓ)(ζ∗ ◦ φ∗(X)) = ⟨ζ∗ ◦ φ∗(X) | ℓ⟩

= ⟨τ∗ ◦ φ∗(X)(v) | ℓ⟩

=
〈
⟨X | η⟩ v

∣∣∣ℓ〉
= ⟨X | η⟩

for every X in a.
One thus has

(
ζ∗βE

)
φ

(φ∗(X)) = ⟨X | η⟩ for every X in a. Since η is Θ-compatible,

we also get
(
ζ∗βE

)
φ

(φ∗(X)) = ⟨p(X) | η⟩ for every X in a, indeed X − p(X) belongs

to aΘ and η is zero in restriction to aΘ. This last equality also holds
• for every X in gα since ζ∗ ◦ φ∗(X) sends v to the kernel of ℓ and p(X) = 0;
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• for every X in zk(a) since v is also an eigenvector for this compact Lie
subalgebra and is thus cancelled by X and again p(X) = 0;
• hence for every X in g0 since we have the decomposition g0 = a ⊕ zk(a) ⊕⊕

α∈Σ gα.

Another way to formulate this equality is
(
ζ∗βE

)
φ

(v) = ⟨p(ιGφ(v)) | η⟩. In view of the

definition of βG this proves the proposition. □

Proof of Proposition 2.7. The result then follows from Proposition 2.11 and the projec-
tive case proven in [27, Proposition 4.7], recalled here in Proposition 2.6. □

3. Photons

In this section
we use the subgroup Hθ of G0 which is locally isomorphic to PSL2(R) to associate

to each root θ in Θ a class of curves in FΘ that we call θ-photons, such that
(1) each θ-photon Φ is an orbit for the action of a subgroup HΦ which is the

image of Hθ by an element ψ : G0 → G of G,
(2) Given any θ-photon Φ, there is a photon projection pΦ from an open set in
F

opp
Θ

to Φ, and pΦ is equivariant with respect to the action of HΦ.
(3) This projection has some nice properties with respect to the cross-ratio bη

associated to a Θ-compatible dominant form. In particular it satisfies that if
(x, y,u) is a triple of pairwise distinct points in Φ and z and w are such that
pΦ(z) = pΦ(w) = u, then

bη(x, y, z,w) = 1 .

A key step in the proof of the Collar Lemma is then to relate the cross-ratio bη to the
projective cross-ratio on the photon, this is done in Proposition 3.27.

Remark 3.1. To motivate the terminology photon, recall that the Einstein universe is a
flag manifold for the group SO(2,n). It admits a conformal structure of signature
(1,n− 1), for which lightlike geodesics called photons play an important role. In this
case a θ-photon is precisely a lightlike geodesic or a photon in the classical sense.

3.1. Photon subgroups and photons. Let us consider, for θ in Θ, the connected
subgroup Hθ in G0 whose Lie algebra is generated by the sl2-triple (xθ, x−θ, hθ) (cf.
Section 1.3). Observe that dim(Hθ ∩ PΘ) = 2.

Given an element ψ of G, we then consider the group ψ(Hθ). Recall that πF

denotes the projection from G to FΘ (Section 1.6). We introduce the following
definition.

Definition 3.2. A θ-photon through x is a subset Φ = ψ(Hθ) · x of FΘ, for some ψ such
that πF (ψ) = x.

Note that in the situation of the definition, Px ∩ψ(Hθ) = ψ(PΘ ∩Hθ) is a parabolic
subgroup of ψ(Hθ).
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Remark 3.3. In the case of the Grassmaniann Grp(Rn), photons appeared in the work
of Van Limbeek and Zimmer [37] under the name “rank one lines”. Photons have
also been introduced by Galiay [18] in the Shilov boundary of a tube type Hermitian
Lie group.

The family of θ-photons through x will be denoted byΦ(x). We have:

Proposition 3.4. Let x be a point in FΘ. Then:
(1) LetΦ be a photon through x. The subgroupψ(Hθ) depends only on the photonΦ and

neither on the choice of x in Φ, nor on the isomorphism ψ such that Φ = ψ(Hθ) · x.
(2) The unipotent radical Ux of Px acts trivially on the familyΦ(x).
(3) The group Lx = Px/Ux acts transitively on the familyΦ(x) (equivalently Lθ acts

transitively).
(4) The center of Lx acts trivially on the familyΦ(x).

Remark 3.5. In view of point (1) we will denote HΦ B ψ(Hθ); this point will be made
more precise in Proposition 3.9.

Proof. We first prove (2). Let u be in Ux and let Φ be a photon through x. Choose
ψ : G0 → G such that πF (ψ) = x and Φ = ψ(Hθ) · x. In particular Ux = ψ(UΘ). The
element ψ−1(u) can be written as the product sv with s in exp(Rxθ) and v in Vθ
(Proposition 1.4). This implies that for every y = ψ(s′) · x in Φ (where s′ in Hθ), one
has

u · y = ψ(svs′) · x = ψ(ss′s′−1vs′) · x = ψ(ss′) · x,
since s′−1vs′ belongs to PΘ (Proposition 1.4). Hence u ·Φ = Φ and the second item is
proved. Similar considerations show the first and the fourth items.

Let Φ1 and Φ2 be photons through x. Let ψi (i = 1, 2) in G be such that πF (ψi) = x
and Φi = ψi(Hθ) · x. Since πF (ψ2) = πF (ψ1) = x, there is p in Px such that
ψ2 = intp ◦ψ1 (where intp : G → G | g 7→ pgp−1). One then has Φ2 = p · Φ1. This
implies the transitivity in the third item. □

We have:

Proposition 3.6. A θ-photon is diffeomorphic to P1(R). More precisely the action on Φ of
the (connected) group HΦ factors through the adjoint group associated to HΦ. This adjoint
group is isomorphic to PSL2(R), and Φ is equivariantly diffeomorphic to P1(R).

Proof. The flag variety FΘ can be identified with a G-orbit in the space of Lie subal-
gebras in g isomorphic to uΘ. In view of the next lemma, which is of independent
interest, applied to H = Hθ, its action on V = g0, and W = uΘ, it is thus enough to
note that the stabilizer of uΘ in hθ is a Borel subalgebra. □

Lemma 3.7. Let H be a connected Lie group such that h ≃ sl2(R) and B the subgroup of H
which is the normalizer of the Borel subalgebra b consisting of upper triangular matrices.

Let V be a finite dimensional real vector space, and τ : H → GL(V) be a continuous
morphism with tangent Lie algebra morphism τ∗ : h → End(V). Assume that W is a
linear subspace of V whose stabilizer in h —via the morphism τ∗— is equal to b. Then
the stabilizer of W in H is equal to B. Therefore the action of H on the orbit Ψ of W in
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the corresponding Grassmannian factors through the adjoint group, this adjoint group is
isomorphic to PSL2(R), andΨ is equivariantly diffeomorphic to P1(R).

Proof. Recall that for every positive integer n there is a unique (up to isomorphism)
irreducible sl2(R)-module of dimension n, that this module integrates into a continu-
ous homomorphism defined on SL2(R), and that every sl2(R)-module decomposes
as a sum of irreducible modules.

This implies that the representationτ∗ integrates into a continuous homomorphism
τ̂ : SL2(R) → GL(V). The images in GL(V) of the homomorphisms τ and τ̂ then
coincide. Thus it is enough to prove the conclusion for H = SL2(R).

Let d be the dimension of W. Let

E =
∧dV ,

ρ the associated representation of GL(V) on E, and q the GL(V)-equivariant (injective)
map from the Grassmannian of d-planes in V to P(E). Then an element g of GL(V)
stabilizes the subspace W if and only if of ρ(g) stabilizes q(W).

Hence we can assume that d = 1. In this case, we know from the representation
theory of SL2(R), that the sl2(R)-module generated by the b-invariant line W is
irreducible; this means that we can assume that V is irreducible. However for
irreducible modules the conclusion is well known (cf. [17, Section 11.1]). □

As a direct corollary of Proposition 3.6 we have:

Corollary 3.8. Let Φ be a photon and let x be in Φ. For any ψ in G such that πF (ψ) = x
and Φ = ψ(Hθ) · x, one has

Φ = ψ(exp(⟨x−θ⟩)) · x .

Proposition 3.9. Assume that two photons are tangent at a point x. Then they coincide.

Proof. Given any ψ such that πF (ψ) = x, we have a projection

πFψ : g0 → TxFΘ .

Observe that the restriction of πFψ to any vector subspace intersecting pΘ trivially is
injective.

Letψ andφ be in (πF )−1(x) such that the photonsΦψ = ψ(Hθ) ·x andΦφ = φ(Hθ) ·x
are tangent at x.

By item (3) of Proposition 3.4, we can assume that there is g in LΘ such that
ψ = φ ◦ intg. By Corollary 3.8

(7) Φψ = ψ
(
exp ⟨x−θ⟩

)
· x , and Φφ = φ

(
exp ⟨x−θ⟩

)
· x .

Since Φψ is tangent at x to Φφ, by construction we have

πFφ (x−θ) = πFψ (x−θ) .

It follows that
πFφ (x−θ) = πFφ (Ad(g)x−θ) .
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However, both x−θ and Ad(g)x−θ lie in the LΘ-invariant subspace uopp
Θ

, which
intersects pΘ trivially and thus πFψ is injective in restriction to uopp

Θ
. It follows that

Ad(g)x−θ = x−θ .

Hence

ψ
(
exp ⟨x−θ⟩

)
= φ ◦ intg

(
exp ⟨x−θ⟩

)
= φ

(
exp

(
⟨Ad(g)x−θ⟩

))
= φ

(
exp ⟨x−θ⟩

)
.

Thus by Equation (7), Φψ = Φφ and the two photons coincide. □

Examples 3.10. Let us illustrate what the photons are for some of the groups admitting
a positive structure (cf. Section 4).

(1) For the symplectic group Sp(2n,R), the generalized flag variety isFΘ = Lag(R2n)
the space of Lagrangians. This is also the Shilov boundary of this Hermitian
group. In this case Θ consists of a single element θ.

Let x be in FΘ and fix a symplectic basis {e1, . . . , en, f1, . . . , fn} such that x is
the Lagrangian ⟨ f1, . . . , fn⟩. Then TxFΘ and uΘ both identify with the space
of symmetric n × n matrices, and, under this identification, gθ corresponds to
the matrices whose only non-zero entry is in position (1, 1). An example of a
photon Φ through x consists of the set of all Lagrangians L that contains the
subspace V B ⟨ f2, . . . fn⟩ and are contained in W B ⟨e1, f1, . . . , fn⟩.

The isomorphism between the photon Φ and the projective line P(W/V) is
given by L 7→ L/V.

(2) For the orthogonal group SO(p + 1, p + k), with p ⩾ 1, k ⩾ 2, the flag variety
FΘ = F1,...,p is the space of partial isotropic flags consisting of p nested isotropic
subspaces of dimension 1 up to p. The set Θ is {α1, . . . , αp}, with the standard
numbering of the simple roots, in the Dynkin diagram αi is connected to αi+1 for
i < p. We pick a basis {e1, . . . , e2p+k+1}, such that the orthogonal form is given by

p+1∑
i=1

xix2p+k+2−i −

k−1∑
i=1

x2
p+1+i ,

and choose x to be the flag whose j-th subspace is given by x( j) = ⟨e1, . . . , e j⟩. To
ease further notation we also set x(p+1) B ⟨e1, . . . , ep+1⟩ and x(0) B {0}. Then a
photon associated to the root αi for i ⩽ p − 1 is the set

Φi = {F ∈ FΘ |F j = x( j) for all j = 1, . . . , p, j , i}.

A photon associated to the root αp is the set

Φp = {F ∈ FΘ |F j = x( j) for all j , p and F(p)
⊂ x(p+1)

}.

In all cases, the isomorphism with P1(R) = P(x(i+1)/x(i−1)) is now given by
F 7→ F(i)/x(i−1).
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3.2. The set of θ-light-like vectors. Let Zθ be the LΘ-orbit of x−θ in u−θ.

Lemma 3.11. The projectivization P(Zθ) is a closed subset in P(u−θ).

Proof. The group LΘ is the almost product of SΘ, exp(bΘ) and a compact factor MΘ.
Since the action of LΘ on u−θ is irreducible, the subgroup exp(bΘ) acts by homotheties
on u−θ. This implies that P(Zθ) is the MΘ × SΘ-orbit of the element t−θ in P(u−θ)
represented by x−θ. Since g−θ is the highest weight space, the stabilizer of t−θ in SΘ
is a parabolic subgroup of SΘ and hence the SΘ-orbit of t−θ is compact. Since MΘ is
compact, the result follows. □

We first prove:

Proposition 3.12. If πF (φ) = πF (ψ) = x then πFφ (Zθ) = πFψ (Zθ).

Proof. Consider the isomorphisms π̄Fφ , π̄Fψ from g0/pΘ to TxFΘ obtained by modding

out the common kernel of πFφ , πFψ . It is enough to prove that π̄Fφ (Z′θ) = π̄Fψ (Z′θ)
where Z′θ denote the canonical image of Zθ in g0/pΘ.

Since πF (φ) = πF (ψ), it follows that φ = ψ ◦ intg for some g in PΘ. Thus
πFφ = π

F

ψ ◦Ad(g). Since UΘ acts trivially on (u−θ ⊕ pΘ)/pΘ, it also acts trivially on

Z′θ; hence it follows that πFφ (Zθ) = πFψ ◦Ad(h)(Zθ) for the element h in LΘ equal to g
modulo UΘ. Since Zθ is LΘ-invariant, the result follows. □

Proposition 3.12 allows us to set:

Definition 3.13. A θ-light-like vector in TxFΘ is a vector in

Zθx B πFφ (Zθ) ,

for one (equivalently every) isomorphism φ in G such that πF (φ) = x.

We now have:

Proposition 3.14. There exists a unique θ-photon through any θ-light like vector.

Proof. Proposition 3.9 proves uniqueness. If u belongs to Zθx , then v = ιFψ (u) belongs

to Zθ for any ψ such that πF (ψ) = x. By construction v = Ad(g) · x−θ for g in LΘ.
Hence u = πFφ (x−θ) for φ = ψ ◦ intg. Then u is tangent to the photon φ(Hθ) · x. □

The set Φ(x) of photons through x identifies by the above discussion with Lx/
stabLx(Φ) ≃ P(Zθ) for some Φ in Φ(x). Thus Φ(x) is a compact manifold (see
Lemma 3.11).

3.3. Photon projection. Given a θ-photon Φ, we may now define the photon projec-
tion pΦ. Let

OΦ B {y ∈ F
opp
Θ
| there exists x in Φ such that x ⋔ y} ,

and observe that OΦ is an open set. We have:

Proposition 3.15. Let y be in OΦ. Then:
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(1) There exists a unique z in Φ such that z is not transverse to y.
(2) The group HΦ ∩ Uy is a 1-parameter unipotent subgroup.
(3) pΦ(y) is the unique fixed point of HΦ ∩ Uy on Φ.

Proof. Since y belongs to OΦ, there exists w in Φ such that w ⋔ y. It follows that we
can find ψ in G (i.e. ψ is an isomorphism from G0 to G) such that ψ(PΘ) = Pw and
ψ(Uopp

Θ
) = Uy (i.e. such that πL(ψ) = (w, y)). We can (and will) further assume that

the photon subgroup HΦ isψ(Hθ) (cf. Proposition 3.4.(3)). It follows that HΦ∩Uy is the
unipotent group Vy = ψ(exp(Rx−θ)) (thus item (2) holds). Since by Proposition 3.6
a photon is identified with P1(R) as an SL2(R)-space, it follows that the orbit of w
under Vy is Φ ∖ {z} for some z in Φ. Observe now that Vy · w is precisely Φ ∩ Oy,
where

Oy B Uy · w = {x ∈ FΘ | x ⋔ y} .
This implies that z is not transverse to y and concludes item (1). Since furthermore
the action of Vy on Φ ∖ {z} is simply transitive, we get item (3). □

We now define:

Definition 3.16. Given a photon Φ, the photon projection is the map pΦ from OΦ to Φ,
which associates to y, the point pΦ(y) which is the unique point in Φ not transverse
to y.

From the definition, it follows that the graph of pΦ is algebraic, hence pΦ is
continuous.

Remark 3.17. In the case of the Shilov boundary of an tube type Hermitian Lie group,
the photon projection is also defined in [18, Section 6.2.2].

We can rephrase point (1) of Proposition 3.15 by saying that transversality between
an element of Φ and an element of OΦ can be asserted using the photon projection:

Corollary 3.18. Let y be in OΦ and let x be in Φ. Then y is transverse to x if and only if
pΦ(y) is not equal to x.

The following result is also a direct consequence of the definition:

Proposition 3.19. The photon projection pΦ is equivariant under HΦ.

As a corollary we give another characterization of the photon projection.

Corollary 3.20. Let x be a point in a photon Φ, y a point in OΦ, then pΦ(y) = x if and only
if we have the following inclusion:

HΦ ∩ Ux ⊂ Uy .

Proof. Suppose that pΦ(y) = x. By Proposition 3.15.(3), the intersection HΦ ∩ Uy is
contained in Px; this intersection is therefore the unipotent subgroup of HΦ fixing x.
As this unipotent subgroup of HΦ is contained in Ux we also get the inclusion
HΦ ∩ Ux ⊂ Uy.

Conversely assume that HΦ ∩ Ux ⊂ Uy. Then HΦ ∩ Ux and HΦ ∩ Uy are two
unipotent subgroups of HΦ contained one in the other. This forces the equality
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HΦ ∩ Ux = HΦ ∩ Uy and thus the inclusion HΦ ∩ Uy ⊂ Px. By Proposition 3.15.(3) we
conclude that pΦ(y) = x. □

In the case when Θ is invariant by the opposition involution, points in a given
fiber of pΦ are not transverse:

Corollary 3.21. Suppose thatΘ is invariant by the opposition involution so that we identify
F

opp
Θ

with FΘ and transversality makes sense between elements of FΘ. Let x be a point in a
photon Φ. If y and z in OΦ, are transverse, then pΦ(y) , pΦ(z).

Proof. If pΦ(y) = pΦ(z), then Uy ∩ Uz is not reduced to zero by Corollary 3.20, hence
y and z are not transverse. □

Examples 3.22. Let us illustrate the photon projections in the Examples 3.10 we
discussed before, we use the notation (and the photons) introduced there.
(1) For the symplectic group Sp(2n,R) with x = ⟨ f1, . . . , fn⟩ and Φ the photon given

by the orbit of Hθ (here the stabilizer of x in Hθ is the standard opposite Borel
subgroup). Then

OΦ = {L ∈ Lag(R2n) | dim(L ∩ ⟨e1, f1, . . . , fn⟩) = 1} ,

and the projection sends L in OΦ to the Lagrangian (L∩⟨e1, f1, . . . , fn⟩)⊕⟨ f2, . . . , fn⟩.
(2) For the orthogonal group SO(p + 1, p + k), and x the flag whose j-th subspace

is given by x( j) = ⟨e1, . . . , e j⟩ ( j = 1, . . . , p). For 1 ⩽ i ⩽ p, let Φi be the photon
through x associated to αi in Θ, then we have

OΦi =
{
F ∈ F1,...,p

∣∣∣ F( j)⊥
∩ x( j) = {0} for all j , i, and dim(F(i)⊥

∩ x(i+1)) = 1
}
,

(again with the notation x(p+1) = ⟨e1, . . . , ep+1⟩). The projection sends F to the flag
whose j-th subspace is x( j) for j , i and the i-th subspace is x(i−1)

⊕ (F(i)⊥
∩ x(i+1)).

3.4. Photon projection and photon cross-ratio. Let η be a Θ-compatible dominant
form. Let Φ be a θ-photon. In this section we will prove the following:

Proposition 3.23. Let z and y be in OΦ such that pΦ(y) = pΦ(z). Then for all x and w in
Φ which are pairwise transverse to z and y (i.e distinct from pΦ(y) = pΦ(z)), we have

bη(x,w, z, y) = 1 .

Let us first show the following:

Lemma 3.24 (Infinitesimal lemma). Let u be a tangent vector to Φ at a point z. Let
c : [−1, 1]→ F opp

Θ
, be a curve differentiable at 0, with y = c(0) transverse to z, such that

pΦ(c(t)) is constant in t. Let v =
q

c(0). Then〈
Ω ((u, 0), (0, v))

∣∣∣η〉 = 0 .

Proof. We can assume that u is non-zero.
Let us write c(t) = c0(t) · y with c0(t) in Uz (this is possible in a neighborhood

of 0). Let x = pΦ(c(t)), we have that x , y. Since HΦ ∩ Ux acts simply transitively on
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Φ ∖ {x}, there is w in the Lie algebra of HΦ ∩ Ux such that u = d
ds |s=0 exp(sw) · z. By

Corollary 3.20, we have, for all real s,

exp(sw) ∈ HΦ ∩ Ux ⊂ Uc(t) = c0(t)Uyc0(t)−1 .

Thus for all real number s and all t close enough to 0

c0(t)−1 exp(sw)c0(t)−1
∈ Uy .

After taking the derivatives at s = 0 and t = 0, it follows that

[w,
q

c0(0)] ∈ uy .

Let φ in G such that πL(φ) = (z, y), hence φ−1
∗ (

q
c0(0)) belongs to uopp

Θ
, φ−1
∗ (w) belongs

to uΘ and the previous equation means that φ−1
∗ ([w,

q
c0(0)]) belongs to uΘ. By the

construction of Ω, one has〈
Ω ((u, 0), (0, v))

∣∣∣η〉 = 〈
p(φ−1

∗ ([w,
q

c0(0)]))
∣∣∣η〉 = 0

since p(φ−1
∗ [(w,

q
c0(0)])) = 0. This concludes the proof. □

We need another lemma:

Lemma 3.25 (Fiber is connected). Let x be a point in Φ, then the set p−1
Φ

(x) ⊂ OΦ is a
connected submanifold.

Proof. Since pΦ is smooth (as it is algebraic) and by HΦ-equivariance (Proposition
3.19), we see that pΦ is a submersion so that W B p−1

Φ
(x) is a submanifold.

Let z be inΦ∖ {x}. Recall that by definition of the photon projection, W is included
in the set Oz of points transverse to z. Let u be the unipotent subgroup HΦ ∩ Uz. We
then have a continuous map

ξ : Oz → u ,
characterized uniquely by pΦ(w) = ξ(w) · x. Let us consider the map from u ×W to
Oz given by

ψ(u,w) = u · w.
The map ψ is a diffeomorphism: its inverse is given by

w 7→ (ξ(w), ξ(w)−1w) ,

(this follows from the u-equivariance of pΦ). Thus Oz is diffeomorphic to u ×W,
hence W is connected since Oz is. □

Proof of Proposition 3.23. Let p = pΦ(y) = pΦ(z).
Let W = p−1

Φ
(p). By Lemma 3.25, we can find a continuous, piecewise C1 curve

c1(t) joining y to z. Any point in W is transverse to any point in the interval in Φ
joining x to w and not containing p; let c0 : [0, 1]→ FΘ be a C1 parameterization of
this interval.

Then by Proposition 2.7 applied to f : [0, 1]2
→ LΘ | (s, t) 7→ (c0(s), c1(t)) and the

Infinitesimal Lemma 3.24, the equality

bη(x,w, z, y) = 1 ,

holds. □
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Using the cocycle identity we obtain as a corollary that

(8) bη(x,w, z0, y0) = bη(x,w, z′0, y
′

0) ,

if pΦ(z0) = pΦ(z′0) and pΦ(y0) = pΦ(y′0)
Therefore Proposition 3.23 allows us to define the photon cross-ratio associated

to the Θ-compatible dominant form η:

Definition 3.26. Let x,w, z, y be points in Φ satisfying the transversality condition
x , y and w , z. The photon cross-ratio on Φ associated to η is

bη
Φ

(x,w, z, y) B bη(x,w, z0, y0) ,

where z0, y0 are any points such that pΦ(z0) = z, pΦ(y0) = y.

3.5. Photon cross-ratio and projective cross-ratio. The photon cross-ratio is a
cross-ratio on a projective line invariant under the projective group, therefore on
positive quadruples it is a power of the projective cross-ratio. More generally for all
quadruples, we have the following

Proposition 3.27. Let η be a Θ-compatible dominant weight and θ in Θ, then for any
θ-photon Φ

(9) bη
Φ

(x, y, z,w) = [x, y, z,w]⟨hθ|η⟩ ,

where [a, b, c, d] denotes the projective cross-ratio on Φ � P1(R). In particular if ωθ is the
fundamental weight associated to θ,

(10) bωθ
Φ

(x, y, z,w) = [x, y, z,w] .

Proof. Let ψ be in G such that HΦ = ψ(Hθ). We can as well assume that Φ = HΦ · f0
where f0 is the attracting fixed point in FΘ for the action of h = Ψ(exp(a)) for some
(and equivalently any) a in the open Weyl chamber. Let also f∞ be the repelling
fixed point in F opp

Θ
for h. The HΦ-orbitΦ∨ = HΦ · f∞ is also equivariantly isomorphic

to the projective line P1(R) ≃ Hθ/Bθ (where Bθ is the standard Borel subgroup in
Hθ). Precisely, the isomorphisms are given by

Hθ/Bθ −→ Φ Hθ/Bθ −→ Φ∨

g · Bθ 7−→ Ψ(g) · f0 g · Bθ 7−→ Ψ(g
q

sθ) · f∞,

where
q

sθ is an element of Hθ representing the non-trivial element in the Weyl group
of Hθ.

These maps allow to define an HΦ-equivariant identification z 7→ z∨ from Φ to Φ∨.
Moreover by equivariance, this identification has the following properties:

• The point z∨ is not transverse to z. Indeed from the Schubert’s cells decom-
position,Ψ(

q
sθ) · f∞ is not transverse to f0.

• for all w in Φ distinct from z, the elements w and z∨ are transverse, indeed f0
and f∞ are transverse.

This implies that pΦ(z∨) = z and thus we can use this map z 7→ z∨ to calculate the
photon cross-ratio. For x, y, z, and t in Φ,

bη
Φ

(x, y, z, t) = bη(x, y, z∨, t∨) .
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Let now E be the real vector space underlying an irreducible proximal representation
τ : G→ GL(E) of highest weight η. We choose a basis (ei)d

i=1 of weight vectors such
that e1 generates the highest weight space with respect to the Cartan subspace ψ∗(a)
of G. The equivariant maps Ξ : FΘ → P(E) and Ξ∗ : F opp

Θ
→ P(E∗) are then given

by Ξ(g · f0) = τ(g) · [e1] and Ξ∗(g · f∞) = τ∗(g) · [e∗1] where τ∗ : G → GL(E∗) is the
contragredient representation g 7→ Tτ(g)−1. Then

bη(a, b, c, d) = bE(Ξ(a),Ξ(b),Ξ∗(c),Ξ∗(d)) ,

where bE([v], [w], [φ], [ψ]) = ⟨v|φ⟩⟨w|ψ⟩
⟨v|ψ⟩⟨w|φ⟩ . We now prove Equality (9). By continuity it is

sufficient to treat the case when x , y, and by Hθ-equivariance we may assume that
x = ψ(

q
sθ) f0; in other words, x is the repelling fixed point in Φ for the Weyl chamber

of Hθ, and

y = f0 , z = ψ(exp(λxθ)
q

sθ) · f0 , and t = ψ(exp(µxθ)
q

sθ) · f0 .

Thus the projective cross-ratio [x, y, z, t] is equal to [0,∞, λ, µ] = λ/µ. Furthermore
we have

bη
Φ

(x, y, z, t) = bη(x, y, z∨, t∨)

= bη(ψ(
q

sθ) f0, f0, ψ(exp(λxθ)) f∞, ψ(exp(µxθ)) f∞)

= bE(τ ◦ ψ(
q

sθ)[e1], [e1], τ∗ ◦ ψ(exp(λxθ))[e∗1], τ∗ ◦ ψ(exp(µxθ))[e∗1])

=
⟨τ ◦ ψ(

q
sθ)e1 | τ∗ ◦ ψ(exp(λxθ))e∗1⟩ ⟨e1 | τ∗ ◦ ψ(exp(µxθ))e∗1⟩

⟨τ ◦ ψ(
q

sθ)e1 | τ∗ ◦ ψ(exp(µxθ))e∗1⟩ ⟨e1 | τ∗ ◦ ψ(exp(λxθ))e∗1⟩

=
⟨τ ◦ ψ(

q
sθ)e1 | τ∗ ◦ ψ(exp(λxθ))e∗1⟩

⟨τ ◦ ψ(
q

sθ)e1 | τ∗ ◦ ψ(exp(µxθ))e∗1⟩

since ⟨e1 | τ∗ ◦ ψ(exp(µxθ))e∗1⟩ = ⟨τ ◦ ψ(exp(µxθ))e1 | e∗1⟩ = ⟨e1 | e∗1⟩ = 1 and similarly
⟨e1 | τ∗ ◦ ψ(exp(λxθ))e∗1⟩ = 1. The proposition will be proven if we can show that
there is a non-zero number c such that, for all λ in R,

(11) ⟨τ ◦ ψ(
q

sθ)e1 | τ
∗
◦ ψ(exp(λxθ))e∗1⟩ = cλ⟨η|hθ⟩ .

For this, note first that

⟨τ ◦ ψ(
q

sθ)e1 | τ
∗
◦ ψ(exp(λxθ))e∗1⟩ = ⟨τ ◦ ψ(exp(λxθ))τ ◦ ψ(

q
sθ)e1 | e∗1⟩ .

Furthermore, denoting τ∗ : g→ End(E) the Lie algebra homomorphism associated
to τ and ψ∗ : g0 → g the isomorphism associated to ψ, classical calculations in
sl2-modules give that τ ◦ ψ(

q
sθ)e1 is a non-zero multiple of (τ∗ ◦ ψ∗(x−θ))⟨hθ|η⟩e1 and

that

⟨(τ∗ ◦ ψ∗(xθ))k(τ∗ ◦ ψ∗(x−θ))⟨hθ|η⟩e1 | e∗1⟩ = 0 if k , ⟨hθ | η⟩ and

⟨(τ∗ ◦ ψ∗(xθ))⟨hθ|η⟩(τ∗ ◦ ψ∗(x−θ))⟨hθ|η⟩e1 | e∗1⟩ , 0.

Using the equality τ ◦ ψ(exp(λxθ)) =
∑

k
1
k!λ

k(τ∗ ◦ ψ∗(xθ))k gives the existence of c
such that Equation (11) holds, hence the wanted conclusion. □
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Remark 3.28. Galiay obtained Proposition 3.27 for the photons in the Shilov boundary
of tube type Hermitian Lie groups, see [18, Lemma 6.11].

4. Positivity

Now we will restrict to semisimple Lie groups G0 that admit a positive structure
relative to a subset Θ of ∆ as defined in [21, Definition 3.1]. By definition, this means
that for every θ in Θ there exists a convex acute open cone cθ inside uθ, which is
invariant by L◦

Θ
. (Note that in [21], the symbol cθ stands for the closed invariant cone,

but, since the closed cone does not play a big role in the present work, we simplify
notation and a denote here by cθ the open cone.)

As the action of L◦
Θ

on uθ is irreducible, there exist exactly two such invariant cones
(namely cθ and −cθ). We distinguish between the two invariant cones by requesting
that the element xθ (of the sl2-triple associated to θ, cf. Section 1.3) belongs to the
closure of cθ (cf. [21, Theorem 3.13]). Similarly the cone c−θ in u−θ is the invariant
cone whose closure contains x−θ. Equivalently one can set c−θ = −σ(cθ) where σ is
the Cartan involution.

Remark 4.1. There are exactly four families of simple Lie groups admitting a positive
structure with respect to some subset Θ of ∆ (see [21, Theorem 1.1]). Up to isogeny,
these correspond to the following cases:

(1) G0 is a split real form, and Θ = ∆;
(2) G0 is Hermitian of tube type and of real rank r and Θ = {αr}, where αr is the

long simple restricted root;
(3) G0 is SO(p + 1, p + k), p > 1, k > 1 and Θ = {α1, . . . , αp}, where α1, . . . , αp are

the long simple restricted roots;
(4) G0 is the real form of F4, E6, E7, or of E8 whose system of restricted roots is

of type F4, and Θ = {α1, α2}, where α1, α2 are the long simple restricted roots.
In general a semisimple Lie group admits a positive structure relative toΘ if it is the
almost product of simple Lie groups Gi, i = 1, . . . ,n, where each Gi admits a positive
structure relative to Θi and Θ = Θ1 ∪ · · · ∪ Θn. Here the parabolic subgroup PΘ
is the almost direct product of the parabolic subgroups in the factors Gi and the
flag manifold FΘ is the product of the flag manifolds corresponding to the different
factors.

The fact that G0 admits a positive structure relative to Θ implies in particular that
(1) the parabolic subgroup PΘ is conjugate to its opposite,
(2) we have dim gα = 1 for all α in Θ.

Furthermore the positive structure gives rise to an open and sharp semigroup NΘ
in UΘ invariant under L◦

Θ
. The properties of NΘ will be reflected in the properties

of the diamonds that we introduce next. We refer to [21] for a precise description
of NΘ and its algebraic properties.

4.1. Diamonds. Let x and y be transverse points in FΘ (recall that F opp
Θ
≃ FΘ), and

consider an element ψ in G such that πL(ψ) = (x, y). Note that ψ depends only
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on (x, y) up to precomposition by the conjugation by an element in LΘ. Then by [20,
Proposition 2.6] and [21, Theorem 8.1] we have:

Proposition 4.2. Given (x, y) and ψ as above, the set ψ(NΘ) · x is a connected component
of the set

{z ∈ FΘ | z ⋔ x and z ⋔ y} .

Such a connected component D is called a diamond with extremities x and y. A
diamond with extremities x and y will be denoted D(x, y); observe the slight abuse
of notation since D(x, y) does not only depend on x and y: there are 2♯Θ diamonds
with the same extremities.

The map πFψ (see Section 1.6) gives an identification of uopp
Θ

with TxF and the

map πF
opp

ψ gives an identification of uΘ with TyF . The tangent cone at x of the

closure of a diamond D = ψ(NΘ) · x is exactly the image by πFψ of the closed cone∑
θ∈Θ c̄−θ inside uopp

Θ
(cf. [21, Section 8.5]):

• The tangent vectors belonging to this tangent cone will be called non-negative
(with respect to D);
• The tangent vectors in the (relative) interior of the tangent cone, i.e. those

belonging to πFψ
(∑

θ∈Θ c−θ
)
, are called positive.

Equivalently, a vector v in TxFΘ is positive (respectively non-negative) with respect
to D if ιFψ (v) belongs to

∑
θ∈Θ c−θ (respectively to

∑
θ∈Θ c̄−θ).

Note that the shape of a diamond near its extremities should really be thought
of as a “cusp”; indeed the diamond is open in FΘ whereas the dimension of its
tangent cone at x is of positive codimension in TxFΘ as soon as the set Θ has at least
2 elements.

The tangent cone at y of D is the image by πF
opp

ψ of
∑
θ∈Θ c̄θ.

The subset ψ(N−1
Θ

) · x is also a diamond with extremities x and y and is called the
diamond opposite to D and will be denoted by D∨. Its tangent cone at x is the image
by πFψ of

∑
θ∈Θ −c̄−θ whereas its tangent cone at y is the image by πF

opp

ψ of
∑
θ∈Θ −c̄θ.

This opposite diamond D∨ depends only on D and not on the isomorphism ψ.

4.2. Positive tuples. When z belongs to a diamond D with extremities x and y,
the triple (x, z, y) of F 3

Θ
will be called positive. Positive triples form a G-invariant

and S3-invariant subset of F 3
Θ

. When z belongs to D and w to D∨, the quadruple
(x, z, y,w) is called positive. Positive quadruples form a G-invariant subset of F 4

Θ
that

is invariant by the cyclic permutation (x, z, y,w) 7→ (z, y,w, x) as well as the double
transposition (x, z, y,w) 7→ (z, x,w, y).

Finally, for any k greater than 4, positive k-tuples are characterized in [20, Sec-
tion 2.4] as those (x1, x2, . . . , xk) in F k

Θ
such that (xi, x j, xℓ, xm) is a positive quadruple

for all 1 ⩽ i < j < ℓ < m ⩽ k.
Let E be a set with a cyclic ordering. A map f : E→ FΘ will be called positive if,

for every k ⩾ 3 and for every cyclically ordered k-tuple (t1, . . . , tk) of Ek, the k-tuple
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( f (t1), . . . , f (tk)) of F k
Θ

is positive. In view of the definition of positive k-tuples, it is
enough to check this property with k = 3 or 4 and, in the case when ♯E > 3, only
with k = 4.

Examples of positive maps are positive circles (as well as their restrictions to
intervals). These arise as orbits in FΘ for certain 3-dimensional subgroups. We refer
to [20, Section 2.5] or to [21, Section 7] for more details. We will need the following
statement that can be easily obtained using positive circles.

Lemma 4.3. Let (x, y) be in L and let D be a diamond with extremities x and y. There
exists then a smooth positive arc c : [0, 1]→ FΘ such that c(0) = x, c(1) = y, and c(t) is in
D for all t in (0, 1).

Finally:

Definition 4.4. We say that a quadruple of points (X,Y, x, y) is semi-positive if X and
Y are both transverse to x and y, and moreover (X,Y, x, y) is the limit of a sequence
of positive quadruples.

Observe that if (X,Y, x, y) is semi-positive, then (Y,X, y, x) is semi-positive as well.
We prove now that the photon projection of a positive quadruple is a cyclically

ordered quadruple (on the projective line) and that photon projections give rise to
semi-positive quadruples. Note here that we can (and will) identifyF opp

Θ
withFΘ so

that the photon projection pΦ is indeed defined on the open subset of FΘ of elements
that are transverse to some point in Φ. With this in mind:

Proposition 4.5. Assume that (X,Y, x, y) is a positive four-tuple in FΘ. Let Φ be a photon
through X, then

(1) the configuration (X, pΦ(Y), pΦ(x), pΦ(y)) in the projective line Φ is positive,
(2) the configurations (pΦ(Y),Y, x, y) and (Y, pΦ(Y), y, x) in FΘ are semi-positive.

Proof. Since Y, x, and y are transverse to X in Φ, we indeed have that Y, x, and y
belong to OΦ so that we can consider the photon projections pΦ(Y), pΦ(x), and pΦ(y).

Corollary 3.21 gives that X, pΦ(Y), pΦ(x), pΦ(y) are pairwise distinct. Equally if C is
a positive circle though X and Y, the restriction of pΦ to C is an injective continuous
map to the photon Φ and thus sends positive configurations in FΘ to positive
configurations in Φ (with respect to the positive structure on the projective line Φ).
Given any positive configuration (X,Y, x0, y0), we can find a deformation (X,Y, xt, yt)
through positive configurations so that (X,Y, x1, y1) is on a positive circle [20, Lemma
3.7]. Hence for any positive (X,Y, x, y), the configuration (X, pΦ(Y), pΦ(x), pΦ(y)) is
positive with respect to Φ. This proves the first item.

In particular, pΦ(x) and pΦ(y) both lie in the same connected component of
Φ ∖ {X, pΦ(Y)}. Let I be the other component of Φ ∖ {X, pΦ(Y)}, we now observe that
for all Z in I, Z is distinct from pΦ(x), from pΦ(y), and from pΦ(Y), hence transverse (by
the definition of pΦ) to x, to y, and to Y. It follows by continuity and transversality
that (Z,Y, x, y) is positive. Letting Z tend to pΦ(Y), we get that (pΦ(Y),Y, x, y) is
semi-positive. Since double transpositions preserve positivity (Y, pΦ(Y), y, x) is also
semi-positive. □
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As an important consequence of the previous proposition and of Proposition 3.27,
we have that the photon cross-ratio of a positive quadruple is positive.

Proposition 4.6. Let η be a Θ-compatible dominant non-zero weight. Given a photon
Φ through a point x, as well as y, z and w in FΘ such that (x, y, z,w) is positive, then
bη(pΦ(w), x, y, z) > 1.

Proof. Indeed

bη(pΦ(w), x, y, z) = bη
Φ

(pΦ(w), x, pΦ(y), pΘ(z)) = [pΦ(w), x, pΦ(y), pΘ(z)]⟨hθ|η⟩ > 1

since the quadruple (pΦ(w), x, pΦ(y), pΘ(z)) in Φ ≃ P1(R) is a positive configuration
on the projective line so that its cross-ratio [pΦ(w), x, pΦ(y), pΘ(z)] is > 1. □

4.3. Positivity of bracket. We prove here Theorem 4.7 which is an important step
towards positivity of the cross-ratio.

Recall that we denote by p : g0 → bΘ the orthogonal projection onto bΘ (its kernel
is aΘ ⊕ zk(a) ⊕

⊕
α∈Σ gα). Our goal is to prove the following result:

Theorem 4.7 (Positivity of bracket). Let η be a Θ-compatible dominant form. Let θ be
an element of Θ. Let u and v be respectively elements of the open cones cθ and c−θ, then

(12) ⟨p([u, v]) | η⟩ ⩾ 0 ,

If furthermore, ⟨η, θ⟩ > 0, then

(13) ⟨p([u, v]) | η⟩ > 0 .

We first begin by introducing and discussing boundary roots.

4.3.1. Boundary roots. In Section 1.5 we introduced the subsets Σθ, for any θ in Σ+
Θ

.
Boundary roots are extremal elements of Σθ:

Definition 4.8. Let θ be in Θ. A boundary root with respect to θ is a root β in Σθ such
that there exists u in a for which

β(u) > α(u) ,

for every α in Σθ ∖ {β}.

We denote by Bθ the set of boundary roots with respect to θ.
As, for allα, β inΣθ, the difference β−α is zero in restriction to bΘ and as a = bΘ⊕aΘ

(cf. Proposition 1.1), we can always assume that the element u in the definition
belongs to aΘ, the Cartan subspace of SΘ.

We first have:

Proposition 4.9. Every root θ in Θ is a boundary root with respect to θ.

Proof. Let v be in the opposite of the standard Weyl chamber. One has α(v) < 0 for
every positive root α. For all α in Σθ ∖ {θ}, α − θ is a sum of simple roots; hence
α(v) − θ(v) < 0. Thus θ(v) > α(v), which is what we wanted to prove. □
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As Σθ is invariant by the Weyl group WSΘ , the set of boundary roots is invariant
by the Weyl group WSΘ .

When Σθ = {θ}, the only boundary root is θ. Thus, the definition of boundary
roots is meaningful when Σθ , {θ}, namely whenΘ , ∆ and θ is a “special root” (i.e.
connected to ∆∖Θ in the Dynkin diagram, cf. [21, Section 3.4]). In this case the factor
S of SΘ that acts non-trivially on uθ is of type Ad for some d and, if ε0−ε1, . . . , εd−1−εd
are the simple roots in type Ad where the εi are weights summing to zero (i.e. the εi
are the weights of the standard representation V of S), the weights of S in uθ are
2εi (i = 0, . . . , d, and θ = 2ε0) and εi + ε j (0 ⩽ i < j ⩽ d) (those are the weights of S
acting on Sym2V; cf. [21, Section 3.5]). With this, we can now prove the following:

Proposition 4.10. Let θ be in Θ. The set Bθ of boundary roots with respect to θ is the
WSΘ-orbit of θ. In particular, we have dim gβ = 1 for all β in Bθ.

Proof. For the proof we can restrict without loss of generality to the case when g0 is
simple. The case when Θ = ∆ corresponds to the case when g0 is split over R and
one has Σθ = {θ} and dim gθ = 1 so that the results follow immediately.

Otherwise the subsets Θ and ∆ ∖Θ of the set of simple roots are both non-empty
and connected and there is a unique root αΘ in Θ that is connected to ∆ ∖Θ. When
θ ∈ Θ∖{αΘ}, we have, similarly to the split case, Σθ = {θ} and the result is immediate.

When θ = αΘ, we will use the notation introduced before the proposition: the
weights in uθ are 2εi (i = 0, . . . , d) and εi + ε j (0 ⩽ i < j ⩽ d). The Weyl group acts
here as the permutation group Sd+1 and has therefore two orbits on the weights: the
orbit of 2ε0 and the orbit of ε0 + ε1. To conclude we examine which of these orbits
are contained in Bθ.

Choosing a vector u in the open Weyl chamber of SΘ (so that (εi − εi+1)(u) > 0 for
all i = 0, . . . , d − 1) shows that 2ε0 is a boundary root (cf. also Proposition 4.9).

The weight ε0 + ε1 does not correspond to a boundary root since, for an element u
in a, the inequalities (ε0 + ε1)(u) > 2ε0(u) and (ε0 + ε1)(u) > 2ε1(u) cannot be
simultaneously satisfied. □

Recall that, for every root β, we fixed an sl2-triple (xβ, x−β, hβ) with x±β in g±β,
in view of Point (2) of the previous proposition, we can and will assume that the
element xβ belongs to the closure of cθ. With these choices, the following proposition
holds:

Proposition 4.11. Let θ be in Θ. Let β be a boundary root with respect to θ and let tβ be in
P(uθ) the element represented by xβ.

(1) The group L◦
Θ

acts transitively on cθ.
(2) The sum

∑
β∈Bθ xβ belongs to cθ.

(3) The convex set P(cθ) is contained in

Oθ = P
{∑
α∈Σθ

uα | ∀α ∈ Σθ, uα ∈ gα and ∀β ∈ Bθ, uβ ∈ R>0xβ
}
.

Proof. Point 1 is [21, Proposition 5.1]. Point 2 is [21, Theorem 5.12].
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Using that the action of L◦
Θ

is transitive on cθ, that the stabilizers in L◦
Θ

of points
in cθ contain a maximal compact subgroup (cf. [21, Proposition 5.1]) and using the
Iwasawa decomposition in L◦

Θ
, the proof of the last item follows from the statement

and the proof of [2, Proposition 4.7] for β = θ; by equivariance under WSΘ the
property holds for every boundary root β. □

The following proposition (notably item (2)) explains the terminology boundary
root.

Proposition 4.12. Let θ be in Θ. Let β be a boundary root with respect to θ and let tβ be in
P(uθ) the element represented by the line gβ.

(1) The point tβ is an attracting point for the action of an hyperbolic element in the
Cartan subgroup A of SΘ on P(uθ).

(2) The point tβ belongs to the boundary of the set P(cθ).

Proof. By equivariance under the Weyl group WSΘ , it is enough to prove the state-
ments for β = θ.

The tangent space at tθ to P(uθ) identifies A-equivariantly with⊕
α∈Σθ∖θ

g∗θ ⊗ gα .

Let u in aΘ be as in the definition of boundary root. The eigenvalue of Ttθ exp(u) on
the factor g∗θ ⊗ gα of the above decomposition is exp(α(u) − θ(u)). These quantities
being strictly smaller than 1, this implies the first item.

The basin of attraction of u on P(uθ) is open and dense and thus intersects P(cθ).
This implies that tθ belongs to the closure of P(cθ); by point (3) of Propostion 4.11, it
does not belong to P(cθ), proving Point (2). □

4.3.2. Proof of Theorem 4.7. Let η be a Θ-compatible dominant form and consider the
map

(14)
q : uθ × u−θ −→ R

(u, v) 7−→ ⟨p([u, v]) | η⟩ .

Observe that q is Ad(LΘ)-invariant. Thanks to Proposition 4.11 it is thus enough
to check the property for u =

∑
β∈Bθ xβ (where Bθ is the set of boundary roots) and

any v in c−θ that is

v =
∑
α∈Σθ

vα ,

with vα in g−α for every α in Σθ, and vβ = µβx−β with µβ > 0 for every β in Bθ. Using
the decomposition g0 = a⊕ zk(a)⊕

⊕
gα, it follows that the projection of [u, v] on a is

equal to ∑
β∈Bθ

µβhβ .
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Hence, as η is zero on aΘ and since p([u, v]) differs from the above element by an
element in aΘ, and one has

⟨p([u, v]) | η⟩ =
∑
β∈Bθ

µβ ⟨hβ | η⟩ = 2
∑
β∈Bθ

µβ
⟨η, β⟩

⟨β, β⟩
.

Thus from the definition of a dominant form, we have

⟨p([u, v]) | η⟩ ⩾ 2µθ
⟨η, θ⟩

⟨θ, θ⟩
.

From this last inequality, the lower bounds in Equations (12) and (13) of Theorem 4.7
follow.

5. Positivity of the cross-ratio

We continue with the setup of the previous section: G0 is a semisimple Lie group
admitting a positive structure with respect to Θ. The main result is the following:

Theorem 5.1 (Positivity of the cross-ratio). Let η be aΘ-compatible dominant non-zero
form. Let bη be the cross-ratio associated to η (cf. Section 2 and more particularly Section 2.4).
For any positive quadruple (x, y, z,w) in FΘ we have

bη(x, y, z,w) > 1 .

The terminology “positivity of the cross-ratio” becomes justified after one takes
the logarithm.

The proof of Theorem 5.1 relies on the integral formula for the cross-ratio given
in Section 2.4.

We state a useful corollary to Theorem 5.1:

Corollary 5.2. Let η be a Θ-compatible dominant form, ωθ a fundamental weight and
(x, y, z, x) a positive quadruple. Then

bη(x, y, z,w) ⩾
(
bωθ(x, y, z,w)

)⟨hθ|η⟩ .
In particular, for all γ in G

pη(γ) ⩾
(
pωθ(γ)

)⟨hθ|η⟩ .
Proof. Indeed, we can write

η = η0 + ⟨hθ | η⟩ωθ ,

where η0 is a Θ-compatible dominant form. It then follows by Assertion (3) (p. 11)
that

bη = (bωθ)⟨hθ|η⟩ bη0 .

and the statement follows from Theorem 5.1. □
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5.1. Infinitesimal positivity. Denote as always LΘ = G/LΘ.
Let x and y be transverse points in FΘ. Let D be a diamond with extremities x

and y. Recall from Section 4.1 that a tangent vector at x is non-negative with respect
to D = ψ(NΘ) · x if it belongs to the image by πLψ of the closed cone

∑
θ∈Θ c̄−θ inside

u
opp
Θ

. We have:

Proposition 5.3. Let η be a Θ-compatible dominant form and let v be a non-negative
tangent vector at x (with respect to D) and w be a non-negative tangent vector at y (with
respect to the opposite diamond D∨). Then〈

Ω(x,y)((v, 0), (0,w))
∣∣∣η〉 ⩾ 0 .

If furthermore η is non-zero and v and w are positive tangent vectors, then〈
Ω(x,y)((v, 0), (0,w))

∣∣∣η〉 > 0 .

Proof. Recall the decomposition

g0 = lΘ ⊕ uΘ ⊕ u
opp
Θ

,

and πL the projection from G to LΘ. Let ψ be in G such that πL(ψ) = (x, y) and
D = ψ(NΘ) · x. We have an identification ιLψ (see Section 1.6) of T(x,y)LΘ with

u
opp
Θ
⊕ uΘ.

By definition

Ω((v, 0), (0,w)) = p
(
[ιLψ ((v, 0)), ιLψ ((0,w))]

)
,

where p is the orthogonal projection from g0 to bΘ. Hence the proposition reduces
to Theorem 4.7 using that ιLψ ((v, 0)) is a vector in

∑
θ∈Θ c̄−θ, that ιLψ ((0,w)) is a vector

in
∑
θ∈Θ −c̄θ (Section 4.1), and that the Lie bracket is antisymmetric. □

5.2. Proof of Theorem 5.1. We are in a setting where ι(Θ) = Θ so that F opp
Θ
≃ FΘ

and LΘ is the open G-orbit in FΘ × FΘ.
We begin the proof of Theorem 5.1 by showing that the hypotheses of Proposi-

tion 2.7 are always verified for positive quadruples:

Proposition 5.4. Let (x, y, z,w) be a positive quadruple, then there existC1 arcs c0 : [0, 1]→
FΘ and c1 : [0, 1]→ FΘ such that c0(0) = x, c0(1) = y, c1(0) = z, and c1(1) = w and such
that, for all s in (0, 1) and all t in (0, 1), the sextuple (x, c0(s), y, z, c1(s),w) is positive.

For every such arcs c0 and c1 the map f : [0, 1]2
→ FΘ × FΘ defined by f (s, t) =

(c0(s), c1(t)) takes value in LΘ and one has, for every t in [0, 1], f (0, t) = (x, ∗) and
f (1, t) = (y, ∗), and for every s in [0, 1], f (s, 0) = (∗, z) and f (s, 1) = (∗,w).

Proof. Let D be the diamond with extremities x and z containing y; by positivity of
the quadruple (x, y, z,w) the opposite diamond D∨ contains w. There exists a unique
diamond D0 contained in D and with extremities x and y and there exists a unique
diamond D1 contained in D∨ and with extremities z and w - see Figure 1.
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Figure 1. Configuration of the positive quadruple (x, y, z,w), the C1

arcs c0, c1 and the diamonds D,D∨,D0,D1 in a Z-covering of an
annulus

We can now choose two arcs of positive circles: c0 joining x to y and contained
in D0, c1 joining z to w and contained in D1 (Lemma 4.3). The inclusions of diamonds
give that, for all s and t, the sextuple (x, c0(s), y, z, c1(s),w) is positive.

Given such arcs c0 and c1, by positivity, for all s and t, c0(s) is transverse to c1(t).
The map f given by

(s, t) 7→ (c0(s), c1(t))
takes thus value in LΘ and has the wanted properties. □

We can now conclude the proof of Theorem 5.1 using c0, c1, and f as in the
previous lemma. By Proposition 2.7,

bη(x, y, z,w) = exp
(∫

[0,1]2
f ∗(⟨Ω | η⟩)

)
.

By definition if (u, v) belongs to [0, 1]2,

f ∗(⟨Ω | η⟩)(u,v)) =
〈
Ω

( q
c0(u),

q
c1(v)

)∣∣∣η〉 · ds ∧ dt .

By Proposition 5.3, we have 〈
Ω

( q
c0(u),

q
c1(v)

)∣∣∣η〉 > 0 .

The result now follows. □

6. The photon cross-ratio bounds the θ-character

In this section we relate the photon cross-ratios to characters of simple roots. In
particular, we prove the following:

Theorem 6.1. Let θ be an element of Θ, η a Θ-compatible dominant form such that
⟨η, θ⟩ > 0, and γ in G be a Θ-loxodromic element with attracting and repelling fixed points
γ+, γ−, let x in FΘ be such that (γ+, γ−, x, γ · x) is a positive quadruple then

χθ(γ)⟨hθ|η⟩ ⩾ min
Φ∈Φ(γ−)

bη(pΦ(γ+), γ−, x, γ(x)) ,



36 J. BEYRER, O. GUICHARD, F. LABOURIE, B. POZZETTI, AND A. WIENHARD

where Φ(γ−) is the family of θ-photons through γ−.

We first state and prove two preliminary results. Let a and b be two transverse
points in FΘ and L B La,b be the stabilizer in G of the pair (a, b).

Proposition 6.2 (The compact case). Let M be a compact subgroup of L. Assume that
k belongs to M and that x is transverse to both a and b, then for any M-invariant compact
subset M0 of Φ(a)

min
Φ∈M0

bη(pΦ(b), a, x, k(x)) ⩽ 1 .

Proof. Let S be the M-orbit of x in FΘ. All z in S are transverse to a and b, and hence
to pΦ(b) for all Φ in Φ(a) by Corollaries 3.18 and 3.21. Thus the function

Ψ : (z, y,Φ) 7−→ bη(pΦ(b), a, z, y)

on S × S ×M0 is defined and continuous. We consider the function on S2

G(z, y) = min
Φ∈M0

∣∣∣bη(pΦ(b), a, z, y)
∣∣∣ ,

which is continuous by the continuity of Ψ and the compactness of M0. As a
consequence of the cocycle identity we have

(15) G(z, y) ⩾ G(z,w)G(w, y) .

Since M0 is M-invariant, for every g in M we have

G(g(z), g(y)) = G(z, y) .

By the compactness of S there is a constant A such that for all z and y in S,

G(z, y) ⩽ A .

For any z and y in S, let g in M be such that y = g(z), we obtain by iterating the
cocycle inequality (15) and using the M-invariance of G, that for all n

A ⩾ G(z, gn(z)) ⩾ G(z, g(z))n = G(z, y)n .

This shows that G(z, y) ⩽ 1 for all y and z in the M-orbit of x. Hence G(x, k(x)) is at
most 1 and this concludes the proof. □

In the next proposition, we use the Kostant–Jordan decomposition recalled in the
beginning of Section 1.7.

Proposition 6.3 (A photon is preserved). Let g be a Θ-loxodromic element in G such
that a and b are respectively the repelling and attracting fixed points of g. Let g = ghguge
be the Kostant–Jordan decomposition of g (in G). Then there exists a θ-photon Φ inΦ(a)
invariant by gh and by gu and

(16) χθ(g)⟨hθ|η⟩ = bη(pΦ(b), a, y, ghgu(y)) ,

for all y transverse to a and to b.
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Proof. Let ψ be an isomorphism of G0 with G such that πL(ψ) = (a, b) and gh =
ψ(exp(X)) with X in the closed Weyl chamber a+ — by the Kostant–Jordan decom-
position as in Section 1.7. One also has ψ(LΘ) = La,b.

As g is Θ-loxodromic (see Section 1.7), the element X satisfies that ⟨X | α⟩ > 0 for
all α in Θ and ⟨X | α⟩ ⩾ 0 for all α in ∆ ∖Θ.

Let E = {v ∈ u−θ | ad(X)v = − ⟨X | θ⟩ v}, and let Zθ the LΘ-orbit of x−θ in u−θ. We
know that the image by πFψ of every vector v in Zθ is tangent to a photon through a
(Proposition 3.14). If furthermore this vector v is in E, the η-period of gh on this
photon satisfies the stated equality thanks to Proposition 3.27.

The proposition will be proved if we can find a vector in E ∩ Zθ that is also
invariant by gu (in which case the action of gu on the corresponding photon will
be trivial). Note that the space E is Ad(gu)-invariant since E is the intersection
of uθ with ker(ad(X) − ⟨X | θ⟩ Id) and both these spaces are Ad(gu)-invariant. The
projectivization P(Zθ ∩ E) of Zθ in P(E) is a closed Ad(gu)-invariant subset (cf.
Lemma 3.11). Since Ad(gu) is unipotent, every ⟨Ad(gu)⟩-orbit in P(E) accumulates
to a point fixed by Ad(gu). These last two remarks imply that P(Zθ ∩ E) contains
points fixed by Ad(gu). This finishes the proof. □

Proof of Theorem 6.1. We can now prove the inequality of Theorem 6.1.
Let us write γ = γ0γe with γ0 = γhγu, where γh, γu, and γe are pairwise commuting

and respectively the hyperbolic, unipotent, and elliptic parts of γ. Let then M be
the closure of the group generated by γe and M0 be the compact set of photons Φ
preserved by γ0 in Φ(γ−) and satisfying Equation (16), namely such that

χθ(γ)⟨hθ|η⟩ = bη(pΦ(b), a, y, γ0γu(y)) ,

for all y transverse to a and b. We observe that M0 is invariant by M, and non-empty
by Proposition 6.3 (applied with a = γ− and b = γ+). Let finally Φ0 be a photon
in M0 such that

bη(pΦ0(γ+), γ−, x, γe(x)) = min
Φ∈M0

bη(pΦ(γ+), γ−, x, γe(x)) ⩽ 1 ,

where the inequality comes from Proposition 6.2. We then have by the cocycle
identities

bη(pΦ0(γ+), γ−, x, γ(x))

= bη(pΦ0(γ+), γ−, x, γe(x)) bη(pΦ0(γ+), γ−, γe(x), γ0γe(x))

⩽ bη(pΦ0(γ+), γ−, γ0(γe(x)), γe(x))

= χθ(γ0)⟨hθ|η⟩ = χθ(γ)⟨hθ|η⟩ .

It follows that

min
Φ∈Φ(γ−)

bη(pΦ(γ+), γ−, x, γ(x)) ⩽ χθ(γ)⟨hθ|η⟩ ,

and the result follows. □
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7. The collar inequality

Our goal in this section is to prove the main result of this paper, it generalizes
Theorem C in the sense that general Θ-compatible dominant forms are allowed.

Theorem 7.1 (Collar Lemma in the group). Let G a semisimple Lie group admitting a
Θ-positive structure. Let A and B be Θ-loxodromic elements of G. Denote by (a+, a−) and
(b+, b−) the pair of attracting and repelling fixed points of A and B respectively in the flag
variety FΘ. Assume that the sextuple

(a+, b−, a−, b+,B(a+),A(b+)) ,

is positive (see Figure 2). Let θ be an element of Θ, and η be a Θ-compatible dominant form
with ⟨hθ | η⟩ > 0. Then

(17)
(

1
pη (B)

)1/⟨hθ|η⟩

+
1

χθ(A)
< 1 .

Observe that when ⟨hθ | η⟩ = 0, the above inequality is still true but of little use.

Figure 2. Positive sextuple

Proof. From Corollary 5.2 it is enough to prove the inequality whenever η is a
fundamental weight ωθ of θ.

Let Φ be a θ-photon through a−. From Proposition 3.27 and the classical relation
for the projective cross-ratio, we have

bωθ(a−, pΦ(b+), a+,A(b+)) + bωθ(a−, pΦ(a+), b+,A(b+)) = 1 .

We will now obtain a minoration of the first term in the left-hand side of this equation,
we will then apply Theorem 6.1 in order to obtain the wanted majoration. In these
computations, we will use freely that the cross-ratio is greater than 1 for positive
quadruples (Theorem 5.1).

First step: We first bound from below the first term of the previous equality.

bωθ(a−, pΦ(b+), a+,A(b+)) > pωθ(B)−1 .

Let L B bωθ(a−, pΦ(b+), a+,A(b+)). By the cocyle relation we have

L = bωθ(a−, b+, a+,A(b+)) · bωθ(b+, pΦ(b+), a+,A(b+)) .
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The quadruple (a−, b+,A(b+), a+) is positive, hence by Proposition 4.5, the quadru-
ple (b+, pΦ(b+), a+,A(b+)) is also a semi-positive quadruple, thus Theorem 5.1 gives

bωθ(b+, pΦ(b+), a+,A(b+)) ⩾ 1 .

Then

L ⩾ bωθ(a−, b+, a+,A(b+))

= bωθ(a−, b+, a+,B(a+)) · bωθ(a−, b+,B(a+),A(b+))

= bωθ(a−, b−, a+,B(a+)) · bωθ(b−, b+, a+,B(a+)) · bωθ(a−, b+,B(a+),A(b+)) ,

where we used the cocycle identities twice. Since (a−, b+,B(a+),A(b+)) and (a−, b−, a+,B(a+))
are positive quadruples (the latter follows as (b−, a−,B(a+), a+) is positive), their cross-
ratios are greater than 1 and we get

L > bωθ(b−, b+, a+,B(a+)) = pωθ(B)−1 ,

which is what we wanted to prove.

Second step: We obtain from the first step that, for every photon Φ through a−,

pωθ (B)−1 + bωθ(a−, pΦ(a+), b+,A(b+)) < 1 .

Letting Φ vary in Φ(a−), we get

pωθ (B)−1 + max
Φ∈Φ(a−)

(
bωθ(a−, pΦ(a+), b+,A(b+))

)
< 1 .

Observe now that (a−, a+,A(b+), b+) is a positive quadruple, thus Theorem 6.1 gives
in particular that

χθ(A)−1 ⩽
(

min
Φ∈Φ(a−)

bωθ(a−, pΦ(a+),A(b+), b+)
)−1

= max
Φ∈Φ(a−)

bωθ(a−, pΦ(a+), b+,A(b+)) .

Thus combining the two last inequalities, we get

pωθ (B)−1 + (χθ(A))−1 < 1 .

This is the inequality that we wanted to prove. □

8. Positive representations of finite type and infinite type surfaces

In this section, we give the definition of positive representations in a setting that
allows surfaces that are not closed, or not even of finite topological type, i.e. we do
not assume that the fundamental group is finitely generated.

Let Σ be a —possibly non-compact— connected oriented surface whose funda-
mental group Γ contains a free group. Among loops not homotopic to zero, we
distinguish between peripheral loops and non-peripheral loops in Σ: peripheral loops
are curves in Σ which are freely homotopic to a multiple of a boundary component
or a cusp, otherwise a loop is non-peripheral. We use the same terminology for
conjugacy classes of elements of π1(Σ), seen as free homotopy classes of loops.
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We denote by Λ the classes of non-peripheral elements of π1(Σ) up to positive
powers; i.e. γ and γ′ represent the same element in Λ if and only if there are positive
integers n and n′ such that γn = γ′n

′

. The class in Λ of a non-peripheral element γ
will be denoted by γ+. The set Λ should be thought of as the set of attracting fixed
points of non-peripheral elements of π1(Σ) in the boundary at infinity of the group.
The conjugation induces a natural action of π1(Σ) on Λ. We will introduce a cyclic
order on Λ. Since π1(Σ) might not be finitely generated, we cannot directly use the
boundary at infinity. Instead, we use the following trick.

Proposition 8.1 (Reduction to finite type). Given finitely many elements γ1, . . . , γp
in π1(Σ), there exists an incompressible connected surface S of finite type, in Σ, whose
fundamental group contains all the γi. If furthermore, none of the γi are peripheral, we can
choose S such that all the γi remain non-peripheral in S.

In the situation of the proposition, we say that S encloses (γ1, . . . , γp). Similarly,
given finitely many elements t1, . . . , tn inΛ, we say that an incompressible connected
surface S of finite type encloses them if there are γ1, . . . , γn in π1(Σ) such that, for all i,
γ+i = ti and S encloses (γ1, . . . , γn).

If S encloses a curve γ, it also encloses every γ′ representing the same element
in Λ.

Given a n-tuple (γ+1 , . . . , γ
+
n ) in Λ and a surface S of finite type enclosing the tuple,

we say that (γ+1 , . . . , γ
+
n ) is S-cyclically oriented if the tuple (γ+1,S, . . . , γ

+
n,S) is cyclically

oriented in ∂∞π1(S), where γ+i,S is the attracting fixed point of γi in ∂∞π1(S).

Remarks 8.2.
• Note that if γni

i = (γ′i )
n′i , then γ+i,S = γ

′+
i,S so that the definition makes sense.

• Of course, it is enough here to define cyclically oriented triples and the
definition of cyclically oriented n-tuples follows by compatibility.
• When Σ is already of finite type, Λ is identified with a subset of ∂∞π1(Σ).

Proposition 8.3. If (γ+1 , . . . , γ
+
n ) is S0-cyclically oriented for a subsurface S0 of finite type

enclosing them, it is S-cyclically oriented for any subsurface S of finite type enclosing them.

Proof. Let S0,S1 be two incompressible finite type connected subsurfaces enclosing
(γ1, . . . , γn). We find an incompressible finite type connected subsurfaces S containing
both S0 and S1. Then there are embeddings ιi : ∂∞π1(Si) → ∂∞π1(S), i = 0, 1, such
that a tuple in ∂∞π1(Si) is cyclically oriented if and only if its image under ιi is. This
proves the claim as i0(γ+i,S0

) = i1(γ+i,S1
). □

As a conclusion, there is a well defined cyclic ordering on Λ. We use this to define
the notion of Θ-positive representations.

In the next two definitions we assume that G0 has a Θ-positive structure and we
let G, and FΘ = G/PΘ be as in Section 1.

Definition 8.4. Let C be a set with a cyclic order. A map ξ : C→ FΘ is called positive
if every cyclically ordered tuple in C is mapped to a positive tuple in FΘ by ξ (cf.
also Section 4.1).
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Definition 8.5. A representation ρ : π1(Σ)→ G is said to be Θ-positive if there exists
a ρ-equivariant positive map from Λ to FΘ.

We then have:

Proposition 8.6. Let ρ be aΘ-positive representation of π1(Σ) in G, if γ is a non-peripheral
element, then ρ(γ) is Θ-loxodromic, and ξ maps attracting fixed points to attracting fixed
points.

Proof. We can reduce using Propositions 8.1 to the case when Σ is a finite type
surface. Then the result follows from [20, Proposition 3.18]. □

When Σ is closed, every non-trivial element in π1(Σ) is non-peripheral. In fact, in
that case, Definition 8.5 agrees with the definition from [20] (cf. Proposition 5.7 in
that reference).

9. Collar inequality for representations

In this section we collect the material of Sections 7 and 8 in order to produce
Collar Lemmas for Θ-positive representations.

Theorem 7.1 applies to Θ-positive representations:

Corollary 9.1 (Collar Inequality). Let η be a Θ-compatible dominant form and let θ
be in Θ. Assume that ⟨θ, η⟩ > 0. Let Σ be a connected oriented (not necessarily of
finite type) surface whose fundamental group contains a free group. Then given a positive
representation ρ of π1(Σ), two loops γ0 and γ1 geometrically intersecting, we have(

1
pη

(
ρ(γ1)

))1/⟨hθ|η⟩

+
1

χθ
(
ρ(γ0)

) < 1 .

Proof. Let S be a finite type surface enclosing γ0 and γ1.
Let x be a point of intersection of γ0 and γ1, we choose (and denote them

the same way) representatives γ0 and γ1 in π1(S, x). Let us denote by γ±i the
attracting/repelling fixed points of γi in ∂∞π1(S). The intersection hypothesis
implies that, up to exchanging γ1 and γ−1

1 , the sextuple

(γ−1 , γ
−

0 , γ
+
1 , γ1(γ+0 ), γ0(γ+1 ), γ+0 ) ,

is a positive configuration in ∂∞π1(S) (see for instance [30, Lemma 2.2]).
We denote by a+, a−, b+ and b− the images of respectively γ+0 , γ

−

0 , γ
+
1 and γ−1 under

the limit map. We also write

A B ρ(γ0) , B B ρ(γ1) .

By Proposition 8.6, a+ and a− are the attracting and repelling fixed points of A, and
b+ and b− are those of B. By positivity, it follows that

(b−, a−, b+,B(a+),A(b+), a+)

is also a positive configuration (see figure 2). Then the theorem follows from
Theorem 7.1. □
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Choosing the Θ-compatible dominant form η in Corollary 9.1 to be equal to
a fundamental weight ωθ we immediately get the following corollary which is
Corollary D of the introduction.

Corollary 9.2. Let ρ be a Θ-positive representation of a surface group π1(Σ). Let γ0 and
γ1 be two geometrically intersecting loops and θ in Θ, then

1
pωθ(ρ(γ0))

+
1

χθ(ρ(γ1))
< 1 .

The inequality of this last corollary can be reformulated as(
pωθ(ρ(γ0)) − 1

) (
χθ(ρ(γ1)) − 1

)
> 1.

Remark 9.3. The previous corollary —or Corollary D— is actually equivalent to
Corollary 9.1, by Corollary 5.2.

9.1. Comparison with other Collar Lemmas. Collar Lemmas originate from the
work of Keen in hyperbolic geometry. For the holonomy ρ : π1(S)→ PSL2(R) of a
hyperbolic structure, denoting by ℓ(ρ(γ)) the length of the geodesic representative
of ρ(γ) in the hyperbolic surface, building on the results she proved in [24] the
following sharp inequality was deduced (see [33, Section 6], [14, Corollary 4.1.2]):
for γ0 and γ1 geometrically intersecting

(18) sinh
(1
2
ℓ(ρ(γ0))

)
sinh

(1
2
ℓ(ρ(γ1))

)
> 1.

Moving to the higher rank setting there are several possible generalizations of
this result, as many possible quantities can be understood as length of an element
with respect to a representation. One possible direction is to replace the length with
a suitable Finsler translation length; results in this direction are discussed in Section
9.1.2. Our collar lemma, as well as its predecessors discussed in Section 9.1.1 is a
non-symmetric generalization, as it compares the character of a root with respect to
that of a weight.

This asymmetry between roots and weights is key: on the one hand only by
controlling the root we can deduce closedness in the space of representations, on
the other hand it is proven in [4, Theorem 7.1] that for Hitchin representations
in PSL3(R) no collar lemma comparing the roots of two elements that intersect
geometrically can exist, and in this respect our result, as well as the results discussed
in Section 9.1.1, are optimal.

9.1.1. Collar Lemmas comparing roots and weights for Θ-positive representations. Many
instances of Collar Lemmas comparing roots and weights for special classes of
Θ-positive representations already appeared in the literature. None of these results
are sharp, as the proofs always involve a crude minoration.

In the case of Hitchin representations into PSLn(R) Lee and Zhang prove the
following inequalities, for k in {1, . . . ,n − 1} [30, Proposition 2.12(1)](

pω1(ρ(γ0)) − 1
) (
χαk(ρ(γ1)) − 1

)
> 1
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here we denote by {α1, . . . , αn−1} the simple roots of PSLn(R) in the standard numer-
ation (i.e. αi is connected to αi±1 in the Dynkin diagram) and denote ωi B ωαi .

In the case of maximal representations into Sp2n(R) Burger and Pozzetti obtain
[13, Theorem 3.3(2)]

pω1(ρ(γ0))n (
χαn(ρ(γ1)) − 1

)
> 1 .

In the case ofΘ-positive representations into SO(p, q) for p ⩽ q Beyrer and Pozzetti
proved Corollary 9.2 [6, Theorem B]: for every 1 ⩽ k ⩽ p − 1(

pωk(ρ(γ0)) − 1
) (
χαk(ρ(γ1)) − 1

)
> 1 .

While all these results, as well as ours, rely on the positivity of the sextuple
(a+, b−, a−, b+,B(a+),A(b+)) the strategy of proofs is different in the three cases. Our
proof follows the approach outlined in [6] with the important new contribution of
the introduction of photons which allows to treat all roots simultaneously regardless
of the dimension of the associated root space. As such our proof is uniform for all
Θ-positive representations, independent of the zoology of the group involved.

9.1.2. Collar Lemmas through domination. For a Hitchin representation into PSL3(R),
or a maximal representation in SO0(2,n), Tholozan [36, Corollary 4] and Collier–
Tholozan–Toulisse [15, Corollary 6] used domination to deduce a Collar Lemma:
for a Hitchin representation ρ in PSL3(R) Tholozan finds a Fuchsian representation
whose spectrum dominates ℓ1(A) B log pω1(A) and he deduces from the hyperbolic
Collar Lemma

sinh
(1
4
ℓ1(ρ(γ0))

)
sinh

(1
4
ℓ1(ρ(γ1))

)
> 1.

For a maximal representation ρ in SO0(2,n) Collier, Tholozan, and Toulisse find a
Fuchsian representation whose length spectrum dominates ℓ1 = log pω1 , and deduce
similarly

sinh
(1
2
ℓ1(ρ(γ0))

)
sinh

(1
2
ℓ1(ρ(γ1))

)
> 1 .

These Collar Lemmas are sharp, but since they don’t control the root character,
they do not guarantee that the limit of a converging sequence contains loxodromic
elements in its image.

9.1.3. Other Collar Lemmas. Beyrer and Pozzetti show in [4, Theorem 1.1] that Collar
Lemmas are not specific to Θ-positive representations and define other classes of
representations in PSLd(R) that satisfy the inequality(

pωk(ρ(γ0)) − 1
) (
χαk(ρ(γ1)) − 1

)
> 1 .

They exhibit in particular the class of (k + 2)-positive representations for which
this Collar Lemma holds (see [5, Corollary 6.20]). In particular (k + 2)-positive
representations form open subsets of the representation variety, but never connected
components, outside of the Hitchin component.

This highlights that, even though we use the Collar Lemma in Section 9.2 to
prove the closedness of the space of positive representations, this is not a mere
consequence of the Collar Lemma, but really of the combination of the structure of
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limits of positive representations established in [20, Proposition 6.4] —see also [5,
Theorem B]— and the Collar Lemma.

9.2. Closedness of the space of positive representations. As a consequence of the
Collar Lemma together with results of [20] we obtain:

Corollary 9.4. The space of positive representations is closed in the space of representations.

Proof. Let {ρm}m∈N be a sequence of positive representations converging to a repre-
sentation ρ∞. Let γ0 and γ1 be loops intersecting at least once. Let θ be an element of
Θ. Since for every γ in π1(S), the sequence {pωθ(ρm(γ))}m∈N is bounded by a constant
K(γ), it follows from the collar inequality (Corollary 9.2) that for all m,

1
χθ(ρm(γ1))

⩽ 1 −
(

1
K(γ0)

)
.

As a consequence there is a positive ε, such that for all m and all θ in Θ, we have

χθ
(
ρm(γ1)

)
⩾ 1 + ε .

Since the Jordan projection (and hence χθ) is continuous, it follows that

χθ
(
ρ∞(γ1)

)
⩾ 1 + ε .

Recall that h is Θ-loxodromic if and only if χθ(h) > 1 for all θ in Θ (Proposition 1.6).
In particular ρ∞(γ1) is loxodromic. Let {xm}m∈N and {ym}m∈N be the repelling and
attracting fixed points of ρm(γ1), then {xm}m∈N and {ym}m∈N converge to, respectively,
the attracting and the repelling fixed points x∞ and y∞ of ρ∞(γ1) which are transverse.
By [20, Proposition 6.4], ρ∞ is positive. This concludes the proof. □

Appendix A. Extension to real closed fields

In this appendix, we explain how to extend the results obtained previously to
all real closed fields by using the quantifier elimination Theorem of Tarski and
Seidenberg. The importance of real closed field in the theory of surface group
representations is outlined in the work of Brumfiel [9] and more recently Burger,
Iozzi, Parreau and Pozzetti [11]. We will not address here challenges on the structure
of the character variety of positive representations itself but only focus on the
extension of our main results to positive representations defined over real closed
fields.

A.1. Real closed fields. A real closed field is a totally ordered field so that every
positive element is a square and every odd degree polynomial has a root. Obviously
R is a real closed field.

The Tarski–Seidenberg quantifier elimination theorem loosely says that any semi-
algebraic statement holding over R holds for any real closed field F. Recall that a
semi-algebraic set over an ordered fieldK is a subset ofKn which can be defined by
finitely many algebraic equalities and inequalities with coefficients inK. We will use
two important consequences of Tarski–Seidenberg: the Projection Theorem, stating
that the image a semi-algebraic set by a polynomial map is also semi-algebraic [7,
Proposition 2.2.7], and the transfer principle stating that a semi-algebraic set defined
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over R is empty if and only if for any real closed extension F of R the subset of Fn

defined by the same equalites and inequalities is empty [7, Proposition 5.3.5].
Our goals are now the following
• Define positive representations with values in a semisimple algebraic group

defined over a real closed field F,
• Show that Theorems A and C can be rephrased in terms of semi-algebraic

subset, and thus hold over arbitrary real closed fields.

A.2. Positive representations over real closed fields. Let G be a semisimple real al-
gebraic group equipped with a positive structure relative toΘ andFΘ the generalized
flag manifold associated to PΘ. Our first result is:

Proposition A.1. The set of positive n-tuples is a semi-algebraic subset of F n
Θ

.

Proof. The parametrization theorem of Guichard–Wienhard [21, Theorem 10.1]
parametrizes a positive diamond as the image by a polynomial map —indeed the
exponential map defined on a unipotent subalgebra is actually polynomial— of a
product of cones in uθ that are semi-algebraic and in fact defined by finitely many
explicit inequalities [21, Section 5]. Thus by the Projection Theorem a positive
diamond is a semi-algebraic set. □

Any semi-algebraic set defined overK admits a natural F-extension for any real
closed field F containing K, which amounts to considering the set defined by the
same polynomial equalities and inequalites in Fn. Given a real closed field F we
denote by FΘ(F) the F-extension of the flag manifold FΘ on which G(F) acts and
say that a triple in FΘ(F)3 is positive if it belongs to the F-extension of the set of
positive triples in F 3

Θ
(cf. [11, Example 6.17 (c)]).

We can now extend verbatim the definition of positive representations into
algebraic groups with coefficients in real closed fields since it only involves the
notion of positive triples and quadruples.

A.3. The main results for real closed fields. We now state Theorem A and Theorem
C for real closed fields and prove the corresponding statements.

Theorem A.2 (Positivity of the cross-ratio). Let G be a semisimple algebraic group
admitting a positive structure relative to Θ, FΘ be the generalized flag manifold associated
to Θ, λ a Θ-compatible dominant weight, bλ the associated cross-ratio. Then for any real
closed field F and every positive quadruple (x, y,X,Y) in FΘ(F)4 it holds

bλ(x, y,X,Y) > 1 .

Proof. It follows from Equations (4) and (5) in Section 5 that the cross-ratio bλ defines
an algebraic function from the semi-algebraic subset O of F 4

Θ
. As a result the set

{(x, y,X,Y) ∈ F 4
Θ| (x, y,X,Y) is positive, bλ(x, y,X,Y) ⩽ 1}

is a semi-algebraic subset defined over R. Since by Theorem A.2 such set is empty
over R, it is empty over every real closed field F extending R, which proves the
desired statement. □
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We now turn to Theorem C. Given a real closed field F and an element A in
G(F) we say that a point a+ in FΘ(F) is an attracting fixed point for A (respectively
a− is a repelling fixed point) if it is a fixed point for the A action on FΘ(F) and the
action of Ad(g) on the Lie algebra of the unipotent radical of the stabilizer of a+
has all eigenvalues of modulus in F strictly larger than one (respectively strictly
smaller than one). Then the subset of G(F) × FΘ(F) consisting of pairs (A, a) such
that a is an attracting fixed point for A (respectively repelling) is semi-algebraic, and
corresponds to the F-extension of the subset of G ×FΘ consisting of pairs satisfying
the same property [11, Section 4.4].

Theorem A.3. Let F be real closed. For every pair of Θ-loxodromic elements A and B in
G(F) with attracting and repelling fixed points (a+, a−) and (b+, b−) such that the sextuple
(a+, b−, a−, b+,B(a+),A(b+)) in FΘ(F)6 is positive and any θ in Θ it holds

1
pωθ (A)

+
1

χθ (B)
< 1 .

Proof. We need, again to show that the set P of pairs (A,B) in G2 admitting attracting
and repelling fixed points such that the sextuple

(a+, b−, a−, b+,B(a+),A(b+))

is positive and for which the Equation

(19)
1

pωθ (A)
+

1
χθ (B)

⩾ 1 .

holds is a semi-algebraic set.
On the one hand, let P1 be the set of pairs (A,B) in G2 admitting attracting and

repelling fixed points such that the sextuple (a+, b−, a−, b+,B(a+),A(b+)) is positive,
then P1 is a semi-algebraic set. Indeed this follows from the discussion above
concerning attracting fixed points, from the action of G on FΘ being algebraic, and
the set of positive 6-tuples being semi-algebraic.

On the other hand, the set P2 of pairs (A,B) in G2 such that Equation (19) holds is a
semi-algebraic set, since both the period pωθ and theθ-characterχθ are semi-algebraic
functions. Indeed the periods are defined by the expressions bωθ(b+, b−, a+,B(a+)),
which are semi-algebraic since the cross-ratio bωθ and the function associating to
B its attracting and repelling fixed points is semi-algebraic; that the character χθ is
semi-algebraic follows from [11, Proposition 4.7].

Now the set P = P1 ∩ P2 is semi-algebraic. Theorem C guarantees that is empty
over R, and it thus follows from the transfer principle that it is empty over any real
closed field F extending R, which concludes the proof. □
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