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ON MANIFOLDS LOCALLY MODELLED

ON NON-RIEMANNIAN HOMOGENEOUS SPACES

F. Labourie, S. Mozes and R.J. Zimmer

1. Introduction and Statement of Main Results

In this paper we continue the investigation of compact manifolds locally
modelled on a homogeneous space of a finite dimensional Lie group. We
recall that a manifold M is locally modelled on a homogeneous space J\H
if there is an atlas on M consisting of local diffeomorphisms with open sets
in J\H and where the transition functions are given by restrictions to open
sets of translations by elements of H acting on J\H . A basic example is
given by a cocompact lattice in J\H , namely a discrete subgroup Γ ⊂ H
such that Γ acts freely and properly discontinuously on J\H and such that
M = J\H/Γ is compact. In this case, M is then locally modelled on J\H .
It is a basic open question to understand those homogeneous spaces J\H
for which there is a compact form (i.e. space locally modelled on J\H) or
a cocompact lattice.

While there have been numerous approaches to this question (see, e.g.
the references and brief discussion in [Z1]), one of these has involved the
presence of a non-trivial centralizer G ⊂ ZH(J) for J . In the case in which
H is simple and J actually has a non-trivial -diagonalizable 1-parameter
subgroup in its center, then the main result of [BL] is that there are no com-
pact forms for J\H . The technique involves using the center to construct
a suitable symplectic form. In [Z1], the case in which J may have trivial

-split center but yet have a significant centralizer in H was studied. The
main result of [Z1] is the assertion that if there is a cocompact lattice for
J\H then under suitable hypotheses J must be compact. (In the event J
is compact it is known that there are always cocompact lattices, at least if
H is semisimple.) These hypotheses are
i. H and J are unimodular real algebraic groups;
ii. The centralizer ZH(J) contains a group G such that:

(a) G is not contained in a proper normal subgroup of H ;
(b) G is a semisimple Lie group each of whose simple factors has -rank

at least 2; and,
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(c) Every homomorphism G̃ → J is trivial.
As a consequence, one obtained in [Z1] the conclusion that

SL(m, )\SL(n, ) (for the standard embedding) does not admit a cocom-
pact lattice if n > 5 and m < n/2. However, the arguments in [Z1] do not
give the conclusion that there is no compact form in these cases. It also
leaves open the question of existence of cocompact lattices and compact
forms if m ≥ n/2. The techniques of [Z1] involve superrigidity for cocycles
and Ratner’s theorem on invariant measures on homogeneous spaces.

The aim of this paper is three-fold.
First, we dramatically simplify the proof of the main result of [Z1]. Our

approach here enables us to use Moore’s ergodicity theorem ([Z3]) in place
of Ratner’s theorem which is required in the proof given in [Z1]. (How-
ever, we remark that the proof in [Z1] using Ratner’s theorem, although it
is not explicitly stated there, reduces the general question of the existence
of cocompact lattices, without assumption (c) above, to a purely algebraic
question about Lie groups, i.e. one with nothing to do a priori with dis-
crete subgroups. This seems to be a potentially useful approach to this
significantly more general situation.)

Second, using these arguments, we extend the results of [Z1] to the case
in which assumption (c) is replaced by:

(c′) : (i) Every non-trivial homomorphism G̃ → J has compact centralizer
in J ;

(ii) There is a non-trivial -split 1-parameter group in ZH(JG) that
is not contained in a normal subgroup of H .

In particular, we show that SL(m)\SL(2m) does not admit a cocompact
lattice, nor does J\SL(2m) where J ⊂ SL(m) is either SO(p, q), p + q = m,
or Sp(2r, ) with 2r = m.

Third, we generalize these results to the case of compact forms. Thus
our main result can be stated as follows:

THEOREM 1.1. Let H be a real algebraic group and J ⊂ H an algebraic
subgroup. Suppose:

i. H and J are unimodular;

ii. There is a compact manifold M locally modelled on J\H ;

iii. The centralizer ZH(J) of J in H contains a group G with the following
properties:
(a) G is a semisimple Lie group each of whose simple factors has -rank

at least 2;
(b) Every non-trivial homomorphism G̃ → J has a compact centralizer

in J ;
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(c) If there is a non-trivial homomorphism G̃ → J , then there is a non-
trivial 1-parameter -split subgroup B ⊂ ZH(JG) such that neither
B nor G is contained in a proper normal subgroup of H .

Then J is compact.

In particular, we have the following generalization of [Z1, Corollary 1.3].

Corollary 1.2. If n ≥ 5, p ≤ n/2, then there is no compact manifold
locally modelled on SL(p, )\SL(n, ). The same is true for J\SL(n, )
where J is any unimodular non-compact subgroup of SL(p, ) (p ≤ n/2).

2. Cocompact Lattices

In this section we give an alternate proof for the results of [Z1] utilizing the
conclusions of superrigidity for cocycles in a simpler way. Further consid-
erations regarding uniqueness of the section defined by superrigidity allow
us to generalize the homogeneous space under consideration and to deduce
Theorem 1.1 for cocompact lattices.

We will use the following consequence of Moore’s theorem ([Z3]).

Lemma 2.1. Let H be a Lie group and Γ ⊂ H a discrete subgroup. Let
B ⊂ H be a non-trivial 1-parameter subgroup such that AdH(B) is -split
(i.e. -diagonalizable) and B is not contained in a proper normal subgroup.
Suppose there is a set Y ⊂ H/Γ of finite positive measure (with respect to
the natural H-invariant volume on H/Γ) that is B-invariant. Then Γ is a
lattice in H and Y = H/Γ.

Proof : χY ∈ L2(H/Γ) is B-invariant. If H is semisimple, then Moore’s
theorem implies χY (and hence Y ) is H-invariant, from which the lemma
follows. In general, the proof of Moore’s theorem shows that χY is invariant
under all 1-parameter subgroups corresponding to non-0 root spaces of B.
However, together with B, these generate a normal subgroup of H . By
assumption, this must be equal to H , so again Y is H-invariant, proving
the lemma.

We now give a proof of the main result of [Z1].

THEOREM 2.2. Assume the hypotheses of Theorem 1.1 with additional
assumptions that M = J\H/Γ for a cocompact lattice Γ in J\H , and that
every local homomorphism G → J is trivial. Then J is compact and Γ is a
lattice in H .

Proof : If Γ is a cocompact lattice in J\H , then H/Γ → J\H/Γ is a princi-
pal J bundle on which the centralizer ZH(J) acts by principal bundle au-
tomorphisms preserving a volume density on the compact manifold J\H/Γ



4 F. LABOURIE, S. MOZES AND R.J. ZIMMER GAFA

([Z1]). Let G be as in Theorem 1.1, with the additional assumption that
every local homomorphism G → J is trivial (i.e. we have the situation in
[Z1]). By superrigidity for cocycles, the cocycle α : J\H/Γ×G → J defined
by the action of G on H/Γ is then equivalent to a cocycle into a compact
subgroup K ⊂ J . This means there is a measurable G-invariant section
s of K\H/Γ → J\H/Γ. Letting µ be the finite G-invariant measure on
J\H/Γ defined by the G-invariant volume density, s∗(µ) will be a finite
G-invariant measure on K\H/Γ. Since K is compact, we can lift this via
the bundle map H/Γ → K\H/Γ to a finite G-invariant measure ν on H/Γ
that projects to a smooth measure on K\H/Γ. For any j ∈ J , j∗ν will also
be G-invariant. We can write

ν =

∫ ⊕

νtdµ(t)

where t ∈ J\H/Γ and νt is supported on a compact set (in fact a K-orbit)
in the fiber over t in H/Γ. Thus, if X ⊂ J is a compact set of positive Haar
measure, ∫

j∈X

j∗(ν)dj

will be a finite G-invariant measure that is simply the restriction of the
natural smooth measure on H/Γ to a set of finite positive measure. We now
apply Lemma 2.1 to deduce the theorem.

We now discuss some uniqueness results concerning superrigidity that
will allow us to deduce Theorem 1.1 for cocompact lattices in general (i.e.
without the assumption that all local homomorphisms G → J are trivial).
We shall work first in the general framework of principal bundles, as we will
need these results for the proof in the case of general compact forms as well.

Let P → M be a principal J bundle where M is a compact manifold and
J is a connected real algebraic group. Let G be a connected semisimple Lie
group such that every simple factor is of -rank at least 2. By passing to
the universal cover when necessary, we may assume G is simply connected.
Let L be an algebraic group which can be written as L = BG where B is
abelian and B centralizes G. We assume L acts on P by principal J-bundle
automorphisms preserving a finite measure µ on M . Let π : G → J be a
homomorphism (which necessarily factors via the algebraic universal cover
of Ad(g)), and K a fixed maximal compact subgroup of ZJ (π(G)). We say
(following the terminology of [4]) that a section s of P → M is π-simple if

s(gm) = gs(m)π(g)−1c(g, m)

where c(g, m) ∈ K. The conclusion of superrigidity for cocycles, see [Z3,4],
is that for G as above there always exists a π-simple section for some π
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and some K, as long as the G-action is ergodic and the algebraic hull for the
G-action is connected. For clarity of exposition we shall assume throughout
sections 2 and 3 that the algebraic hull is indeed connected. In section 4 we
indicate the necessary modifications for treating the general non-connected
case. In the case when the G-action on M is not ergodic, we can decompose
the action into ergodic components and apply superrigidity for cocycles to
each ergodic component. If there is a π̄-simple section where π̄ is conjugate
to π, then there is also a π-simple section. Since there are only finitely
many conjugacy classes of homomorphisms G → J we deduce, without the
assumption of ergodicity, the following.

Lemma 2.3. There is a G-invariant subset X ⊂ M of positive measure, a
homomorphism G → J , and a π-simple section of P |X → X.

We now observe:

Lemma 2.4. We can take the set X ⊂ M in Lemma 2.3 to be L-invariant.

Proof : Let s be the section of P |X → X given by Lemma 2.3. For any b ∈ B,
the section sb(m) = b−1s(bm) is also π-simple for the bundle P |b−1X →
b−1X. In this way, we can extend s to a π-simple section on BX = LX.

Lemma 2.5. Suppose s and t are both π-simple sections for an ergodic G-
space with finite invariant measure. Then there is an element h ∈ ZJ(π(G))
and functions k1, k2 : M → K such that s(m) = t(m)k1(m)hk2(m) a.e.

Proof : Let s(m) = t(m)j(m) where j : M → J . Write

s(gm) = gs(m)π−1(g)c(g, m)

and
t(gm) = gt(m)π(g)−1d(g, m)

where c(g, m), d(g, m) ∈ K ⊂ ZJ(π(G)) and K is compact. Then it follows
that

j(gm) = d(g, m)−1π(g)j(m)π(g)−1c(g, m) . (∗)

Since K centralizes π(G), G acts by conjugation on K\J/K, and if we let
p : J → K\J/K be the natural map, then (∗) implies that p ◦ j : M →
K\J/K is a G-map. Since J and G are algebraic and K is compact, G acts
tamely (i.e. with locally closed orbits) on K\J/K and has algebraic stabi-
lizers. Since the G action on M is ergodic with finite invariant measure,
say µ, so is the action with the push forward measure (p ◦ j)∗µ. It follows
that p ◦ j is essentially constant and that the essential image point is a G-
fixed point. (This follows from the formulation of the Borel density theorem
which asserts for an algebraic action of a semisimple group with no compact
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factors on a variety that finite invariant measures are supported on fixed
points.) Let KhK be such a point. Then π(g)hπ(g)−1 ∈ KhK for all g ∈ G.
Thus G acts on KhK and it is easy to see that for this action G preserves
the product Haar measure. Thus, by Borel density again, G fixes h, i.e.
h ∈ ZJ(π(G)). Since j(m) ∈ KhK for a.e. m, the lemma follows.

Lemma 2.6. Even without the assumption of ergodicity, for any two π-
simple sections s, t we have

s(m) = t(m)j(m)

where j(m) ∈ ZJ(π(G)).

Proof : Apply Lemma 2.5 to each ergodic component.

Lemma 2.7. Consider the situation of Lemmas 2.3, 2.4. Assume ZJ(π(G))
is compact. Let β : B ×X → J be the cocycle corresponding to the action
of B on P |X . Then β is equivalent to a cocycle into ZJ(π(G)).

Proof : Let s be a π-simple section for the action of G. Since B commutes
with G, sb is also π-simple for the G-action, where sb(x) = b−1s(bx). By
Lemma 2.6, sb(x) = s(x)j(b, m), i.e. s(bx) = bs(x)j(b, m). Since j(b, m) ∈
ZJ(π(G)), the lemma follows.

We can now prove Theorem 1.1 for cocompact lattices.

THEOREM 2.8. Theorem 1.1 holds if M = J\H/Γ where Γ is a cocompact
lattice for J\H .

Proof : We apply the above considerations to the action of BG on the prin-
cipal J-bundle H/Γ → J\H/Γ. (We note that B also centralizes J and
hence acts by bundle automorphisms.) Choose π and X as in Lemmas 2.3,
2.4. If π is trivial, we apply the argument of Theorem 2.2. If not, then by
Lemma 2.7, β|B×X is equivalent to a cocycle into a compact subgroup of
J . Exactly as in the proof of Theorem 2.2 (but with the action of B rather
than G), we deduce that there is a set of finite positive measure in H/Γ that
is B-invariant. Applying Moore’s theorem as in the proof of Theorem 2.2
completes the argument.

3. Proof of Theorem 1.1

We now give the additional arguments necessary to prove Theorem 1.1 in
the general case of a compact manifold M locally modelled on J\H . We
begin with some general facts about locally homogeneous manifolds.
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Let M be as in Theorem 1.1. Let Γ = π1(M). Then a classical construc-
tion of the developing map (see [G], e.g.) shows that there is a homomor-
phism Γ → H (the holonomy homomorphism) and a Γ-equivariant local dif-
feomorphism (not necessarily either injective or surjective) M̃ → J\H (with
Γ acting on the right). We view H → J\H as a principal J-bundle (with left
J-action) and pull this back to M̃ to obtain a principal J-bundle P ∗ → M̃
on which Γ acts by principal J-bundle automorphisms. Let P = P ∗/Γ, so
that P → M is a principal J-bundle (with J acting on the left). The map
P ∗ → H is a J × Γ-equivariant local diffeomorphism.

If N is a manifold, we let Vect(N) denote the Lie algebra of smooth
vector fields on N . We identify the Lie algebra h ↪→ Vect(H) as the right-
invariant vector fields. In particular, Γ leaves h pointwise fixed. Since
P ∗ → H is a local diffeomorphism, the Lie algebra h lifts canonically to a
Lie algebra embedding h → Vect(P ∗). We denote the image by hP∗ and
corresponding elements by XP∗ . The Lie algebra jP∗ ⊂ hP∗ is simply the
Lie algebra defined by the left action of J on P ∗. In particular, for X ∈ j,
XP∗ is complete (which is not a priori necessarily true for a general X ∈ h).
Because all X ∈ hP∗ are Γ-invariant, there is a natural induced Lie algebra
of vector fields on P which we denote by hP . Clearly all XP ∈ hP are
non-vanishing. For X ∈ j, XP is complete, the Lie algebra jP corresponding
to the left action of J on P . If X ∈ zh(j), then XP is J-invariant and thus
defines a vector field XM on M . I.e., X 7→ XM is an embedding of Lie
algebras zh(j) ↪→ Vect(M). Since M is compact, we obtain a corresponding

action of ˜ZH(J)◦ on M , and hence on P as well.

We can now use exactly the arguments applying superrigidity for cocy-
cles in section 2 to deduce that there is a 1-parameter -split subgroup, say
α(t) (which, as in section 2, is either B or a subgroup of G), for which there
is a subset Y ⊂ P of finite positive measure (with respect to the natural
smooth measure on P ) that is α(t)-invariant. To show that J is compact
it suffices to show that Y is essentially (i.e. modulo null sets) J-invariant.
Namely, J acts properly on P , and if there is a subset of finite positive
measure that is invariant for a measure preserving proper action, then J is
compact. (Alternatively there is a J-invariant set of finite positive measure
on each fiber of P , and hence a J-invariant subset of J of finite positive
Haar measure. This implies J is compact.)

For the remainder of the proof, we shall identify X ∈ h with XP ∈
Vect(P ). Let f = χY be the characteristic function of Y . Then for X ∈ h,
we can consider the distributional derivative DX(f). To see that Y is J-
invariant, it suffices to see that for all X ∈ j, DX(f) = 0. We claim in fact
that DX(f) = 0 for all X ∈ h. It suffices to show this for X in a set that
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generates h as a Lie algebra, and since the root spaces of α with non-trivial
root have this generating property (as in section 2 by virtue of iii(c) in the
hypothesis of Theorem 1.1), it suffices to show DX(f) = 0 for any such root
vector X of α.

Lemma 3.1. If X is a root vector for α with non-trivial root, then for a.e.
y ∈ Y , the integral curve uy(t), for X through y is defined for all t.

Proof : For y ∈ Y , let r(y) = sup{t ∈ | uy(t) is defined on [0, t)}. We
claim that for a.e. y, r(y) = +∞. If not, then there is a set Z ⊂ Y of
positive measure and R > 0 such that r(y) < R for all y ∈ Z. We can
then choose Z1 ⊂ Z of positive measure and r > 0 such that r(y) > r
for y ∈ Z1. Since α(t) preserves a finite measure on Y , we can apply
Poincaré recurrence and deduce that for a.e. y ∈ Z1, there is a sequence
tn → +∞ such that α(tn)y ∈ Z1. If Ad(α(t))X = eλtX where λ > 0,
then we have r(α(tn)y) > reλtn → +∞. This contradicts r(α(tn)y) < R.
Thus r(y) = +∞ for a.e. y ∈ Y . If λ < 0, we use the same argument
with tn → −∞. A similar argument shows uy(t) is defined for all t < 0,
completing the proof of the lemma.

We can summarize the situation as follows.

Lemma 3.2. Let Y ∗ = {uy(t)y | y ∈ Y, t ∈ , uy the integral curve through
y for X as above}. Then Y ∗ ⊂ P is a subset of (possibly infinite) positive
measure. There is an action of the group {α(t)u(s) | t, s ∈ } on this set
which is measure preserving. The group {α(t)u(s)} is isomorphic to the
ax+ b group, +

× . There is a set of finite positive measure Y ⊂ Y ∗ that
is {α(t)}-invariant.

We now complete the proof of Theorem 1.1.
To see that DX(f) = 0, we want to show that Y is {u(s)}-invariant.

Consider the unitary representation of {α(t)u(s)} on L2(Y ∗). The vector
f ∈ L2(Y ∗) (since Y has finite measure) and is {α(t)}-invariant. By the
unitary representation theory of the ax + b group, this implies that f is
invariant under all {α(t)u(s)}, completing the proof. (See [Z3, Corollary
2.3.7] for precisely this result on the ax + b group.)

Remark 3.3 : Rather than call upon the unitary representation theory of
the ax + b group, one could proceed by adapting the standard uniform
contraction-expansion argument to deduce invariance of f along the fo-
liation given by the non-vanishing vector field X. However, the result
on unitary representations we used is a convenient and easily usable way
of incorporating this argument when one is in a group theoretic context.
An examination of the proof of this representation theoretic result ([Z3,



Vol.5, 1995ON MANIFOLDS LOCALLY MODELLED ON NON-RIEMANNIAN HOMOGENEOUS SPACES9

Corollary 2.3.7]) shows that it is in fact just a Fourier transform version of
the “more direct” contraction-expansion argument.

4. Non-connected Algebraic Hulls

We have two commuting groups G andB acting on a principal J-bundle
π : P → M . Let E be the space of ergodic components for the G-action on
M . For each e ∈ E, let Me be the corresponding component, let Re ⊂ J
be the (real) algebraic hull of the action of G on the principal J-bundle
π−1(Me) → Me. For each e ∈ E, Re is a reductive group with compact
center. (The algebraic hulls are “real algebraic”, i.e. -point of -groups.)
If Re is connected for a set of e ∈ E of positive measure then the argument
in section 2 applies. If not then we proceed as follows.

Lemma 4.1. Suppose B and G commute and we have an ergodic BG action
on a space X and let X → E be the ergodic decomposition into G-ergodic
components. Suppose α : BG × J → J is a cocycle. Let Re ⊂ J be the
algebraic hull of α|G×Xe

, for each e ∈ E. Then
1) Almost all Re, e ∈ E, are equal. Denote it by R.
2) The algebraic hull of α is contained in NJ (R).

Proof : Let j, re be the Lie algebras of J, Re, respectively. The map ϕ : E →
Gr(j)/Ad(J) given by ϕ(e) = re is measurable. It is B-invariant since B
centralizes G. (I.e. the algebraic hulls, Re and Rbe are the “same”, namely
are the same conjugacy class.) Since B is ergodic on E (since GB is ergodic
on X), and Ad(J) acts tamely on Gr(j), ϕ is constant a.e. Thus, we can, by
changing α only up to coboundary, assume α|G×Xe

takes values in a group
Re so that R0

e = R0 are all identical.
Now consider the set S of algebraic subgroups S ⊂ J , s.t. S0 = R0.

Then any element of J that conjugates two such subgroups is in N(R0).
Further, N(R0) acts tamely on S (since this action can be embedded in the
action of N(R0) on finite subsets of J/R0 which is algebraic.) It follows
in a manner similar to the previous paragraph, that all Re are conjugate,
and hence by a cohomology change, we can assume all Re are equal, say
Re = R. This proves (1).

To show (2): Fix b ∈ B and e ∈ E. For x ∈ Xe, let ϕ(x) = α(b, x).
Then since b centralizes G, we have from the cocycle identity:

ϕ(gx)−1α(g, bx)ϕ(x) = α(g, x) . (∗)

This implies that the map ϕ : Xe → R\J/R given by projection of ϕ : X → J
satisfies ϕ(gx) = ϕ(x) for x ∈ Xe. Thus ϕ is constant a.e. Hence, we can
write
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(i) ϕ(x) = θ1(x)j0θ2(x) where θi : Xe → R and j0 ∈ J .
We also then have

(ii) ϕ(gx) = θ1(gx)j0θ2(gx)
and substituting (i) and (ii) into (∗) and simplifying, we have

θ1(gx)−1α(g, bx)θ1(x) = j0θ2(gx)α(g, x)θ2(x)−1j−1

0 .

In particular j0β(g, x)j−1

0 ∈ R, where β is the cocycle (equivalent to α) given
by β(g, x) = θ2(gx)α(t, x)θ2(x)−1. Since the algebraic hull of β equals R
and β takes values in R, we deduce in particular that the Zariski closure of
the group generated by {β(g, x)} is in fact R. Thus j0 ∈ NJ (R) and from
equation (1), we deduce α(b, x) ∈ NJ (R). This holds for all (b, x) ∈ B ×X,
and since α(G ×X) ⊂ R, assertion (2) is proved.

Now return to our geometric situation in which G is simple of higher
-rank. Fix an ergodic component X ⊂ M for the B ·G action. Let R be

as in the lemma, i.e. the algebraic hull of the G action on a.e. G-ergodic
component of X. Then, by the lemma, the algebraic hull for the action of
B · G on π−1(X) → X is contained in NJ (R). By superrigidity, we know
that R0 is isomorphic to π(G) (in which π(G) is of finite index) times a
compact subgroups for some homomorphism π.

Notice that:

Lemma 4.2. If Zj(π(G)) is compact, then NJ (R)/R0 is a compact group.

We let α : B · G × X → J be the cocycle corresponding to the action
on π−1(X), with Im(α) ⊂ NJ (R). Let X = X ×α NJ (R)/R0. Thus, B ·G
acts preserving the product measure. (However the action of BG on X is
not necessarily ergodic.) Let α be the lift of α to X. Thus α is the cocycle
of the J-bundle

P
↓
X

where P is the pull-back to X of π−1(X) → X. Standard arguments (see
[Z3, Proposition 9.2.6]) show that for each ergodic component of the action
of G on X , the algebraic hull is R0. We can thus obtain a π-simple section on
each ergodic component view superrigidity. Arguing as in earlier sections,
this implies that there is either a B or G finite invariant measure on P
that projects to a set of positive measure on X. Thus, the same is true for
P → M .

Let ν be this finite measure on P . This can be described as
∫ ⊕

m∈M0

νm

where M0 ⊂ M is of positive measure and is B or G-invariant. Fixing a
positive definite inner product on j (=Lie algebra of J) defines a B · G



Vol.5, 1995ON MANIFOLDS LOCALLY MODELLED ON NON-RIEMANNIAN HOMOGENEOUS SPACES11

invariant Riemannian metric along the fibers of P . Fix ε, r > 0. Let Aε,r
m ⊂

π−1(m) be the union of all balls of radius ε in π−1(m) whose νm-measure
is at least r. Then for suitable ε, r,

⋃
m Aε,r

m will be a B or G-invariant set
of positive finite Lebesgue measure. The argument now proceeds as before.
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