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Abstract. In [23, 25] Guichard and Wienhard introduced the no-
tion of Θ-positivity, a generalization of Lusztig’s total positivity to
real Lie groups that are not necessarily split.

Based on this notion, we introduce in this paper Θ-positive
representations of surface groups. We prove that Θ-positive repre-
sentations of closed surface groups are Θ-Anosov. This implies
that Θ-positive representations are discrete and faithful and that
the set of Θ-positive representations is open in the representation
variety.

We further establish important properties on limits ofΘ-positive
representations, proving that the set of Θ-positive representations
are closed in the set of representations containing a Θ-proximal
element. This is used in [3] to prove the closedness of the set of
Θ-positive representations.

1. Introduction

An important feature of Teichmüller space, seen as a connected com-
ponent of the space of representations of the fundamental group of a
closed connected orientable surface S of genus at least 2 in PSL2(R), is
that it consists entirely of representations which are discrete and faith-
ful. These representations are moreover quasi-isometries from π1(S)
to PSL2(R). This situation does not extend to the case of any semi-
simple group, notably for simply connected complex ones, where the
representation variety is irreducible as an algebraic variety [35].
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However, this phenomenon was shown to happen for some groups
of higher rank. Two families of representation varieties of the funda-
mental group of S have been singled out as they contain connected
components consisting entirely of discrete and faithful representa-
tions:

• Hitchin components when G is a real split group [17] (the
Hitchin components were defined in [28]; the case of SL3(R)
was treated in [13] and the case of SLn(R) in [30]),
• spaces of maximal representations, which are defined when G

is Hermitian [12] ([19] proves the case of SL2(R), [10] studies
maximal representations into symplectic groups).

When G is PSL2(R), the Hitchin component and the space of maximal
representations both agree with the Teichmüller space.

The study of these two families is closely related to the theory of
Anosov representations as introduced in [30, 24]. Being Anosov is a
notion defined for any reductive Lie group and with respect to a choice
of a parabolic subgroup. Every Anosov representation is in particular
faithful, discrete and a quasi-isometric embedding [31, 24, 15].

Representations in the Hitchin components as well as maximal
representations can be characterized in terms of equivariant curves
from the boundary at infinity of π1(S) into an appropriate flag variety,
which preserve some positivity. Lusztig’s total positivity [33] was
systematically used by Fock and Goncharov [17] in their study of
moduli spaces of local systems which leads, together with insights
of [30], to the characterization of Hitchin components in these terms.
The case of maximal representations is based on the maximality of
the Maslov index and related to Lie semigroups in G [12].

In [25, 23], Guichard and Wienhard introduced the notion of Θ-
positivity. This notion extends Lusztig’s total positivity to generalized
flag manifolds associated with the parabolic defined by a set Θ of
simple roots.

They classified all possible simple Lie groups that admit aΘ-positive
structure. These include real split Lie groups, for which Θ-positivity
is Lusztig’s total positivity, Hermitian Lie groups of tube type, where
Θ-positivity is given by the maximality of the Maslov index, but also
two other families of Lie groups, namely the family of classical groups
SO(p, q) —with p , q— and an exceptional family consisting of the
real rank 4 form of F4, E6, E7, and E8 respectively. They conjectured
that Θ-positivity provides the right underlying algebraic structure
for the existence of components made solely of discrete and faithful
representations [37, Conjecture 19].
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A Θ-positive structure on G implies in particular the existence of a
positive semigroup in the unipotent radical of the parabolic group PΘ,
which then leads to the notions of positive triples and positive quadruples
(as well as positive tuples) in the flag variety FΘ ≃ G/PΘ. In the basic
example of G = PSL2(R) and FΘ = P1(R), a triple is positive if it
consists of pairwise distinct points and a quadruple is positive if it is
cyclically ordered.

Let us give a geometric picture of positivity in the flag variety FΘ.
For this let a and b be two points in FΘ which are transverse to
each other. Then Θ-positivity provides the existence of preferred
connected components of the set of all points in FΘ that are transverse
to both a and b. These preferred components are called diamonds
(with extremities a and b). They are several, at least two, disjoint
diamonds with given extremities. The semigroup property alluded
to before translates into a nesting property of diamonds: if c is a point
in a diamond V(a, b) with extremities a and b, then there is exactly
one diamond V(c, b) (with extremities c and b) included in V(a, b).
These nesting properties of diamonds play an important role in our
arguments.

If a and b are transverse, and c belongs to a diamond with extrem-
ities a and b, we say the triple (a, b, c) is positive. Similarly, one can
define positive quadruples using configurations of diamonds (see
Figure 2 and Definition 2.10). We show in Section 3 that being positive
is invariant under all permutations for a triple, and invariant under
the dihedral group for a quadruple.

We define a map ξ from a cyclically ordered set A to FΘ to be positive
if ξ maps triples of pairwise distinct points to positive triples and
cyclically ordered quadruples to positive quadruples.

This allows us to define the notion of a Θ-positive representation: A
representation ρ : π1(S)→ G is Θ-positive if there exist a non-empty
subset A of ∂∞π1(S), invariant by π1(S), and a ρ-equivariant positive
boundary map from A to FΘ.

We prove

Theorem A. Let G be a semi-simple Lie group that admits a Θ-positive
structure. Let ρ be a Θ-positive representation from π1(S) to G.

Then ρ is a Θ-Anosov representation.

As a direct consequence we obtain that a Θ-positive representation
is faithful with discrete image, its orbit map into the symmetric
space is a quasi-isometric embedding and the boundary map extends
uniquely to a Hölder map [31, 24, 15, 9].
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Theorem A provides a general proof of the Anosov property for
all Hitchin representations and all maximal representations. This is
especially relevant for the case of the Hitchin component of SO(p, p)
and of F4, E6, E7, and E8 and the case of maximal representations
into the exceptional Hermitian Lie group of tube type, which cannot
be tightly embedded into Sp2n(R) [11, 26, 27]. The Anosov property
was established for all maximal representations which tightly embed
into Sp2n(R) in [10] and for the Hitchin component of SLn(R) in [30],
from which follows the Anosov property for the Hitchin components
of Sp2n(R), SO(p, p + 1), and G2. Fock and Goncharov established a
related key property: for every Hitchin representation, there exists
a continuous, transverse (and positive) boundary map [17, Theo-
rem 7.2]; from this, the Anosov property can be established for Zariski
dense Hitchin representations using for example [24, Theorem 4.11].

Using their work on amalgamation of Anosov representations, Dey
and Kapovich [16, Section 6] established also the Anosov property
for all Hitchin components for all real split groups.

Using the openness of the set ofΘ-Anosov representations, a further
consequence of Theorem A is the following

Corollary B. The set of Θ-positive representations HomΘ−pos(π1(S),G) is
an open subset in the set of all homomorphisms Hom(π1(S),G).

To show that the set ofΘ-positive representation indeed give rise to
higher Teichmüller spaces it remains to prove that the set ofΘ-positive
representations is closed. We establish essential steps in this direction.
For this we consider the set HomΘ(π1(S),G) of homomorphisms ρ
ofπ1(S) in G such that the image of ρ contains aΘ-loxodromic element
(i.e. an element having both attracting and repelling fixed points in
the flag variety FΘ associated to Θ). Observe that Proposition 6.3
clarifies the relation with the Zariski closure, and in particular the set
HomΘ(π1(S),G) contains representations with Zariski dense images.
We establish in Proposition 6.1 that HomΘ−pos(Γ,G) is a subset of
HomΘ(π1(S),G). We show

Theorem C. The set of Θ-positive representations HomΘ−pos(π1(S),G) is
a nonempty union of connected components of HomΘ(π1(S),G).

In the case when G is locally isomorphic to SO(p, q), p ⩽ q, Beyrer
and Pozzetti [4] recently proved the closedness of the set of Θ-positive
Anosov representations in Hom(π1(S),G), thus by Theorem A also
the closedness of the set of Θ-positive representations. They derive
this as a consequence of a family of collar lemmas and fine properties
of the boundary maps they establish. In [3], together with Beyrer and
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Pozzetti, we prove collar lemmas in full generality for Θ-positivity,
which in combination with Theorem C establishes that the set of
Θ-positive representations is closed in Hom(π1(S),G). Thus with
Corollary B and Theorem A that Θ-positive representations give rise
to connected components consisting entirely of discrete and faithful
representations.

Note that special Θ-positive representations arise from positive
embeddings of SL2(R) into G. These positive embeddings of SL2(R)
can be produced

explicitly using specific “positive” nilpotent element in the Lie
algebra of G. They have the property that the embedding induces
a positive map from P1(R) into FΘ. We call the image of such a
map a positive circle. Every group G admitting a Θ-positive structure
contains a special (conjugacy class of) Θ-principal SL2(R). The circles
associated to this Θ-principal SL2(R) play an important role in some
of our arguments. Precomposing a positive embedding SL2(R) into G
with a discrete embedding ofπ1(S) into SL2(R) , we obtain aΘ-positive
representation.

Recently, Bradlow, Collier, García-Prada, Gothen, and Oliveira [7]
developed the theory of magical sl2-triples, which is very closely
related to the theory of Θ-positivity. In fact a real simple Lie group is
associated to a magical sl2-triple if and only if it admits a Θ-positive
structure. Using methods from the theory of Higgs bundles, they
parametrize special connected components Pe(S,G), called Cayley
components. We expect these connected components Pe(S,G) to
consist entirely of Θ-positive representations, and furthermore to
coincide with the set of Θ-positive representations. We discuss the
relation between Pe(S,G) and Θ-positive representations in Section 7.

Acknowledgements: We thank Michel Brion, Steve Bradlow, Brian
Collier, Beatrice Pozzetti, and Jérémy Toulisse for interesting dis-
cussions regarding the topics of this paper. We also thank Nicolas
Tholozan and Tengren Zhang for pointing out mistakes in previous
versions.
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previous version.

Outline of the paper: In Section 2, we recall the necessary algebraic
material from [25, 23] and introduce the main definitions: diamonds,
positive configurations, positive circles and positive maps. In Sec-
tion 3, we prove three propositions concerning combinatorial proper-
ties of configurations, proper inclusion of diamonds and extension
of positive maps —some of the properties proved here are also in
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[23], but the proofs in the present paper are geometric, while those
in [23] are algebraic. In Section 4, we introduce the diamond metric
on diamonds and establish its properties. With these preparations
we prove Theorem A and Corollary B in Section 5, Theorem C in
Section 6. In Section 7 we discuss the connection with the Cayley
components introduced in [7] .
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2. Definitions

2.1. Lie algebra notations. Let G be a semi-simple group.
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The roots of G are the nonzero weights under the adjoint action
of a Cartan subspace a on the Lie algebra g of G. They form a root
system Σ ⊂ a∗ (nonreduced in some cases) and the choice of a linear
ordering on a∗ gives rise to the set Σ+ of positive roots, and to the
set ∆ of simple roots. The α-weight space will be denoted by gα ⊂ g.

The parabolic subgroups of G are the subgroups conjugated to
one of the standard parabolic subgroups PΘ (for Θ varying in the
subsets of ∆); namely PΘ is the normalizer in G of the Lie algebra
uΘ B

⊕
α∈Σ+∖span(∆∖Θ) gα. The unipotent radical of PΘ is the subgroup

UΘ = exp(uΘ). A parabolic subgroup is its own normalizer so that the
space FΘ of parabolic subgroups conjugated to PΘ is isomorphic to
G/PΘ.

The space FΘ is also naturally G-isomorphic to the G-orbit (for the
adjoint action) of uΘ in the space L of Lie subalgebras of g. The group
Aut(g) of automorphisms of g also acts on L and the actions of G and
of Aut(g) on this space are related via the adjoint action seen as an
homomorphism G→ Aut(g). For ψ in Aut(g) and for u in the G-orbit
of uΘ (i.e. u belongs to FΘ), the algebra ψ(u) may not belong to FΘ;
in fact ψ(u) belongs to Fψ∗(Θ) where ψ∗ : ∆ → ∆ denotes the action
of ψ on the set of simple roots (or on the Dynkin diagram). There
is thus a subgroup Aut0(g) of Aut(g) that acts (transitively) on FΘ.
This group Aut0(g) has better transitive properties than G, e.g. it will
act transitively on the diamonds that are introduced later. We will
therefore use several times Aut0(g) instead of G.

Two parabolic subgroups P and P′ are called transverse or opposite
if their intersection P ∩ P′ is a reductive subgroup (i.e. the unipotent
radical of this intersection is trivial); this is equivalent to having
UniRad(P) ∩ P′ = {1}. In that case, there exists Θ ⊂ ∆ such that the
pair (P,P′) is conjugated to (PΘ,P

opp
Θ

) where Popp
Θ

is the normalizer of⊕
α∈Σ+∖span(∆∖Θ) g−α. The intersection LΘ B PΘ ∩ Popp

Θ
is a Levi factor

of PΘ (and of Popp
Θ

).
We will always work with a parabolic subgroup P ≃ PΘ such that

PΘ is conjugated to its opposite Popp
Θ

; in this situation it makes sense
to look at transverse elements in FΘ ≃ G/PΘ. In particular we will
use the following notation, for x in FΘ,

PxB Stab(x) ,
UxBUniRad(Px) ,
ΩxB{y ∈ FΘ | y is transverse to x} ,
SxBFΘ ∖Ωx .
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We will sometimes use that, if a and b are transverse points, then
La,b B Pa ∩ Pb is a Levi factor of Pa and Pb. Recall thatΩx is an open
orbit of Ux and that Sx is a proper algebraic subvariety of FΘ.

Given a point a in FΘ, a unipotent pinning, or U-pinning at a, is an
identification s of UΘ with Ua that exponentiates an isomorphism
from uΘ to ua which itself is induced by the restriction of an automor-
phism of the Lie algebra g (i.e. an element of Aut0(g)). Observe that
there are finitely many U-pinnings up to the action of LΘ.

2.2. Cones and semigroup.

Definition 2.1. [23, Theorem 12.2] A positive structure with respect
to FΘ (or a Θ-positive structure) is a semigroup N of UΘ such that,
denoting x and y the points of FΘ whose stabilizers are PΘ and Popp

Θ
respectively, N · y is a connected component of Ωx ∩Ωy.

In this case, N is invariant by conjugation by the connected compo-
nent L◦

Θ
of LΘ and is a sharp semigroup: for any h, k in N, if hk = 1,

then h = k = 1 (i.e. the only invertible element in N is the identity
element).

We shall see that given a and b transverse to each other in FΘ and
an identification of UΘ with Ua (i.e. a U-pinning) which sends N to a
subgroup Na of Ua, then Na · b is a connected component of Ωa ∩Ωb.

In [23] it is proved that, up to the action of Aut0(g), the semigroup N
in the definition is unique.

We first present some conclusions of the construction of the semi-
group N that we are going to use in this paper, then concentrate on
the notions of diamonds and positive configurations that play a crucial
role in this paper.

2.2.1. The parametrization of the positive semigroup. Theorem 4.5 of [25]
and Theorem 1.3 of [23] give a precise description of the possible
parametrizations of the semigroup N. We recall here the material
necessary for our purpose.

Fact 2.2. There exist N ⩾ 1 and C a L◦
Θ

-invariant cone in (uΘ)N such that
the map

(uΘ)N
−→ U

(x1, . . . , xN) 7−→ exp(x1) · · · exp(xN)

induces by restriction a L◦
Θ

-equivariant diffeomorphism

Ψ : C −→ N .
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Furthermore the stabilizer in L◦
Θ

of any point h in C, and therefore of any
point n in N, is a compact subgroup of L◦

Θ
.

The closure C is also L◦
Θ

-invariant and Definition 2.1 implies that
the cone C is salient, i.e. the intersection of C and −C is reduced to {0}.

Remark 2.3. More precisely, for every α in Θ an L◦
Θ

-invariant cone Cα

has been chosen in the L-irreducible factor of uΘ corresponding to α
(and Cα is open in that factor) and we have that C = C1 ×C2 × · · · ×CN
where N is the length of the longest element in a finite Coxeter group
associated with Θ and, for every i = 1, . . . ,N, Ci is one of the cones Cα

[23, Theorem 1.3].

2.3. Diamonds. Let a and b be two transverse points in FΘ.

Definition 2.4. A diamond with extremities a and b, associated with a
U-pinning sa at a, is the subset

sa(N) · b .

The terminology diamond was coined in [32] in the context of
G = SO(2,n). To give an idea, in that context FΘ is covered by
charts which are identified with the Minkowski space R1,n−1. Then
a diamond is, in a suitable chart, the intersection of the future time
cone F+ of a, with the past time cone F− of b.

In that case there are precisely two diamonds with given extremities.
More generally, from [23, Corollary 13.5], it follows that the number
of diamonds with given extremities is 2♯Θ.

Remark 2.5. We observe that diamonds are semi-algebraic sets and
make sense over a real closed field.

We list some first properties of diamonds that are direct conse-
quences of the definition or are proved in [23, Section 13].

Proposition 2.6. (1) A diamond with extremities a and b is a connected
component of Ωa ∩Ωb.

(2) Given a diamond sa(N) · b, there exists a U-pinning sb at b such that

sa(N) · b = sb(N) · a .

(3) Given any diamond V(a, b) = sa(N) · b then a belongs to the closure
of V(a, b).

Proof. The first item is a consequence of [23, Theorems 1.3 and 1.4].
The second item is a consequence of [23, Proposition 13.1].

The third item follows from the fact that the identity belongs to the
closure of N.

□
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We also remark that

Proposition 2.7. Given a diamond V there is a unique diamond V∗ satisfying
the following property: given any U-pinning sb at b, if V = sb(N) · a then
V∗ = sb(N−1) · a. The diamond V∗ is called the opposite diamond to V (one
says also that the diamond V∗ is opposite to V). A diamond and its opposite
are disjoint, more precisely any point in V is transverse to any point in V∗.

Proof. We just have to remark that the definition of the opposite
diamond does not depend on the choices. More precisely, given two
U-pinnings sa and sb, if

V = sb(N) · a = sa(N) · b ,

then
sb(N−1) · a = sa(N−1) · b ;

this holds by [23, Section 13].
The last point comes from [25, Remark 4.9] and from [23, Section

13.6]. In particular, if x ∈ V, then x = sb(n) · a with n ∈ N, while if
y ∈ V∗, then y = sb(m−1) · a with m ∈ N. Thus

x = sb(nm) · y .

Since N is a semigroup, this means that x belongs to a diamond with
extremities y and b. By the first point of Proposition 2.6, x is transverse
to y. □

As a consequence of the proposition, if c is an element in a diamond
with extremities a and b, we will denote by

• Vc(a, b) the unique diamond containing c with extremities a
and b.

Note that, for any d in Vc(a, b), one has Vd(a, b) = Vc(a, b); also
Vc(b, a) = Vc(a, b).

In addition, V∗c(a, b) is the diamond opposite to the diamond con-
taining c.

As an immediate consequence of the semigroup property we obtain
the following result that we shall use freely:

Lemma 2.8 (Nesting property). Let c be a point in a diamond with
extremities a and b.

(1) Then there exists a unique diamond V(a, c) with extremities a and c
such that

V(a, c) ⊂ Vc(a, b) .
Furthermore there is a neighborhood U of a in FΘ such that

U ∩ V(a, c) = U ∩ Vc(a, b).
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(2) Moreover, if V(c, b) is the unique diamond with extremities c and b
included in Vc(a, b) then

V(a, c) ∩ V(c, b) = ∅ .

(3) Finally a belongs to the opposite diamond V∗(c, b) and the diamond
V(a, c) is contained in V∗(c, b).












































a

cb

Figure 1. The nesting of V(c, b) in Vc(a, b)

The proof of Lemma 2.8 will use the following statement.

Lemma 2.9. Let a and b be two transverse points of FΘ and V0 a diamond
with extremities a and b. Then, there exists a basis B of neighborhoods of a
such that for every U in B, the intersection U ∩ V0 is connected and non
empty.

Proof. Up to acting by an element of G, we can assume that the
stabilizer of b is PΘ and that the stabilizer of a is Popp

Θ
. The map from

uΘ to Ωb given by x 7→ exp(x) · a is a LΘ-equivariant diffeomorphism.
Consider the decomposition uΘ =

⊕
i Vi into LΘ-irreducible factors.

Let us fix an auxiliary Euclidean norm ∥·∥ on uΘ such that the previous
decomposition is orthogonal. There is a one-parameter subgroup
Λ = {λt}t∈R of LΘ such that, for all i and for all v in Vi, λt · v = enitv for
some positive numbers ni.

Let S be the unit sphere in uΘ for ∥ · ∥. Then the map from S ×R to
Ωb ∖ {a}, given by

g : (v, t) 7→ exp(λt · v) · a ,

is a diffeomorphism satisfying that for all v in S, all real numbers t
and s

g(v, t + s) = λs · g(v, t) .
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Thus since Ωa ∩Ωb is Λ-invariant we have the following property:
for all v in S and all t, t′ in R, g(v, t) belongs toΩa ∩Ωb if and only if
g(v, t′) belongs to Ωa ∩Ωb.

Thus, there is a connected open Ω0 in S, such that the diamond
V0 —being a connected component of Ωa ∩ Ωb by the first item of
Proposition 2.6— is the image of Ω0 ×R by the map g. Let finally Ot
be the images of S × (−∞, t) by g and Ut = Ot ∪ {a}. Then {Ut}t∈R is a
family of neighborhoods of a with the wanted property. □

Proof of Lemma 2.8. Let us first construct diamonds V0(c, b) and V0(a, c)
included in Vc(a, b). Let us write Vc(a, b) = Nb · a = Na · b and consider
the diamonds

V0(c, b) = Nb · c , V0(a, c) = Na · c .

By construction c = nb · a = na · b with nb ∈ Nb and na ∈ Na. By the
semigroup property

Nb · nb ⊂ Nb , Na · na ⊂ Na ,

which leads to the inclusions

V0(c, b) ⊂ Vc(a, b) , V0(a, c) ⊂ Vc(a, b) .

We now prove that these specific diamonds are disjoint. By the
construction and the inclusion above both V0(a, c) and V0(b, c) are
connected components of Vc(a, b) ∖ Sc. It follows that they are either
equal or disjoint. By the sharpness property of N, the identity element
does not belong to the closure of N ·na. Let thus O be an open set in Ua
containing the identity and with trivial intersection with N · na. Then
O · b is a neighborhood of b that does not intersect Na · c = Nana · b.
Thus b does not belong to the closure of V0(a, c). From the last item
of Proposition 2.6, V0(a, c) is hence different from V0(c, b) and by the
above discussion they are disjoint:

V0(a, c) ∩ V0(b, c) = ∅ .

This concludes item (2) of the lemma.
Let us prove next the existence of the neighborhood U. Denote for

any open set V, ∂V B V ∖ V and denote Vc the complementary of V
and recall that

∂(V ∩W) ⊂V ∩W ∖ (V ∩W)

=V ∩W ∩ (Wc
∪ Vc)

=(V ∩W ∩Wc) ∪ (V ∩W ∩ Vc)

=(∂V ∩W) ∪ (∂W ∩ V) .
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Let V(a, c) be any diamond with extremities a and c included in Vc(a, b).
Let U be a neighborhood of a such that

• the intersection of U with Sc ∪ Sb is empty,
• Vc(a, b) ∩U is connected and non empty.

The existence of this open set U is guaranteed by Lemma 2.9. From
the first item we have that

∂(V(a, c) ∩U) ⊂ ((∂V(a, c)) ∩U) ∪ (V(a, c) ∩ ∂U) ⊂ (Sa ∪ ∂U) .

From the inclusion V(a, c) ⊂ Vc(a, b) we have

∂(V(a, c) ∩U) ⊂ Vc(a, b) ∩U .

Since Sa ∪ ∂U is included in the complementary of Vc(a, b) ∩ U we
furthermore have

(Sa ∪ ∂U) ∩ (Vc(a, b) ∩U) ⊂ ∂(Vc(a, b) ∩U) .

Thus combining these inclusions, we get

∂(V(a, c) ∩U) ⊂ (Sa ∪ ∂U) ∩ (Vc(a, b) ∩U) ⊂ ∂(Vc(a, b) ∩U) .

Now a simple connectedness argument show that if A and B are two
open sets, with B connected, A ⊂ B and ∂A ⊂ ∂B, then A = B. Thus,
in our case,

V(a, c) ∩U = Vc(a, b) ∩U , ∅.
Since this is true for all diamonds with extremities a and c included
in Vc(a, b) and since diamonds with the same extremities are either
disjoint of equal, we finally conclude that there is a unique diamond
with extremities a and c included in Vc(a, b). This concludes item (1)
of the lemma.

For the last item, observe that

a = n−1
b c ∈ N−1

b c = V∗(c, b) .

Since a belongs to the closure of V(a, c), we have hence V(a, c) ∩
V∗(c, b) , ∅. Furthermore V(a, c) ⊂ Ωc and V(a, c) ⊂ V(a, b) ⊂ Ωb; this
means that the connected set V(a, c) is contained inΩa∩Ωb. Therefore
V∗(b, c) is the connected component ofΩa ∩Ωb containing V(a, b): this
is the sought for inclusion. □

2.4. Positive configurations. The following definition plays a central
role in this article:

Let p ⩾ 3 and equip {1, . . . , p}with the usual cyclic order.

Definition 2.10 (Positive configuration). We say that a configu-
ration (a1, . . . , ap) in Fp

Θ
is positive, if there exist diamonds Vi, j with

extremities ai and a j for all i , j such that
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(1) Vi, j = V∗j,i,
(2) a j belongs to Vi,k, if (i, j, k) is cyclically oriented,
(3) we have Vi, j ⊂ Vi,k and V j,k ⊂ Vi,k, if (i, j, k) is cyclically oriented.

Figure 2. A positive 5-configuration and some diamonds

Proposition 3.1 will give easier criteria to understand positive triples
and quadruples and will show that the definition is equivalent to the
definition given in the introduction.

Observe that, by properties (2) and (1) above, the choice of Vi,k
among diamonds with extremities ai and ak is forced by the cyclic
ordering. Furthermore, the fact that Vi,k does not depend on the
index j between i and k involves the positivity of a subquadruple. It
thus follows that if (a1, . . . , ap) is such that every cyclically oriented
subquadruple is positive then (a1, . . . , ap) is positive.

By construction, every subconfiguration of a positive configuration
is positive. On the real projective line, a configuration of p points
with p > 3 is positive exactly if it is cyclically oriented, and a triple is
positive if it consists of pairwise distinct elements.

Moreover

Proposition 2.11. Positivity of configurations is invariant under cyclic
permutation and under the order reversing permutation. In particular
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(1) to be positive for a triple is invariant under all permutations,
(2) to be positive for a quadruple is invariant under the dihedral group.

Proof. The definition is invariant under cyclic transformations. If σ0 is
the reverse ordering, we choose the new diamonds V◦i, j = V∗σ0(i),σ0( j). □

2.5. Positive circles and PSL2(R). Let H be a subgroup in G locally
isomorphic to PSL2(R). An H-circle in FΘ is a closed H-orbit, it can
be parametrized by a circle map which is a H-equivariant map from
P1(R) to FΘ. The group H is proximal if it contains a proximal element
in FΘ, i.e. an element having an attracting fixed point on FΘ.

Proposition 2.12 (H-circle). Given a positive structure, there existsH ,
an Aut0(g)-orbit of pairs (H,C) such that H is a subgroup of G locally
isomorphic to PSL2(R), C is an H-circle, satisfying the following properties

(1) H has a compact centralizer in G;
(2) Given a diamond V with extremities a and b, there exists (H,C) inH

with C containing a and b, and such that C intersects the diamond V.
Furthermore
• If c is a point in C different from a and b, then (a, c, b) is a positive

triple and

Vc(a, b) ∩ C and V∗c(a, b) ∩ C,

are the two connected components of C ∖ {a, b}.
• If d belongs to the connected component of C ∖ {c, b} not contain-

ing a, then
Vd(b, c) ⊂ Vd(a, b) .

(3) Given any three pairwise distinct points a, b, and c in FΘ. Then
there is at most one element (H,C) ofH such that C contains a, b,
and c.

Note that in point (2) V needs to be equal to Vc(a, b) or V∗c(a, b).

Proof. Let sb be a U-pinning at b such that V = sb(N) · a. One just picks
the Lie subgroup associated with an sl2-triple given by the Jacobson–
Morozov theorem applied to a nilpotent element x chosen so that
N2 = sb(exp(R>0x)) is included in N. The corresponding sl2-triple
is the Θ-principal sl2-triple introduced in [23, Section 7]. Item 1 is
immediate.

For item (2), the existence is immediate by Aut0(g)-transitivity. The
two connected components of C ∖ {a, b} are N2 · a and N−1

2 · a and are
thus included in diamonds opposite to each other.
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Moreover, for the last statement in item 2, let us write c = n · a
with n in N2. Observe that, by a deformation argument

Vn·d(c, b) = Vd(c, b) and Vd(a, b) = Vc(a, b) .

Then Vd(a, b) = N · a and

Vd(c, b) = Vn·d(c, b) = nVd(a, b) = nN · a ⊂ N · a = Vd(a, b) ,

where the inclusion holds by the semigroup property.
For the item (3), let us consider Z the stabilizer of a, b, and c. Then

Z is precisely the stabilizer in La,b of the element n in N2 such that
c = n · a. Since H is determined by N2, this implies that Z is in fact the
centralizer of H. This concludes the proof.

□

Remark 2.13. More detail on the construction of the Θ-principal
sl2-triple can be found in [23, Section 7]. Note that there are others
sl2-triples which induce positive maps from P1(R) to FΘ. For example,
if G is a split real Lie group, the principal sl2-triple gives rise to such
a map.

We fix once and for all such an Aut0(g)-orbitH .
As an important example of positive configuration, we have

Proposition 2.14. Let (H,C) be inH . Any cyclically ordered configuration
of points on C is positive.

Proof. It is enough to prove the results for triples and quadruples.
Let first (a0, a1, a2) be a triple on C. By item (2) in Proposition 2.12,

ai+1 belongs to a diamond with extremities ai and ai+2. Let us define
(where indices are taken modulo 3)

Vi,i+2 B Vai+1(ai, ai+2) ,Vi,i+1 B V∗i+1,i .

Then the properties of Definition 2.10 are obviously satisfied and
the triple is positive.

Let now consider (a0, a1, a2, a3) a quadruple on C, such that ai+1 and
ai+3 belongs to different components of C ∖ {ai, ai+2}. Observe that by
a deformation argument we have

Vai+2(ai, ai+3) = Vai+1(ai, ai+3) .

We now define

Vi,i+2 B Vai+1(ai, ai+2) ,
Vi,i+3 B Vai+2(ai, ai+3) = Vai+1(ai, ai+3) ,
Vi,i+1 B V∗i+1,i .
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It then follows from item (2) of Proposition 2.12 that Vai+3(ai, ai+2) =
V∗ai+1

(ai, ai+2), and thus that Vi+2,i = V∗i,i+2.
From the equality Vi,i+1 = V∗i+1,i and from item (2) of Proposition 2.12,

Vi+1,i+2∩C is the connected component of C∖ {ai+1, ai+2} not containing
ai and ai+3. Let d be in Vi+1,i+2 ∩ C, then

Vi+1,i+2 = Vd(ai+1, ai+2) ⊂ Vd(ai, ai+3) = Vi,i+3 ,

where, for the inclusion, we applied twice the last part of the item (2)
of Proposition 2.12.

This concludes the proof. □

2.6. Positive maps. Let S be a cyclically ordered set containing at
least three points.

Definition 2.15 (Positive map). A map f from S to FΘ is positive if the
image of every cyclically ordered quadruple is a positive quadruple,
and the image of every cyclically ordered triple is a positive triple.1

Observe then that the image of every cyclically ordered configura-
tion by a positive map is a positive configuration.

By Proposition 2.14, for any (H,C) in H , C —seen as a map
from P1(R) to FΘ— is positive.

3. Properties of positivity

We prove in this section, three main propositions concerning posi-
tivity:
• The first one, Proposition 3.1, gives various combinatorial properties

of positive triples, quadruples and configurations;
• The second one, Proposition 3.8, gives information about the limit

of diamonds included in a given diamond;
• The last one, Proposition 3.13, shows that positive maps share the

property of monotone maps: they coincide on a dense subset with
a left-continuous positive map.

We also establish that certain elements in G are FΘ-proximal using
positivity.

Several of the combinatorial properties of positive configurations
have been addressed in [23] with a more algebraic approach, for
reader’s convenience, we provide here geometric proofs using the
nesting properties of diamonds.

1When S has more than three points, the second requirement follows from the
first



18 O. GUICHARD, F. LABOURIE, AND A. WIENHARD

3.1. Combinatorics of positivity. The next proposition gives funda-
mental properties of positive triples and quadruples.

• The first one gives an easy criterion for positivity of triples,
while the second and third concern quadruples. In particu-
lar, this shows that the definition of positivity given in the
introduction is equivalent to Definition 2.10.
• The fourth one gives a recursive way to build positive config-

uration.
• The fifth and sixth give “exclusion” properties that are impor-

tant in the study of positivity though they are not used in this
paper.

We are going to prove this proposition and its corollary in the
context of a group defined over R, although by Tarski–Seidenberg
Theorem, the statements will be true over every real closed field.

Proposition 3.1 (Combinatorial properties). (1) Assume that a and b
are transverse and that c belongs to a diamond with extremities a and b,
then (a, b, c) is positive.

(2) Assuming (a, x0, b) and (a, y0, b) are positive then (a, x0, b, y0) is positive
if and only if Vx0(a, b) = V∗y0

(a, b).
(3) Assuming (a, c, b) is positive and d belongs to V∗a(c, b), then (a, c, d, b) is

positive.
(4) More generally, assume that (x0, x1, . . . , xp) is a positive configuration

and that y ∈ V∗x2
(x0, x1) then

(x0, y, x1, . . . , xp) ,

is a positive configuration.
(5) If (a, b, c, d) is positive, then (a, c, b, d) is not positive.
(6) Let x0, x1, and x2 be three points such that (a, xi, b) is positive (i = 0, 1, 2),

then the three quadruples (a, x0, b, x1), (a, x1, b, x2), and (a, x2, b, x0)
cannot all be positive.

Finally we have,

Corollary 3.2 (Necklace property). Let (a, b, c) be a positive triple. Let
α, β, and γ be elements of Va(b, c), Vb(a, c), and Vc(a, b) respectively. Then
the triple (α, β, γ) is positive.

The proof of this proposition and of Corollary 3.2 will be given in
Section 3.1.3. It is important to remark that all these properties are
true for configurations in P1(R).

3.1.1. Triples and quadruples. Before addressing the proof of Proposi-
tion 3.1, we establish a number of preliminary statements.
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Lemma 3.3. A triple (a0, a1, a2) is positive if and only if a0, a1, a2 belong to
diamonds with extremities (a1, a2), (a2, a0) and (a0, a1) respectively.

Proof. We just need to prove the “if” part. Let, for i = 0, 1, 2 (indices
are taken modulo 3)

Vi,i+1 B V∗ai+2
(ai, ai+1) , Vi,i+2 B Vai+1(ai, ai+2).

Observe that
Vi,i+1 = V∗i+1,i .

Then Lemma 2.8.(3) provides all the necessary inclusions needed to
prove that the triple is positive. □

The following lemma gives a way to go from positive triples to
positive quadruples.

Lemma 3.4. Let (a0, a1, a2, a3) be a quadruple. Assume that all subtriples
are positive. Then the quadruple (a0, a1, a2, a3) is positive, if and only if, for
all i (indices are taken modulo 4)

ai ∈ V∗ai+2
(ai+1, ai+3) , (1)

ai+2 ∈ Vai+1(ai, ai+3) . (2)

Proof. The “only if” part follows from the definition. It remains to
prove the “if” part. Let

Vi,i+1 B V∗ai+2
(ai, ai+1) = V∗ai+3

(ai, ai+1) ,
Vi,i+2 B Vai+1(ai, ai+2) = V∗ai+3

(ai, ai+2) ,
Vi,i+3 B Vai+1(ai, ai+3) = Vai+2(ai, ai+3) ,

where in the second line we used the hypothesis (1), while in the first
and last lines we used the hypothesis (2) and the fact that if d belongs
to Va(b, c) then Vd(b, c) = Va(b, c). Hence by definition

Vi,i+1 = V∗i+1,i ,Vi,i+2 = V∗i+2,i .

It thus follows that for all i and j,

Vi, j = V∗j,i . (3)

From the positivity of the subtriple (ai, ai+1, ai+2), we get the inclu-
sions

Vi,i+1 ⊂ Vi,i+2 , Vi+1,i+2 ⊂ Vi,i+2 . (4)
From the positivity of the triple (ai, ai+1, ai+3) we get the inclusions

Vi,i+1 = V∗ai+3
(ai, ai+1) ⊂ Vai+1(ai, ai+3) = Vi,i+3 , (5)

Vi+1,i+3 = V∗ai
(ai+1, ai+3) ⊂ Vai+1(ai, ai+3) = Vi,i+3 . (6)
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Similarly the positivity of the triple (ai, ai+2, ai+3) yields

Vi+2,i+3 = V∗ai
(ai+2, ai+3) ⊂ Vai+2(ai, ai+3) = Vi,i+3 , (7)

Vi,i+2 = V∗ai+3
(ai, ai+2) ⊂ Vai+2(ai, ai+3) = Vi,i+3 . (8)

All together the equation (3) as well as the inclusions (4), (5), (6), (7),
and (8) prove that (a0, a1, a2, a3) is a positive quadruple. □

3.1.2. Deformation lemmas. We need to prove some deformation lem-
mas.

Lemma 3.5 (Deforming triples). Let a(t), b(t), and c(t) be continuous
arcs from [0, 1] to FΘ such that

(1) for all t in [0, 1], a(t), b(t), and c(t) are pairwise transverse,
(2) the triple (a(0), b(0), c(0)) is positive.

Then, for all t, (a(t), b(t), c(t)) is a positive triple.

Proof. The hypothesis tells us that

c(t) ∈ Ωa(t) ∩Ωb(t) , a(t) ∈ Ωc(t) ∩Ωb(t) , b(t) ∈ Ωa(t) ∩Ωc(t) .

By hypothesis, there are diamonds V(a(0), b(0)), V(c(0), b(0)), and
V(c(0), a(0)) such that

c(0) ∈ V(a(0), b(0)) , a(0) ∈ V(c(0), b(0)) , b(0) ∈ V(c(0), a(0)) .

We can extend these to continuous maps t 7→ V(a(t), b(t)), t 7→
V(c(t), b(t)), and t 7→ V(c(t), a(t)) in the space of diamonds (one al-
ways has that V(e, d) is a diamond with extremities e and d). We now
use the fact that a diamond with extremities e and d is a connected
component of Ωe ∩Ωd (Proposition 2.6). Then by continuity, for all t

c(t) ∈ V(a(t), b(t)) , a(t) ∈ V(c(t), b(t)) , b(t) ∈ V(c(t), a(t)) .

Thus the result follows from Lemma 3.3. □

Similarly

Lemma 3.6 (Deforming quadruples). Let γ and η be continuous arcs
from [0, 1] to FΘ such that there exist a and b in FΘ satisfying

(1) for all t in [0, 1], a, γ(t), b, η(t) are pairwise transverse,
(2) the quadruple (a, γ(0), b, η(0)) is positive.

Then, for all t, (a, γ(t), b, η(t)) is a positive quadruple.
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Proof. By applying Lemma 3.5, we obtain that all the subtriples of
(a, γ(t), b, η(t)) are positive. By Lemma 3.4, we only need to check that

a ∈ V∗b(γ(t), η(t)) , b ∈ V∗a(γ(t), η(t)) ,
γ(t) ∈ V∗η(t)(a, b) , η(t) ∈ V∗γ(t)(a, b) ,

γ(t) ∈ Va(η(t), b) , b ∈ Vγ(t)(a, η(t)) ,
η(t) ∈ Vb(γ(t), b) , a ∈ Vη(t)(b, γ(t)) .

Using again the fact that a diamond with extremities c and d is a
connected component of Ωc ∩ Ωd (Proposition 2.6), the statement
follows by continuity. □

Finally we also have as an immediate consequence of the connect-
edness of the positive cone:

Lemma 3.7 (Connectedness). Let a and b be two transverse points.
(1) Assume c is so that (a, c, b) is positive. Then there is (H,C) inH such

that a and b belong to C, and there is a path t 7→ c(t) from [0, 1] to
Vc(a, b) connecting c = c(0) to c(1) so that (a, c(1), b) is a positive triple
on C.

(2) Assume furthermore that d belongs to V∗a(c, b) then there are (H,C) inH ,
a path t 7→ c(t) as in the previous item, and a path t 7→ d(t) from [0, 1]
to Vc(a, b), so that d(t) ∈ V∗a(c(t), b) and (a, c(1), d(1), b) are on C.

Proof. Using a U-pinning at b, we identify N with a positive semigroup
Nb in Ub such that we have Vc(a, b) = Nb · a. The first point just follows
from the connectedness of the positive semigroup Nb. For use in the
second point we take a path t 7→ c(t) which is constant for t > 1/2.

Recall that d = m0 · c, with m0 ∈ Nb. Let us define, for t ∈ [0, 1/2],

d(t) = m0 · c(t) ,

then we have by the semigroup property d(t) ∈ V∗a(c(t), b). Observe
also that d(0) = d. Then for t ∈ [1/2, 1], we have c(t) = c(1/2)
and we choose, using that C contains elements of V∗a(c(1/2), d) (cf.
Proposition 2.12.(2)), a path t 7→ d(t) with d(t) ∈ V∗a(c(1/2), d), and such
that d(1) belongs to C. □

3.1.3. Proof of the combinatorial properties.

Proof of item (1) of Proposition 3.1. Assume (a, b, c) satisfies the hypoth-
esis. Let (H,C) in H and t 7→ c(t) obtained in Lemma 3.7. On C, a
triple is positive if and only if the three points are pairwise distinct,
the result thus follows from Lemma 3.5. □
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Proof of item (2) of Proposition 3.1. The “only if” part follows from the
definition. Then for the “if” part we find, by Lemma 3.7, (H,C) inH
and paths t 7→ x(t) and t 7→ y(t) in Vx0(a, b) and Vy0(a, b) respectively,
such that (x(0), y(0)) = (x0, y0) and x(1), y(1) are on C, the H-circle
passing through a and b. Then (a, x(1), b, y(1)) is positive and so is
(a, x0, b, y0) by Lemma 3.6, since x(t) and y(t) are transverse thanks to
Proposition 2.7. □

Proof of item (3) of Proposition 3.1. From the connectedness Lemma 3.7
we obtain (H,C) inH and paths t 7→ c(t), t 7→ d(t) such that a, c(t), d(t), b
are pairwise transverse, c(0) = c, d(0) = d, (a, c(1), d(1), b) on C and
d(1) ∈ Va(c(1), b). In particular (a, c(1), d(1), b) is positive and thus by
the deformation Lemma 3.6, (a, c, d, b) is positive. □

Proof of item (4) of Proposition 3.1. This is an immediate consequence
of item (3) and the fact that in order to check the positivity of a
configuration one only needs to check the positivity of subtriples and
subquadruples. □

Proof of item (5) of Proposition 3.1. If (a, b, c, d) is positive, we have the
strict inclusion Va(b, d) ⊂ Va(c, d) and if (a, c, b, d) is positive, we have
the strict inclusion Va(c, d) ⊂ Va(b, d). Hence a contradiction. □

Proof of item (6) of Proposition 3.1. Assume that (a, x0, b, x1) is positive.
Then V = Vx0(a, b) and Vx1(a, b) are opposite diamonds. If both
(a, x1, b, x2) and (a, x0, b, x2) are positive then we get that x2 belongs to
both V and V∗, which is a contradiction. □

Proof of the necklace property (Corollary 3.2). Let us first remark that
from item (4) of Proposition 3.1, applied three times, (and using
cyclic invariance of positivity) the configuration

(a, γ, b, α, c, β) ,

is positive. Thus (γ, α, β) is positive. □

3.2. Inclusion of diamonds.

Proposition 3.8 (Boundedness property). Let (a, b, d) be a positive triple
and let c ∈ Vb(a, d). Assume that there exist sequences {bm}m∈N and {cm}m∈N,
converging respectively to b and c and such that, for all m, (a, bm, cm, d)
is a positive quadruple. Then the sequence (V∗d(bm, cm)) converges in the
Hausdorff topology and

lim
m→∞

(
V∗d(bm, cm)

)
⊂ Vc(a, d) .

In particular,
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Corollary 3.9 (Inclusion). Let (a, b, d, e) be a positive quadruple in FΘ.
Then

V∗e(b, d) ⊂ Vb(a, e) .

Let (a, b, c, d, e) be a positive quintuple of points in FΘ. then

Vc(b, d) ⊂ Vc(a, e).

Proposition 3.8 will be proved in Section 3.2.2. Corollary 3.9 will
be proved in Section 3.2.1 as the consequence of an intermediate
statement.

3.2.1. Preliminaries on circles. Let V(a, d) be a diamond with extremi-
ties a and b, and let (H,C) be inH such that a and d belong to C and
C ∩ V(a, d) , ∅.

• Let δ = {δt | t ∈ R}, be the 1-parameter group in H for which d is
the attracting fixed point and a is the repelling fixed point for the
element δt (t > 0). The corresponding basins of attraction/repulsion
are denoted by

O+ B {x ∈ FΘ | lim
t→∞

δt(x) = d} ,

O− B {x ∈ FΘ | lim
t→−∞

δt(x) = a} .

• Let γ = C ∖ {a, d}.
• Let F be the set of fixed points of δ in FΘ.

The result of this section is

Proposition 3.10. For any e in γ, we have V∗a(e, d) ⊂ Ωa.

This proposition implies Corollary 3.9:

Proof of the Corollary 3.9. Applying Proposition 3.10, we get that

V∗a(b, d) ⊂ V∗a(b, e) ∩ V∗e(d, a) ⊂ Ωe ∩Ωa .

Since Vd(a, e) is a connected component of Ωe ∩Ωa containing V∗a(b, d)
it follows that

V∗a(b, d) ⊂ Vd(a, e) .

This proves the first part of the corollary.
Suppose now that (a, b, c, d, e) is positive. Then the equalities

Vb(a, e) = Vc(a, e) and Vc(b, d) = V∗e(b, d) together with the first part
imply the inclusion V∗e(b, d) ⊂ Vc(a, e). □
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Recall that Sa is complementary to Ωa. In order to prove Proposi-
tion 3.10, we introduce the following sets for e in γ

J(e)BV∗a(e, d) ∩ Sa ,

F(e)BJ(e) ∩ F .

We will first prove that the sets J(e) and F(e) are empty. We first prove
the following lemma

Lemma 3.11. Let γ1 be one of the two connected components of γ . For any
e in γ1,

(1) J(e) is invariant by the semigroup δ+B{δt | t > 0}, i.e. δt(J(e)) ⊂ J(e)
for all t > 0,

(2) F(e) is independent of the choice of e in γ1,
(3) if J(e) is not empty, so is F(e),
(4) for all c and b in FΘ such that (a, c, d, b) is a positive quadruple and

V∗a(c, d) ∩ γ1 , ∅ ,

then
F(e) ⊂ Sc ∪ Sb .

Proof. We prove the first point. By Proposition 2.14 for t > 0

V∗a(δt(e), d) ⊂ V∗a(e, d) .

This implies that V∗a(e, d) is invariant by δ+ and so is J(e).
The second point is a consequence that F is pointwise fixed by δt:

J(δt(e)) ∩ F = δt(J(e)) ∩ F = J(e) ∩ F .

The third point is a consequence of the hyperbolic nature of the
subgroup δ: indeed, using a linear representation of G we can assume
that δ is a one-parameter subgroup of diagonal matrices and that
J(e) is a non-empty closed subset of the projective space invariant by
the semigroup δ+; in this case, every ray (δt(x))t⩾0 (for x in J(e)) has a
limit that is a fixed point of δ.

Let us prove now the last point. Let (a, c, d, b) be as in the hypothesis.
Thus V∗a(c, d) ∩ γ1 , ∅ and by point (2) we can choose e in this inter-
section. By Proposition 3.1.(4), (a, c, e, d, b) is a positive configuration
and hence V∗a(e, d) ⊂ V∗a(c, b). From this we get

F(e) ⊂ J(e) =
(
V∗a(e, d) ∩ Sa

)
⊂

(
V∗a(c, b) ∩ Sa

)
. (9)

Now, we remark that since (a, c, d, b) is positive, we have

V∗a(c, b) ⊂ Ωa.

Thus
V∗a(c, b) ∩ Sa ⊂ V∗a(c, b) ∖ V∗a(c, b). (10)



POSITIVE REPRESENTATIONS 25

But since V∗a(c, b) is a connected component of the open set

Ωc ∩Ωb = FΘ ∖ (Sc ∪ Sb) ,

we get (
V∗a(c, b) ∖ V∗a(c, b)

)
⊂ (Sc ∪ Sb) . (11)

Combining inclusions (9), (10) and (11), we get that

F(e) ⊂ (Sc ∪ Sb) . □

We can now prove Proposition 3.10, in other words that J(e) is
empty. By item (3) of Lemma 3.11, it suffices to show that F(e) is
empty. The fact that F(e) is empty follows from item (4) of Lemma 3.11
and the following result.

Lemma 3.12. Let Q be a subset of FΘ. Assume that there exist nonempty
open sets U and V such that for all c in U, and for all b in V,

Q ⊂ Sc ∪ Sb,

then Q is empty.

Proof. Let q be in Q and set Z B Sq. Then Z is a proper closed Zariski
subset of FΘ. Observe that if u < Z, then

q < Su.

On the other hand we can find u in the nonempty set U ∖ Z and v in
the nonempty set V ∖ Z, and by hypothesis q ∈ Su ∪ Sv. This shows
that q , q and concludes the proof. □

3.2.2. Proof of the boundedness Proposition 3.8. We use the notation of
the previous paragraph.

First note that V∗a(bm, cm) = V∗d(bm, cm) = V∗a(bm, d) ∩ V∗d(a, cm). Since
the sequences {bm}m∈N and {cm}m∈N converge, the sequences of closures
of diamonds (V∗a(bm, d)) and (V∗d(a, cm)) also converge and thus the
sequence (V∗a(bm, cm)) converges. Let C be an H-circle through a and d
such that γ B Vc(a, d)∩C is not empty. Since being positive is an open
condition for quadruples, we can find e and f in γ so that (e, bm, cm, f )
is positive for m large enough as well as (a, e, f , d). Thus

V∗a(bm, cm) ⊂ V∗a(e, f )

Applying Proposition 3.10, we get that

V∗a(bm, cm) ⊂ V∗a(e, f ) ⊂ Vc(a, d) ,

which easily implies the result.
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3.3. Left and right limits of positive maps. Our main result is

Proposition 3.13 (Existence of left and right limits). Let S be a totally
ordered set and ϕ be a positive map from S to FΘ.

Let {bn}n∈N be a sequence in S such that there exist a, b, and c in S with
a < bn ⩽ bn+1 ⩽ b < c, for all n. Then {ϕ(bn)}n∈N converges to a point y in
Vb(a, c).

Symmetrically, let {an}n∈N be a sequence of points such that c < a ⩽
an+1 ⩽ an < b. Then {ϕ(an)}n∈N converges to a point y in Va(c, b).

Remark 3.14. In the case of Lusztig’s total positivity, this statement
was proved in [17, Theorem 7.4], this is also proved for SLn(R) in [30,
Section 5].

As an immediate corollary, we show that positive maps defined on
dense subsets extend to positive maps. More precisely:

Corollary 3.15 (Extension of positive maps). Let A be dense subset in
[0, 1]. Assume that we have a positive map ξ from A to FΘ. Then there exist

• a unique left-continuous positive map ξ+ from [0, 1] to FΘ such that
ξ coincide with ξ+ on a dense subset of A,
• a unique right-continuous positive map ξ− from [0, 1] to FΘ such

that ξ coincide with ξ− on a dense subset of A.
Moreover,

• for any ordered quadruple (x, y, z, t) of pairwise distinct points in
[0, 1]

(ξϵ(x), ξη(y), ξν(z), ξβ(t)) ,
is a positive quadruple for any choice of ϵ, η, ν, and β in {+,−},
• if {xm}m∈N, {zm}m∈N are sequences in [0, 1] converging to y, with for

all n, xm < y < zm, then

lim
m→∞

ξϵm(xm) = ξ+(y) , lim
m→∞

ξηm(zm) = ξ−(y) ,

for any sequences {ϵm}m∈N and {ηm}m∈N in {+,−}.

Proof of Proposition 3.13. Let us define xn = ϕ(bn). We can write xn =
mn · xn−1, with mn ∈ Nϕ(c). Thus by induction we have

xn = mn · · ·m1 · x0 .

But we know that V∗ϕ(c)(x0, ϕ(b)) is a relatively compact region of
Ωϕ(c) by Proposition 3.8. Thus {xn}n∈N is relatively compact in Ωϕ(c). It
follows that

πn = mn · · ·m1,

is a bounded sequence in Nϕ(c). We now prove that this sequence
converges. Assume that we have subsequences that converge to
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different limits u and v. After extracting further subsequence, we may
find subsequences

qi = πni , pi = πmi , with ni ⩽ mi

such that {qi}i∈N converges to u and {pi}i∈N converges to v. It follows
that u = w1 ·v with w1 ∈ Nϕ(c). Symmetrically, v = w0 ·u with w0 ∈ Nϕ(c).
It follows that w0 · w1 = 1, thus w0 and w1 are invertible in the closed
semigroup Nϕ(c), hence equal to the identity. In particular u = v and
{xn}n∈N converges.

The proof for the sequence {an}n∈N is symmetric. □

3.3.1. Positivity and continuity. In some cases, it suffices to show that
the image of every triple is positive

Proposition 3.16 (Triples suffice). Let ϕ be a continuous map from an
interval I to FΘ such that the image of every ordered triple is positive, then
ϕ is positive.

Proof. Since [x, y] is connected and ϕ is continuous, Vϕ(z)(ϕ(x), ϕ(y))
does not depend on z in ]x, y[ and we denote it W(x, y).

Let V(t, y) be the unique diamond with extremities ϕ(t) and ϕ(y)
obtained in Lemma 2.8 so that

V(t, y) ⊂W(x, y) . (12)

Main step: We first prove that if x < t < y, then

W(t, y) = V(t, y) . (13)

Let us consider

U = {t ∈]x, y[|W(t, y) = V(t, y)}

Let us write W(x, y) = N · ϕ(x), where N is an open semigroup in
Uϕ(y). We can thus write ϕ(t) = nt ·ϕ(x), with t 7→ nt a continuous map
defined on ]x, y[ with values in N; the limit of nt when t tends to x is
equal to id. Then V(t, y) = ntW(x, y). We now proceed to the proof
and show that U is open, non empty and closed.

(1) The set U is also the set of t for which there exists s, with
t < s < y such that ϕ(s) is in V(t, y). In other words, n−1

t ns
belongs to N. Thus U is open.

(2) Since N is open, given s, for all t close enough to x we have
n−1

t ns is in N. Thus ns ∈ ntN, hence ϕ(s) ∈ V(t, y). Therefore U
is non empty.
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(3) Let t be in the closure of U. Let s be > t and let {tm}m∈N be a
sequence in U converging to t. Thus {n−1

tm
ns}m∈N converges to

n−1
t ns. Since, for m big enough, we have s > tm, the element

n−1
tm

ns belongs to N; hence n−1
t ns belongs to N, i.e. ϕ(s) belongs

to V(t, y). As the map ϕ is transverse, ϕ(t) is transverse to ϕ(s)
and this implies that ϕ(s) belongs to V(t, y) and n−1

t ns belongs
to N. Therefore t belongs to U and we have completed the
proof that U is closed.

The proof of the Equation (13) is now complete.

Conclusion: Let (a, b, c, d) so that a < b < c < d, with all subtriples of
(ϕ(a), ϕ(b), ϕ(c), ϕ(d)) positive. By item (3) of Proposition 3.1, we only
have to prove that

Vϕ(c)(ϕ(a), ϕ(b)) = V∗ϕ(d)(ϕ(a), ϕ(b)) ,

Observe that

W(a, b) ⊂W(a, d) = Vϕ(b)(ϕ(a), ϕ(d)) ,

by Equation (13). Thus ϕ(d) does not belong to W(a, b) and hence
belongs to W∗(a, b) by Lemma 2.8. We thus have

Vϕ(d)(ϕ(a), ϕ(b)) =W∗(a, b) = V∗c(ϕ(a), ϕ(b)) .

This completes the proof that the quadruple (ϕ(a), ϕ(b), ϕ(c), ϕ(d)) is
positive, hence of the proposition.

□

3.4. Proximal elements. In this section we show that positive equi-
variant maps give rise to proximal elements.

We first prove the following proposition for elements in G:

Proposition 3.17. Let g be in G and let g−, g+, and a be in FΘ such that g−
and g+ are fixed by the action of g and that the quadruple (g−, a, g · a, g+) is
positive.

Then the action of g on FΘ is proximal, its attracting fixed point is g+,
and its repelling fixed point is g−.

Proof. Up to the action of Aut0(g) we can assume that g− is the point
in FΘ with stabilizer equal to PΘ, g+ is the point with stabilizer Popp

Θ
,

and that a = n · g+ with n in N ⊂ UΘ. One then has g belonging to LΘ
and g · a = n′ · g+ with n′ in N equal to gng−1.

For every α in Θ, we denote by πα : uΘ → uα the LΘ-equivariant
projection and by Cα the salient invariant open convex cone in uα
defining positivity (cf. Remark 2.3).
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Let α be inΘ. The positivity of the quadruple (g−, a, g ·a, g+) implies
that the elements x = πα(log n) and x′ = πα(log n′) are both in Cα

and that x − x′ also belongs to Cα. Let A be the automorphism of uα
given by the restriction of the adjoint action of g to the subspace uα;
one has thus A(Cα) = Cα and A(x) = x′. This implies that the set
B B (−x+Cα)∩ (x−Cα) is sent into (−x′ +Cα)∩ (x′ −Cα) by A (where
x − Cα = {x − y | y ∈ Cα}). Therefore the element A is contracting for
the norm on uα whose unit ball is the open convex set B.

We deduce from this that all the eigenvalues of the adjoint action
of g on

⊕
α∈Θ uα are of modulus less than 1. Since this subspace

generates uΘ [29], we have also that all the eigenvalues of g on uΘ are
of modulus < 1. This means precisely that g+ is an attracting fixed
point for the action of g on FΘ and thus g is proximal. For the same
reasons, g− is the repelling fixed point of g. □

From this, we immediately get:

Proposition 3.18. Let γ be a homeomorphism of the circle S1 having one
attracting fixed point γ+ and one repelling fixed γ− in S1. Let S ⊂ S1 be
an infinite γ-invariant set containing γ+ and γ− and let ξ be positive map
from S to FΘ. Assume that there exists an element g in G such that, for all s
in S,

ξ(γ(s)) = g · ξ(s) ,

Then g is proximal and ξ(γ+) is the attracting fixed point of g and similarly
ξ(γ−) is the repelling fixed point of g.

4. Triples, Tripods and metrics

In this section, we construct for every positive triple (a, b, c) a com-
plete metric on the diamond Vc(a, b) (Definition 4.9). We also show
that this family of metrics satisfies contraction properties (Proposi-
tions 4.11 and 4.12).

We first do it for triples of a special type that we call tripods.

4.1. Tripods and metrics. Recall that in Proposition 2.12, we fixedH
a class of pairs (H,C) where the subgroups H are isogenic to PSL2(R)
and C is an H-orbit, isomorphic to P1(R) and called an H-circle.

Definition 4.1. A tripod is a triple of pairwise distinct points on C for
some (H,C) inH .

A tripod is always positive. If τ = (x, t, y) is a tripod, we write

τ− = x , τ0 = t , τ+ = y , τ B (y, t, x) , Vτ B Vτ0(τ−, τ+) .
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More generally, for a positive triple t = (a, b, c), we write t− = a, t0 = b,
t+ = c and Vt B Vb(a, c).

LetT0 be the set of tripods. Observe that Aut0(g) acts transitively on
the left on the space of tripods, and that the positive circle containing
a tripod is unique.

The stabilizer of any tripod is compact (cf. Section 3.1.1 below),
in particular Aut0(g) acts properly on the space of tripods and we
can then fix d an Aut0(g)-invariant Riemannian metric on the set of
tripods T0.

4.1.1. Tripods and the parametrization. Let us consider (as in Para-
graph 2.2.1), the convex cone C and the parametrizationΨ : C→ N
equivariant with respect to L◦

Θ
(Ψ is given by the product of exponen-

tial maps). Note thatΨ extends continuously to a map C→ UΘ that
is also L◦

Θ
-equivariant.

Let h be the element of C corresponding to the unipotent associated
to the preferred SL2(R) — see the proof of Proposition 2.12. Let Kh
be the stabilizer of h in L◦

Θ
. Since the stabilizer of a positive triple is

compact, it follows that Kh is compact.
If now x and y are transverse points in FΘ and σ : UΘ → Uy is a

U-pinning at y, then the map

Ψσ : C 7→ FΘ, u 7→ σ ◦Ψ(u) · x ,

is a parametrization of the diamond Vt(x, y) with t B Ψσ(h). We then
define

Definition 4.2. Given a tripod τ = (x, t, y) a τ-parametrization of the
diamond Vτ, is a mapΨτ of the formΨσ so thatΨσ(h) = t.

From the definition follows

Proposition 4.3. Given a tripod τ, a τ-parametrization of the diamond
exists and is unique up to postcomposition by the stabilizer of τ (equivalently
up to precomposition by Kh).

The next proposition is crucial; it insures that a sequence of
parametrizations of diamonds associated with tripods converges
to the constant map as soon as one sequence in the image converges,
precisely

Proposition 4.4 (Contraction in corners). Let {τm}m∈N be a sequence
of tripods, with τm = (xm, tm, y), andΨτm a τm-parametrization for all m.

Assume that {xm}m∈N converges to a point x transverse to y. Assume that
there exists a converging sequence {km}m∈N in the cone C, and such that

lim
m→∞
Ψτm(km) = x . (14)
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Then for any sequence {k′m}m∈N in C that is bounded in C,

lim
m→∞
Ψτm(k′m) = x . (15)

Proof. Since x is transverse to y, by replacing τm by umτm where {um}m∈N
is a converging sequence in Uy, we may as well assume that {xm}m∈N
is constant and equal to x.

Using the fact that Aut0(g) acts transitively on tripods, let us write
tm = gm · t0, with gm fixing x and y. Thus

Ψτm(h) = gm · t0 = gm ·Ψτ0(h) = gmσ(Ψ(h)) · x .

Note that the U-pinning σ : UΘ → Uy comes from an element σ
of Aut0(g). Denote g0

m = σ−1
◦ gm ◦ σ; it is an element of Aut0(g)

stabilizing the standard unipotent subalgebras uΘ and uopp
Θ

. Up to
maybe precomposing by an element of Kh, we may assume thatΨτm

is the map k 7→ σ(Ψ(g0
m · k)) · x.

Therefore we have, for any {ℓm}m∈N in C, that {Ψτm(ℓm)}m∈N converges
to x if and only if the sequence {g0

m · ℓm}m∈N converges to 0 in C.
For any y in C, let

K(y) B C ∩
(
y − C

)
.

Since C is salient, K(y) is compact for any y.
From the previous discussion, we get that the sequence {cm =

g0
m · km}m∈N converges to 0. Thus, using again the fact that C is salient,

for every positive real R, the sequence of compact sets {K(R · cm)}m∈N
converges to {0}.

Let now {k′m}m∈N be a sequence in C, bounded in C. Since by
hypothesis {km}m∈N converges in C, there exists a positive real R such
that, for all m, R · km − k′m belongs to C. In other words: k′m belongs
to R · km − C. Thus, for all m, g0

m · k′m belongs to K(R · cm). Hence the
sequence {g0

m · k′m}m∈N converges to 0. This means that the sequence
{Ψτm(k′m)}m∈N converges to x as wanted. □

4.1.2. Diamond metrics for tripods. We choose once and for all a Eu-
clidean distance d0 on the convex cone C, associated with the Rie-
mannian g0 induced by a Kh-invariant scalar product on uΘ. This
distance d0 is Kh-invariant and extends to C.

Definition 4.5. Given a tripod τ = (x, t, y), letΨτ be a τ-parametriza-
tion of Vτ, let

g+τ B (Ψτ)∗g0 , g−τ B (Ψτ)∗g0 , gτ = g+τ + g−τ ,
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as well as d+τ , d−τ , and dτ the associated distances so that

d±τ ⩽ dτ ⩽ d+τ + d−τ .

The metric gτ is the diamond metric (for the tripod τ) on Vτ, while dτ is
the diamond distance.

The terminology is justified by

Proposition 4.6 (Uniqueness and Completeness). The diamond metric
is independent of the choice of the τ-parametrization and only depends on τ.
Moreover, dτ is complete and proper on Vτ.

There exists a function F : R>0 → R>0 with lim0 F = 1 and such that
the following holds: For any tripods τ and τ′ with the same extremities τ−
and τ+, if dτ(τ0, τ′0) ⩽ ε then

F(ε)−1dτ′ ⩽ dτ ⩽ F(ε) dτ′ .

Proof. The independence on the parametrization is a consequence
of Proposition 4.3 and the fact that d0 itself is invariant under the
group Kh.

Let us now prove completeness. Let {um}m∈N be a Cauchy sequence
for dτ, then it is a Cauchy sequence for both d+τ and d−τ . It follows that
the sequences {vm}m∈N and {wm}m∈N defined by

vm = Ψ
−1
τ (um), wm = Ψ

−1
τ (um) ,

are both Cauchy sequences. Since C is complete with respect to the
metric d0, there exist v and w in C such that

lim
m→∞

vm = v, lim
m→∞

wm = w .

Since by constructionΨτ andΨτ extend continuously to the closure
of C,

Ψτ(v) = Ψτ(w) = lim
m→∞

um C u .

Obviously u belongs to Vτ. By construction u = ny · x and u = nx · y
where ny belongs to Uy and nx belongs to Ux. Since x and y are
transverse, it follows that u is transverse to both y and x. Thus u
belongs to Vτ. Hence dτ is complete.

Let us prove the last part. Observe now by hypothesis, there exists ℓ
in LΘ such thatΨτ′ = Ψτ ◦ ℓ. Thus

g+τ′ = (Ψτ)∗(ℓ∗g0) .

Recall that g0 is induced by a scalar product on uΘ, and that LΘ acts
linearly on uΘ, it then follows that there is a function F0 on LΘ such
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that
F0(ℓ)g0 ⩽ ℓ∗(g0) ⩽ F0(ℓ)g0 ,

and with F0(ℓ) −→
ℓ→KΘ

1 where KΘ is a maximal compact subgroup LΘ.

Pushing forward byΨτ we have

F0(ℓ)g+τ ⩽ g+τ′ ⩽ F0(ℓ)g+τ .

The same holds for g−τ and g−τ′ . Hence the same inequality holds for
gτ = g+τ + g−τ and gτ′ ; this concludes the proof with the remark that
dτ(τ0, τ′0) −→ 0 implies that ℓ −→ KΘ. Precisely, we can define

F(ϵ) = sup{F0(h) | dτ(τ0, h(τ0)) ⩽ ϵ} ,

and observing that by equivariance F does not depend on the choice
of τ. □

Proposition 4.7 (Contraction for tripods). Let {τm}m∈N be a sequence
of tripods. Assume that, for all m inN, Vτm+1 ⊂ Vτm and that⋂

m∈N

Vτm = {z} . (16)

For any positive R, let Vτm(R) be the ball of radius R and center τ0
m with

respect to dτm . Then on Vτm(R), we have

gτ0 ⩽ km · gτm ,

with {km}m∈N converging to zero.

Proof. Since Aut0(g) acts transitively on the space of tripods T0, it
follows that τm = hm ·τ0, for some hm in Aut0(g). Since the construction
of the tripod metrics is Aut0(g)-equivariant, we observe that gτm =
h∗mgτ0 . Then, we take

km = sup
{

gτ0(w,w)
gτm(w,w)

∣∣∣∣ w ∈ TVτm(R)
}

(17)

= sup
{

gτ0(w,w)
gτ0(Th−1

m w,Th−1
m w)

∣∣∣∣ w ∈ TVτm(R)
}

(18)

= sup
{

gτ0(Thm(v),Thm(v))
gτ0(v, v)

∣∣∣∣ v ∈ TVτ0(R)
}
. (19)

The hypothesis (16) says that {hm}m∈N, seen as a sequences of diffeo-
morphisms of FΘ converges uniformly on every compact set of Vτ0

to the constant map. It follows that {hm}m∈N also converges C1 to the
constant map on any compact set in Vτ0 and hence {Thm}m∈N converges
to zero uniformly on every compact set of Vτ0 . Thus, equality (19)
shows that {km}m∈N converges to zero. □
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4.2. Positive triples, tripods and metrics. Our goal is to construct
a complete metric on the diamond associated with a positive triple
and to prove a generalization of the contraction properties (Proposi-
tions 4.11 and 4.12).

4.2.1. Approximating triples: the tripod defect. We will first approximate
in a rough sense positive triples by tripods. For any positive triple
t = (x, z, y), let

K(t) B inf
{
dτ(z, τ0) | τ ∈ T0 , z ∈ Vτ , (τ−, τ+) = (x, y)

}
.

We call K(t) the tripod defect.
Observe that K(t) depends continuously on t, and that the tripod

defect vanishes for tripods. Let also

D(t,K0) B
{
τ ∈ T0 | (τ−, τ+) = (x, y) , dτ(z, τ0) ⩽ K0

}
,

D(t) B D(t,K(t)) .

Proposition 4.8. (1) Given K0 ⩾ K(t), the set D(t,K0) is compact and
non-empty.

(2) K(t) = 0 if and only if t is a tripod.
(3) For any K0, there exists a constant A = A(K0) such that if t = (a, b, c)

is a positive triple with K(t) ⩽ K0, then for every τ0 and τ1 in D(t,K0),
we have, on Vb(a, c)

gτ0 ⩽ Agτ1 .

Furthermore A(K0) tends to 1 as K0 goes to 0.

Proof. Let t = (a, b, c) be a positive triple. Let {τm}m∈N be a sequence of
tripods such that (τ−m, τ+m) = (a, c) and

{dτm(b, τ0
m)}m∈N ,

is bounded. Let {gm}m∈N be a sequence of elements in Aut0(g), stabi-
lizing a and c and such that {g−1

m (τ0
m)}m∈N is constant and let τ0 be this

constant. Let τ B (a, τ0, c). It follows that

{dτ(g−1
m (b), τ0)}m∈N ,

is bounded. Since dτ is a proper metric (i.e. every bounded set is
relatively compact), the sequence {g−1

m (b)}m∈N — after extracting a
subsequence — converges to e with (a, e, c) positive. Since Aut0(g) acts
properly on the space of tripods, it follows that {gm}m∈N is bounded.
Thus after taking a subsequence {τm}m∈N converges to a tripod τ∞,
with τ0

∞
in Vt. This proves that, for all K0, the set D(t,K0) is compact.
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Since D(t,K0) is non-empty for K0 > K(t), it follows that the decreasing
intersection

D(t) =
⋂

K0>K(t)

D(t,K0)

is not empty.
The second assertion is an immediate consequence of the first.
The third follows from the first as a consequence of the second part

of Proposition 4.6. □

4.2.2. The diamond metric for triples. The following definition is one of
the goal of this section.

Definition 4.9. Let t be a positive triple. The diamond metric (for the
triple t) gt is the Riemannian metric on Vt defined as follows: for
every x in Vt, the unit ball of gt,x is the John ellipsoid of the union of
the unit balls of gτ,x for τ varying in D(t).

The associated distance is the diamond metric dt.

Explicitely, one has gτ,x ⩽ gt,x for every τ in D(t) and gt,x ⩽ g for
every Euclidean scalar product g on TxVt such that gτ,x ⩽ g for every τ
in D(t). Furthermore gt,x is the unique minimizer among the Euclidean
scalar products g satisfying the previous condition. It also follows
immediately from point (3) of Proposition 4.8 that gt ⩽ Agτ for every τ
in D(t) with A = A(K(t)).

When t is a tripod, this definition agrees with the one of the previous
paragraph thanks to the second item of Proposition 4.8.

As an immediate corollary of Proposition 4.8 and Proposition 4.6,
we have

Corollary 4.10. The diamond metric is complete. Moreover if a sequence of
positive triples {tm}m∈N converges to a tripod τ, then {gtm}m∈N converges to
gτ on every compact of the diamond Vτ.

The following Propositions 4.11 and 4.12 are two contractions
properties of the diamond metrics that we shall use in the sequel.

Proposition 4.11 (Contraction). Let {tm}m∈N be a sequence of positive
triples, with tm = (am, bm, cm). Assume that the sequence {K(tm)}m∈N of
tripod defects is bounded. Assume that Vtm+1 ⊂ Vtm and that⋂

m∈N

Vtm = {z} . (20)

For any positive R, let Vtm(R) be the ball of radius R and center am with
respect to dtm . Then on Vtm(R), we have

gt0 ⩽ km · gtm ,
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with {km}m∈N converges to zero.

Proof. By Definition 4.9 of the diamond metric for triples, and Propo-
sition 4.8 it follows that we can find a constant A, such that for all m,
we can find a tripod τm with the same extremities than tm and with

dτm(τ0
m, bm) ⩽ A ,

1
A

gτm ⩽ gtm ⩽ Agτm .

The result now follows from the corresponding proposition for tripods:
Proposition 4.7. □

Proposition 4.12 (Contraction in corners). Let {tm}m∈N be a sequence
of positive triples, where tm = (t−m, t0

m, t+m). Assume that
(1) the sequence {K(tm)}m∈N of tripod defects is bounded;
(2) the sequences {t−m}m∈N and {t+m}m∈N converge to transverse points a

and c respectively;
(3) There exists {um}m∈N a sequence of elements of FΘ, such that um

belongs to Vtm , the sequence {dtm(t0
m,um)}m∈N uniformly bounded,

and limm→∞ um = a.
Then limm→∞ t0

m = a.

Proof. By the first hypothesis and Proposition 4.8, we can find a
constant A, a sequence of tripods {τm}m∈N with τ±m = t±m and such that

dτm ⩽ A dtm .

In particular, we have that {dτm(t0
m, τ

0
m)}m∈N and {dτm(um, τ0

m)}m∈N are
uniformly bounded. The result now follows by applying twice Propo-
sition 4.4. Indeed, since {dτm(t0

m, τ
0
m)}m∈N is uniformly bounded, it

follows that t0
m = Ψτm(km) with {km}m∈N bounded. Hence by Propo-

sition 4.4 (applied to any converging subsequence of {km}m∈N), with
k′m = h, yields that

lim
m→∞

τ0
m = a .

Applying again Proposition 4.4 to {k′m}m∈N withΨτm(k′m) = um yields
that

lim
m→∞

um = a .

This concludes the proof. □

5. Positive representations are Anosov

In this section we introduce the notion of positive representations
of a surface group. We then show that any Θ-positive representation
is Θ-Anosov, establishing Theorem A and Corollary B from the
introduction. As in the introduction, S is a connected oriented closed
surface of genus at least 2.
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Definition 5.1 (Positive representations). Let G be a semi-simple Lie
group admitting a Θ-positive structure. A representation ρ : π1(S)→
G is Θ-positive if there exist a non-empty π1(S)-invariant subset A of
∂∞π1(S) and a positive ρ-equivariant map ξ from A to FΘ.

The set A is necessarily dense since the action of π1(S) on ∂∞π1(S)
is minimal. We will often say that a representation is positive if it is
Θ-positive.

5.1. Anosov representations. Let us recall at this stage the definition
of a Θ-Anosov representation from [30]. For simplicity we restrict
ourselves to the case of representations of π1(S). Let us equip the
surface S with an auxiliary hyperbolic metric. Let US be the unit
tangent bundle of S equipped with its geodesic flow ϕt. Let us also
freely identify the space of cyclically oriented triples of ∂∞π1(S) with
the unit tangent bundle UH2 of the universal cover of S.

Let ρ be a representation of Γ B π1(S) in G. Let FΘ the flat FΘ-
bundle over US associated with ρ, and Φt the parallel transport on
FΘ along ϕt.

The representation ρ is Θ-Anosov if there exists a ρ-equivariant
continuous map, called the limit map.

ξ : ∂∞Γ→ FΘ ,

such that the corresponding section Ξ of FΘ (which is constant along
the leaves of the weakly unstable foliation) satisfies the following
contraction property: there exist an open neighborhoodV of the image
of Ξ that is a fiber bundle over US with fiber Vx for x in US, a
continuous family of Riemannian metric gx on the fibers Vx, and
some positive number T such that Φ−T(V) ⊂ V, and, for all x inV,

(ΦT)∗gx ⩽
1
2

gϕT(x) ,

where gx is g restricted toVx.

Note that there is another section Ξ∗, which is constant along the
leaves of the weakly stable foliation and is contracted under Φ−T.

Observe that, in general, the existence of a continuous equivariant
map, even sending distinct points to transverse points, is weaker than
the condition of being Anosov.

To establish the Anosov property for positive representations, we
first extend the positive boundary map to a left-continuous boundary
map and to a right-continuous boundary map using Corollary 3.15.
We prove then that these extensions are continuous (and thus coincide),
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and then deduce the Anosov property using the contraction property
of the diamond metrics (Proposition 4.11).

5.2. Properness. The following definition will be used several times
in the sequel: an application f defined on a subset A of a topological
set X, with values in some topological set Y is bounded if for every
compact set K in X, f (A ∩ K) is relatively compact.

Lemma 5.2. Let A be a dense set in the circle. Let ϕ± be positive maps from
A to FΘ. We assume that, for all cyclically oriented quadruple (x, y, z, t)
in A and for any choice of ε, η, ν, and β in {+,−}, the quadruple

(ϕε(x), ϕη(y), ϕν(z), ϕβ(t))

is a positive. Let A3
+ be the set of triples of pairwise distinct elements of A.

Then, for any ε, η, and ν in {+,−}, ϕε × ϕη × ϕν is bounded as a map
from A3

+ to the space T of positive triples in FΘ.

Proof. Let χ = (x1, x2, y1, y2, z1, z2) be a cyclically oriented sextuplet
in S1. Let Iχ be the subset of (S1)3 given by

Iχ = {(X,Y,Z) | x1 < X < x2 < y1 < Y < y2 < z1 < Z < z2} .

Observe that Iχ consists of cyclically oriented triples. Let

K = ϕϵ × ϕη × ϕν
(
Iχ ∩ A3

+

)
.

It is enough to show that K ⊂ T , where the closure is taken in F3
Θ

.
Let us fix, by density, a0, a1, a2, b0, b1, b2, c0, c1, and c2 in A such that

(x1, x2, a0, a1, a2, y1, y2, b0, b1, b2, z1, z2, c0, c1, c2)

is cyclically oriented. To lighten notation, we setαi = ϕϵ(ai), βi = ϕη(bi),
and γi = ϕν(ci) for i = 0, 1, 2.

From the positivity of the maps and thus of the image of the 15-tuple
defined above, it follows that if (x, y, z) belongs to K, then

x ∈ V∗α1
(γ2, α0) , y ∈ V∗β1

(α2, β0) , z ∈ V∗γ1
(β2, γ0) .

Thus if (a, b, c) belongs to K, then

a ∈ V∗α1
(γ2, α0) , b ∈ V∗β1

(α2, β0) , c ∈ V∗γ1
(β2, γ0) .

Using the inclusion Corollary 3.9, we get

a ∈ V∗α1
(γ1, α1) , b ∈ V∗β1

(α1, β1) , c ∈ V∗γ1
(β1, γ1) .

By the necklace Corollary 3.2, (a, b, c) is a positive triple, i.e. it belongs
to T . This concludes the proof. □
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Proposition 5.3. Let ρ : π1(S) → G. Let ξ be a positive π1(S)-invariant
map from ∂∞π1(S) to FΘ.

Let Tπ1(S) be the set of triples of pairwise distinct elements in ∂∞π1(S),
and let T be the set of positive triples in FΘ. Let Ξ be the map from Tπ1(S) to
T /G, defined by

Ξ(x, y, z) B [ξ(x), ξ(y), ξ(z)] .

Then the image of Ξ is relatively compact.

Proof. The map Ξ is invariant by the diagonal action of π1(S). The
result follows then from Lemma 5.2 using the fact that π1(S) acts
cocompactly on Tπ1(S). □

5.3. An a priori bound on the tripod defect. For any positive triple t,
let K(t) be the tripod defect introduced in paragraph 4.2. Then
Proposition 5.3 implies an a priori bound on the tripod defect.

Proposition 5.4. Let ρ : π1(S)→ G. Let ξ be a ρ-equivariant positive map
from a π1(S)-invariant dense subset A of ∂∞π1(S) to FΘ. Then there exists a
constant K0 such that for all triple t of pairwise distinct points in the closure
of ξ(A), we have

K(t) ⩽ K0 .

Proof. This is an immediate consequence of Proposition 5.3 and the
fact that K is a continuous function on T . □

5.4. Continuity of equivariant positive maps. Let ρ be a Θ-positive
representation, A a non-empty π1(S)-invariant subset of ∂∞π1(S) and
ξ : A → FΘ the positive ρ-equivariant boundary map. Then, by
Corollary 3.15, there exist a unique right-continuous ρ-equivariant
boundary map ξ+ : ∂∞π1(S) → FΘ and a unique left-continuous ρ-
equivariant boundary map ξ− : ∂∞π1(S) → FΘ, coinciding with the
map ξ on dense subset.

Let Tπ1(S) be the set of triples of pairwise distinct points of ∂∞π1(S).
For t = (x, y, z) in Tπ1(S), let us define

τ(t) = (ξ+(x), ξ+(y), ξ+(z)) .

Lemma 5.5. The π1(S)-invariant function f defined by

f (x, y, z) = dτ(t)(ξ+(y), ξ−(y)) .

is bounded: there is a constant D such that, for all (x, y, z) in Tπ1(S),
f (x, y, z) ⩽ D.
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Proof. Let Q be the set of quadruples (a, b, c, d) in FΘ such that there
exists a diamond V with extremities a and d and containing both b
and c. Using Lemma 5.2, we see that the map

(x, y, z) 7→ (ξ+(x), ξ+(y), ξ−(y), ξ+(z)) ,

from Tπ1(S) toQ is bounded. As the real valued function onQ sending
a quadruple (a, b, c, d) to d(a,b,d)(b, c) is continuous, we get the result. □

Lemma 5.6. The map ξ+ is continuous.

Proof. Since ξ+ is right-continuous we only have to prove that it is
left-continuous. Let x and y be in ∂∞π1(S), and let {xm}m∈N be a
sequence in ∂∞π1(S), such that (xm, x, y) is cyclically oriented with
respect to the orientation on ∂∞π1(S), and that {xm}m∈N converges to x.
Let tm = (ξ+(xm), ξ+(x), ξ+(y)).

Recall that by Corollary 3.15, {ξ+(xm)}m∈N converges to ξ−(x).
We now apply Proposition 4.12 to the following setting:

t−m = ξ+(xm) , t0
m = ξ+(x) , um = ξ−(x) , t+m = ξ+(y) .

Since
{dtm(t0

m,um)}m∈N = {dtm(ξ+(x), ξ−(x))}m∈N
is bounded by Lemma 5.5 and {K(tm)}m∈N is bounded by Proposi-
tion 5.4, we get that

lim
m→∞

ξ+(xm) = ξ+(x) .

This proves that ξ+ is left-continuous. □

As a consequence we obtain

Proposition 5.7. Let ρ : π1(S)→ G be a positive representation and ξ the
positive ρ-invariant boundary map from a π1(S)-invariant dense subset of
∂∞π1(S) to FΘ. Then ξ extends to a ρ-equivariant positive continuous map
from ∂∞π1(S) to FΘ.

The extended map ξ from ∂∞π1(S) to FΘ will be called the positive
boundary map of ρ.

5.5. The Anosov property. We are now in position to prove Theo-
rem A from the introduction. More precisely we show

Proposition 5.8. Let ρ from π1(S) to G be a positive representation and ξ
from ∂∞π1(S) to FΘ be the ρ-equivariant continuous positive boundary map.
Then ρ is Θ-Anosov and its boundary map is ξ.

Let us start with a general lemma
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Lemma 5.9. Let {b0
m}m∈N and {b1

m}m∈N be two sequences in FΘ converging
to c. Let d0 and d1 be in FΘ such that (d0, c, d0) is a positive triple and assume
that, for all m inN,

(d0, b0
m, b

1
m, d1)

is a positive quadruple. Let Vm be the unique diamond with extremities b0
m

and b1
m contained in the diamond Vc(d0, d1). Then

lim
m→∞

Vm = {c} .

Proof. Let a0 be in V∗c(d0, d1) and a1 be in V∗c(a0, d1) so that (a0, d0, c, d1, a1)
is a positive quintuple and, for all big enough m, (a0, d0, b0

m, b1
m, d1, a1)

is a positive configuration.
Let zm belong to Vm, we want to prove that

lim
m→∞

zm = c .

Let p in Vc(d0, d1) be an accumulation point of the sequence {zm}m∈N.
Up to extracting a subsequence we may assume

lim
m→∞

zm = p ,

By Corollary 3.9, p belongs to Vc(a0, a1) and in particular it belongs
to Ωa0 ∩Ωa1 . From the fact that zm belongs to Vd0(a0, b1

m) we get that
p belongs to Vd0(a0, c); similarly p belongs to Vd1(a1, c). Therefore

p ∈ Vd0(a0, c) ∩ Vd1(a1, c) ∩Ωa0 ∩Ωa1 .

Let V = Vd0(a0, c), and recall that by Lemma 2.8,

Vd1(a1, c) ⊂ V∗ .

Finally remark that

V ∩Ω = Na1 · c ,V
∗
∩Ω = N

−1
a1
· c ,

for the (positive) semigroup Na1 in Ua1 . Since

Na1 ∩ N
−1
a1
= {id} ,

one has p = c, which is what we wanted to prove. □

Proof of Proposition 5.8. The chosen hyperbolization of S defines a
π1(S)-invariant cross-ratio on ∂∞π1(S) � P1(R). Let us also fix an
orientation on ∂∞π1(S). For any cyclically oriented triple t = (x, y, z),
let us consider the harmonic (with respect to the cross-ratio) quadruple
(x, y, z,w), and let then

Yt B Vξ(z)(ξ(y), ξ(w)) .
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By construction Yt is an open neighborhood of ξ(z). Moreover if
(x, y1, y0, z) is a cyclically oriented quadruple,

Y(x,y0,z) ⊂ Y(x,y1,z) . (21)

Finally, since ξ is continuous , by Lemma 5.9

lim
y→z

Y(x,y,z) = {ξ(z)} . (22)

We now deduce the Anosov property from Assertion (22).
Recall that the chosen uniformization of the surface enables us to

identify the space of triples in the boundary at infinity with the unit
tangent bundle UH2 of the universal cover of S. Let {ϕs}s∈R be the
geodesic flow on UH2. Let F be the trivial bundle FΘ × UH2. The
actions of π1(S) on UH2 and on FΘ —through ρ— give rise to an action
of π1(S) on F .

LetU be the subbundle of F with open fibers given by

U = {(x, v) ∈ F | v ∈ UH2, x ∈ Yv} .

The bundle U is invariant by the π1(S)-action, moreover it has a
canonical section σ0 given by

σ0(x, y, z) = ξ(z) .

Let us lift the flow {ϕs}s∈R to a flow {Φs}s∈R on F acting trivially on the
first factor. By assertion (21), for all positive s

Φ−s(U) ⊂ U .

Moreover the section σ0 is invariant by {Φs}s∈R.
The diamond metric gt and the diamond distance dt on each Yt give

a metric on each fiber ofU which depends continuously on the base
and is equivariant under the action of π1(S).

For any R, let U(R) be the neigbourhood of the image of the
section σ0, given by

U(R) = {(x, v) ∈ U | v ∈ UH2, dv(x, σ0(v)) ⩽ R} .

It now follows from assertion (22) and Proposition 4.11, that for
every u in UH2, there is su such that, for all (x,u) inU(R)

for all s ⩾ su, gΦs(x,u) ◦ T(x,u)Φ−s ⩽
1
2

g(x,u) . (23)

Let now s be the real valued function on UH2 defined by

s(u) = inf{su | su satisfies assertion (23) onU(R)} .
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The function u 7→ s(u) is upper semicontinuous and invariant under
the action of π1(S). Thus by compactness of UH2/π1(S) the function
has an upper bound s0. Then for all s greater than s0

Φ∗sg ⩽
1
2

g ,

on U(R). In other words, the action of {Φ−s}s∈R is contracting on
V =U(R) and σ0 is an invariant section.

Thus ρ is Θ-Anosov according to the definition given in the begin-
ning of the section and ξ is its limit curve. □

Now Corollary B in the introduction follows directly from the
openness of the set of Θ-Anosov representations. More precisely

Proof of Corollary B. A positive representation ρ0 with limit map ξ0, is
Θ-Anosov. Thus there is an open neighborhood U of ρ0 containing
only Θ-Anosov representations. For any ρ in this neighbourhood, let
ξρ be the limit map. Note that this map is equivariant and transverse.
The map ρ 7→ ξρ which sends an Anosov representation to its limit
curve is continuous. Since ξρ0 is positive it sends pairwise distinct
triples in ∂∞π1(S) to positive triples. Moreover π1(S) acts cocompactly
on the set of triples of pairwise distinct points of ∂∞π1(S), thus, for ρ
close enough to ρ0, the continuous curve ξρ sends pairwise distinct
triples to positive triples. Hence by Proposition 3.16, ξρ is positive. □

Remark 5.10. The definition of Θ-positive representations can be
made in more generality for non-elementary word hyperbolic group
Γwhose boundary admits a cyclic ordering. This holds if Γ is a surface
group, but also if Γ is virtually free. For example, an appropriate
extension of the arguments in this section shows that a representation
of Γ is Θ-Anosov if it admits a ρ-equivariant positive boundary map
ξ : ∂∞Γ→ FΘ.

6. Closedness

In this section we consider the space HomΘ(π1(S),G) of homomor-
phisms from π1(S) to G, which contains a contains a Θ-loxodromic
element, as well as the set HomΘ(π1(S),G) of homomorphisms from
π1(S) to G, who do not factor, even after taking a finite index subgroup
through a parabolic subgroup of G.

We show that the set ofΘ-positive representations HomΘ−pos(π1(S),G)
is an open and closed subset of HomΘ(π1(S),G), hence a union of
connected components.

We first have



44 O. GUICHARD, F. LABOURIE, AND A. WIENHARD

Proposition 6.1. Every Θ-positive representation is an element of the set
HomΘ(π1(S),G). Moreover, every Θ-positive representation has a compact
centralizer and does not factor through a proper parabolic subgroup of G.

Proof. The first part is a consequence of Proposition 3.18 Let us first
note that since the centralizer of a positive triple is compact, the central-
izer of a positive representation is compact as well. Let ρ : π1(S)→ G
be a positive representation with ρ-equivariant positive boundary
map ξ : ∂∞π1(S) → FΘ. Then ρ is Θ-Anosov with boundary map
ξ. This remains true when restricting the representation to a finite
index subgroup. To argue by contradiction we can thus assume that
without loss of generality ρ(π1(S)) is contained in a proper parabolic
subgroup of G. We consider the semi-simplification ρss of ρ, whose
image is contained in a Levi factor of the parabolic subgroup.

By [21, Proposition 1.8] the semi-simplification ρss is Θ-Anosov,
denote ξss the ρss-equivariant boundary map. Since ρss belongs to
the closure of the G-orbit of ρ; there exists thus a sequence {gm}m∈N

in G such that ρss is the limit of gmρg−1
m . Since the boundary map ξss

is transverse, Lemma 3.5 implies that the boundary map ξss is also
positive as well. But this is a contradiction because the centralizer of
ρss in G contains the center of the Levi factor of the parabolic subgroup
which is non-compact. □

By a classical result of Borel and Tits [6, Corollaire 3.3] (proved
also by Morozov [34] in characteristic zero), the set Hom∗(π1(S),G) is
contained in the set of reductive homomorphisms, i.e. representations
ρ : π1(S) → G, whose Zariski closure is reductive. Thus a direct
consequence of Theorem 6.1 is

Corollary 6.2. Let ρ : π1(S)→ G be a Θ-positive representation, then the
Zariski closure of ρ(π1(S)) is reductive.

We also show the following result as a consequence of a result of
Benoist–Labourie [2].

Proposition 6.3. Assume that the Zariski closure H of the image of ρ is
such that the exponential of every element in the open Weyl chamber of H is
loxodromic with respect to F . Then ρ belongs to HomΘ(π1(S),G).

In particular, every representation with Zariski dense image belongs to
HomΘ(π1(S),G).

Proof. Indeed by [2, Theorem A.1.1], an element h of the image of ρ
has an hyperbolic part whic belongs to the Weyl Chamber. Hence h
is loxodromic. □
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We expect that the list of possible Zariski closures of Θ-positive
representations is indeed restrictive. Classifications of the Zariski
closures for maximal representations were given in [11, 12, 26, 27]
and for Hitchin representations in [22, 36].

Since the set ofΘ-positive representations is open in Hom(π1(S),G)
by Corollary B, it is also open in Hom∗(π1(S),G).

We will now show

Theorem 6.4. The set of Θ-positive homomorphisms is closed in the set
HomΘ(π1(S),G).

We will first prove the following proposition of independent inter-
est:

Proposition 6.5. Let {ρm}m∈N be a sequence of Θ-positive representations
converging to a representation ρ∞. Let ξm be the limit curve of ρm. Assume
that we can find x0 and y0 in ∂∞π1(S) such that

{
(ξm(x0), ξm(y0))

}
m∈N

converges to a transverse pair, then ρ∞ is positive.

6.1. Proof of proposition 6.5. We fix a countable set A in ∂∞π1(S),
invariant by π1(S) and containing x0 and y0. We may now assume, by
the Cantor diagonal argument, that {ξm|A}m∈N converges simply to a
map ξ∞ from A to FΘ. By hypothesis ξ∞(x0) and ξ∞(y0) are transverse.

For any pair of distinct points (x, y) in A2, denote by ]x, y[ the
interval in the oriented circle ∂∞π1(S) with origin x and extremity y,
let c be in A∩]x, y[ and set

W∞(x, y)B lim
n→∞

V∗ξn(c)(ξn(x), ξn(y)) ,

the convergence being for the Hausdorff topology, and using again
the Cantor diagonal extraction, we can and will assume that all
those sequences converge of all (x, y) in A2 with x , y. Observe that
W∞(x, y) only depends on x, y, and the interval ]x, y[. Furthermore
the following equivariance property holds: ρ∞(γ)W∞(x, y) =W∞(γ ·
x, γ. · y).

Lemma 6.6. Assume that ξ∞(x) and ξ∞(y) are transverse then W∞(x, y)
is a closure of a diamond with extremities ξ∞(x) and ξ∞(y) and is Zariski
dense.

Proof. Since ξ∞(x) and ξ∞(y) are transverse, W∞(x, y) is the closure of
a diamond (see Proposition 3.8). It thus contains an open set, and in
particular is Zariski dense. □

Lemma 6.7. For every pairs of distinct points (x, y) and (z, t) in A, one has

WZ
∞

(x, y) =WZ
∞

(z, t)
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where MZ denotes the Zariski closure of a set M. In particular, for all distinct
x and y, W∞(x, y) is Zariski dense.

Observe that only the last assertion depends on the assumption
that ξ∞(x0) and ξ∞(y0) are transverse.

Proof. We shall use freely the following fact. If γ is an algebraic
automorphism of a variety V, if B is a Zariski closed subset such that
γ(B) ⊂ B then γ(B) = B.

We first prove that if [u, v] ⊂ [w, s], then we have

WZ
∞

(u, v) =WZ
∞

(w, s) . (24)

We can always find an element γ of π1(S) such that

γ[w, s] ⊂ [u, v] .

Thus
ρ∞(γ)

(
WZ
∞

(w, s)
)
⊂WZ

∞
(u, v) ⊂WZ

∞
(w, s) .

By the initial observation we get that

WZ
∞

(w, s) ⊂WZ
∞

(u, v) ⊂WZ
∞

(w, s) ,

and thus the assertion (24) follows. Take now γ in π1(S) such that

γ[x, y] ⊂ [x, y] , γ[x, y] ∪ [z, t] , ∂∞π1(S) .

We can then find distinct points u and v such that(
γ[x, y] ∪ [z, t]

)
⊂ [u, v] .

Thus, applying thrice assertion (24), we have

W∞(x, y) =WZ
∞

(γ · x, γ · y) =WZ
∞

(u, v) =WZ
∞

(z, t) .

The last assertion follows from the fact that ξ∞(x0) and ξ∞(y0) are
transverse and thus W∞(x0, y0) is Zariski dense by Lemma 6.6. □

We are now in the position to show that ρ∞ is Θ-positive. This will
be a consequence of the following proposition:

Proposition 6.8. For any pair of distinct points (x, y), the pair (ξ∞(x), ξ∞(y))
is transverse. Moreover, ξ∞ is a positive map.

Proof. Let (x, y, z) be a triple of pairwise distinct points in ∂∞π1(S). Let
us denote for simplicity xn = ξn(x), yn = ξn(y) and zn = ξn(z) for n in
N ∪ {∞}. We choose diamonds by letting

V0
n = V∗zn

(xn, yn) , V1
n = V∗yn

(xn, zn) , V2
n = V∗yn

(zn, yn) .

Since W∞(x, y), W∞(y, z), and W∞(z, x) are Zariski dense, we can pick
three points a, b, and c so that
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(1) a ∈W∞(x, y), b ∈W∞(y, z), c ∈W∞(z, x),
(2) a, b, c are pairwise transverse,
(3) any point in {a, b, c} is transverse to any point in {x∞, y∞, z∞}.

Let now pick sequences {am}m∈N, {bm}m∈N, and {cm}m∈N, with am ∈ V0
m,

bm ∈ V1
m, and cm ∈ V2

m, and converging to a, b, and c respectively.
We will now apply the necklace property several times. By Propo-

sition 3.2, (am, bm, cm) is a positive triple and since a, b, c are pairwise
transverse it follows that (a, b, c) is a positive triple.

Then, since xm belongs to V∗bm
(am, cm), it follows that x∞ belongs to

V∗b(a, c). Since x∞ is transverse to both a and c, x∞ belongs to V∗b(a, c).
Symmetrically y∞ belongs to V∗c(a, b), z∞ belongs to V∗a(c, b). Applying
Proposition 3.2 again, (x∞, y∞, z∞) is a positive triple.

The fact that, for any cyclically oriented quadruple (x, y, z,w), the
quadruple (ξ∞(x), ξ∞(y), ξ∞(z), ξ∞(w)) is positive, now follows from
Proposition 3.1.(3). Hence the positivity of ξ∞ by definition. □

6.2. Proof of Theorem 6.4. We consider a sequence {ρm}m∈N of Θ-
positive representations converging to a representation ρ∞. Let
{ξm}m∈N be the corresponding sequence of positive limit maps. Our
assumption is that image of ρ∞ contain a Θ-loxodromic element
ρ∞(γ0).

We fix a countable set A in ∂∞π1(S), invariant by π1(S). and contain-
ing γ+0 and γ−0 . We may now assume applying the Cantor diagonal
argument, that {ξ|A}m∈N converges simply to a map ξ∞ from A to FΘ.

Observe now that if y+ is the attractive fixed point of ρ∞(γ0) =
limn→∞ ρ∞(γ0), then y+ is the limit of the attracting fixed point of
{ρm(γ0)}m∈N. It follows that y+ = ξ∞(γ+). The same holds for the
repelling fixed point y− of ρ∞(γ0) and we have y− = ξ∞(γ−). Since y+
and y− are transverse, we can apply Proposition 6.5 to obtain that ρ∞
is positive. .

6.3. Proof of Theorem C. By Theorem 6.4 the set of Θ-positive repre-
sentations is closed in HomΘ(π1(S),G). Using furthermore Corollary
B this set is open. Thus the set ofΘ-positive representations is a union
of connected components of HomΘ(π1(S),G). Since finally, we can
obtain positive representatsion by factoring in a positive PSL2(R) we
deduce the Theorem.

7. Positive representations and Cayley components

Let us recall that for a real split Lie group G, the Hitchin compo-
nent was originally defined by Hitchin as the image of the Hitchin
section Φwhich assigns to a tuple of holomorphic differentials on a
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Riemann surface Σ a G-Higgs bundle on Σ. Let us denote the image
of Φ by P(Σ,G). Through the non-Abelian Hodge correspondence
the set P(Σ,G) corresponds to a subset of the representation vari-
ety Rep+(π1(S),G), which we denote by the same symbol. Hitchin
showed that P(Σ,G) is open and closed (hence a union of connected
components) and the map Φ gives a parametrization of P(Σ,G). In
the case of maximal representations a similar but more complicated
parametrization of the space of maximal representations was obtained
in [8], [18], and [5]. For any simple Lie groups admitting a Θ-positive
structure, the authors of [7] define in a similar way subsetsPe(Σ,G) of
the moduli space of G-Higgs bundles by giving explicit parametriza-
tions, see also [14] and [1] for indefinite orthogonal groups. They
prove thatPe(Σ,G) is open and closed in Rep+(π1(S),G). They further
prove that all representations in Pe(Σ,G) have compact centralizer
and thus do not factor through a proper parabolic subgroup. They fur-
ther show that the set Pe(Σ,G) contains an open subset of Θ-positive
representations.

Theorem C implies that any connected components of PΘe (Σ,G) =
Pe(Σ,G)∩RepΘ(π1(S),G)/G that contains aΘ-positive representation
consists entirely ofΘ-positive representations. Due to the extension of
our main result in [3] we further have that any connected components
ofPe(Σ,G) that contains at least oneΘ-positive representation consists
entirely of Θ-positive representations. For many G this implies that
Pe(Σ,G) ⊂ HomΘ−pos(Γ,G).

For this let us introduce the standard components of Pe(Σ,G). Con-
sider an embedding of SL2(R), such that the induced map from P1(R)
to FΘ is a positive circle, then the corresponding Fuchsian representa-
tion is positive. These Fuchsian representations can now in addition
be twisted by a representation of π1(S) into the centralizer of this
SL2(R) in G. This is called a twisted positive Fuchsian representation.
We call a component of Pe(Σ,G) standard if it contains a twisted
positive Fuchsian representation.

When G is a classical group and not locally isomorphic to Sp4(R),
or SO(p, p + 1), every component of Pe(Σ,G) is standard [7].

For Sp4(R) with the Θ-positive structure with Θ , ∆, positive rep-
resentations correspond precisely to maximal representations [10, 12].
In particular, the exceptional connected components of maximal rep-
resentations in Pe(Σ,G) which do not contain any twisted positive
Fuchsian representation [20], are positive. Similarly for the excep-
tional Hermitian Lie group of tube type, Pe(Σ,G) = HomΘ−pos(Γ,G)
is the set of maximal representations.
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For SO(p, p + 1) with the Θ-positive structure with Θ , ∆, there
also exist exceptional connected components inPe(Σ,G) which do not
contain any twisted positive Fuchsian representation. To deduce that
they are positive we can use an embedding argument. Embedding
SO(p, p + 1) → SO(p, p + 2), these components are sent to standard
components for SO(p, p + 2) [7], and thus they consist also entirely
of Θ-positive representations seen in SO(p, p + 2). Since any Θ-
positive representation in SO(p, p + 2), whose image is contained in
SO(p, p + 1) is also Θ-positive as a representation into SO(p, p + 1),
we conclude that these exceptional components consist entirely of
Θ-positive representations.

However, for exceptional groups G whose restricted root system
have a Dynkin diagram of type F4, we do not know if all connected
components ofPe(Σ,G) contain positive representations. If this where
try, this would implyPe(Σ,G) ⊂ HomΘ−pos(Γ,G). We further expect to
have Pe(Σ,G) = HomΘ−pos(Γ,G). For this to hold one would need to
show that any positive representation lies in Pe(Σ,G), or what might
be the better approach, that none of the connected components of
Hom+(Γ,G)\Pe(Σ,G) contain a Θ-positive representation.
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