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Abstract. In [20, 22] Guichard and Wienhard introduced the no-
tion of Θ-positivity, a generalization of Lusztig’s total positivity to
real Lie groups that are not necessarily split.

Based on this notion, we introduce in this paper Θ-positive
representations of surface groups. We prove that Θ-positive rep-
resentations are Θ-Anosov. This implies that Θ-positive repre-
sentations are discrete and faithful and that the set of Θ-positive
representations is open in the representation variety. We show
that the set of Θ-positive representations is closed within the set
of representations that do not virtually factor through a parabolic
subgroup. From this we deduce that for any simple Lie group G
admitting a Θ-positive structure there exist components consisting
of Θ-positive representations. More precisely we prove that the
components parametrized using Higgs bundles methods in [6]
consist of Θ-positive representations.

1. Introduction

An important feature of Teichmüller space, seen as a connected com-
ponent of the space of representations of the fundamental group of a
closed connected orientable surface S of genus at least 2 in PSL2(R), is
that it consists entirely of representations which are discrete and faith-
ful. These representations are moreover quasi-isometries from π1(S)
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to PSL2(R). This situation does not extend to the case of any semisim-
ple group, notably for simply connected complex ones, where the
representation variety is irreducible as an algebraic variety [32].

However, this phenomenon was shown to happen for some groups
of higher rank. Two families of (unions of) connected components of
the variety of representations of the fundamental group of a closed
connected orientable surface S of genus at least 2, which consist
entirely of discrete and faithful representations, have been singled
out:

• Hitchin components, defined when G is a real split group [25,
15, 12, 27, 19],
• spaces of maximal representations, which are defined when G

is Hermitian [14, 10, 8].

When G is PSL2(R), the Hitchin component and the space of maximal
representations both agree with Teichmüller space.

Both studies are closely related to the theory of Anosov represen-
tations as introduced in [27, 21]. Being Anosov is a notion defined
for any reductive Lie group with respect to a choice of parabolic
subgroup. Every Anosov representations is in particular faithful,
discrete and a quasi-isometric embedding [28, 21, 11].

Representations in the Hitchin components as well as maximal
representations can be characterized in terms of equivariant curves
from the boundary at infinity of π1(S) into an appropriate flag variety,
which preserves some positivity [12, 27, 19, 10]. For Hitchin compo-
nents this positivity is based on Lustztig’s total positivity [30], for
maximal representations it is based on the maximality of the Maslov
index and related to Lie semigroups in G.

In [22, 20], Guichard and Wienhard introduced the notion of Θ-
positivity. This notion extends Lusztig’s total positivity to generalized
flag manifolds associated to a parabolic defined by a set Θ of simple
roots.

They classified all possible simple Lie groups that admit a Θ-
positive structure. These include real split Lie groups, for which
Θ-positivity is Lusztig’s total positivity, Hermitian Lie groups of
tube type, where Θ-positivity is related to Lie-semigroups, but they
also include two other families of Lie groups, namely the family of
classical groups SO(p, q) —with p , q— and an exceptional family
consisting of the real rank 4 form of F4, E6, E7, and E8 respectively.
They conjectured that Θ-positivity provides the right underlying
algebraic structure for the existence of components made solely of
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discrete faithful representations. The goal of the present article is to
fulfil that program.

As a corollary of our main result, we prove

Theorem A. If G admits a Θ-positive structure, then there exist connected
components of the representation variety of the surface group in G that
consists solely of discrete and faithful representations.

A Θ-positive structure on G implies in particular the existence of a
positive semigroup in the unipotent radical of the parabolic group PΘ,
which then leads to the notion of positive triples and positive quadruples
in the flag variety FΘ ≃ G/PΘ. In the basic example of G = PSL2(R)
and FΘ = P1(R), a triple is positive if it consists of pairwise distinct
points and a quadruple is positive if it is cyclically ordered.

Let us give a geometric picture of the positivity in the flag variety FΘ.
For this let a and b be two points in FΘ which are transverse to
each other. Then Θ-positivity provides the existence of preferred
connected components of the set of all points in FΘ that are transverse
to both a and b. We call these preferred components the diamonds
(with extremities a and b). They are several, at least two, disjoint
diamonds with given extremities. The semigroup property alluded to
before translates into a nesting property of diamonds: if c is a point
in a diamond V(a, b) with extremities a and b, then there is exactly
one diamond V(c, b) (with extremities c and b) included in V(a, b).
These nesting properties of diamonds play an important role in our
arguments.

If a and b are transverse, and c belongs to a diamond with extrem-
ities a and b, we say the triple (a, b, c) is positive. Similarly if a and b
are transverse, and c and d belongs to the two opposite diamonds
with extremities a and b, then the quadruple (a, c, b, d) is called posi-
tive. We show in section 3 that being positive is invariant under all
permutations for a triple, and invariant under the dihedral group for
a quadruple.

We define a map ξ from of a cyclically ordered set A to FΘ to be
positive if ξmaps triples of pairwise distinct points to positive triples
and cyclically ordered quadruples to positive quadruples.

This allows us to define the notion of a Θ-positive representation: A
representation ρ : π1(S)→ G is Θ-positive if there exists a non-empty
subset A of ∂∞π1(S), invariant by π1(S), and a ρ-equivariant positive
boundary map from A to FΘ.

We prove
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Theorem B. Let G be a simple Lie group that admits aΘ-positive structure,
and let ρ : π1(S)→ G be a Θ-positive representation. Then ρ is a Θ-Anosov
representation.

As a direct consequence we obtain that a Θ-positive representation
is faithful with discrete image, its orbit map into the symmetric
space is a quasi-isometric embedding and the boundary map extends
uniquely to a Hölder map [28, 21, 11, 7].

Theorem B provides a general proof of the Anosov property for
all Hitchin representations and all maximal representations. This is
especially relevant for the case of the Hitchin component of SO(p, p)
and of F4, E6, E7, and E8 and the case of maximal representations
into the exceptional Hermitian Lie group of tube type, which cannot
be tightly embedded into Sp2n(R) [9, 23, 24]. The Anosov property
was established for the other Hitchin components in [27], and for all
maximal representations which tightly embed into Sp2n(R) in [8]. Fock
and Goncharov established a key property of Anosov representations
for every Hitchin representation, namely the existence of a continuous,
transverse (and positive) boundary map [12, Theorem 7.2]; from
this, the Anosov property can be established using for example [21,
Theorem 4.11].

Using the openness of the set ofΘ-Anosov representation, a further
consequence of Theorem B is the following

Corollary C. The set of Θ-positive representations HomΘ−pos(π1(S),G) is
an open subset of the set of all homomorphism Hom(π1(S),G).

We now consider the set Hom∗(π1(S),G) of homomorphisms ρ
of π1(S) in G that do not factor through a parabolic subgroup of G,
not even when restricted to a finite index subgroup of π1(S). We show
in Proposition 6.1 that HomΘ−pos(Γ,G) is a subset of Hom∗(π1(S),G).
We show

Theorem D. The set of Θ-positive representations HomΘ−pos(π1(S),G) is
a union of connected components of Hom∗(π1(S),G).

Note that special Θ-positive representations arise from positive
embeddings of SL2(R) into G. These positive embeddings of SL2(R)
can be characterized and classified explicitly in terms of the embedding
of the nilpotent generator of the Lie algebra sl(2,R). They have the
property that the embedding induces a positive map from P1(R)
into FΘ. We call the image of such a map a positive circle. These circles
play an important role in some of our arguments. Precomposing a
positive embedding SL2(R)→ G with a discrete embedding of π1(S)
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into SL2(R) , we obtain a Θ-positive representation. We call such
representations Θ-positive Fuchsian representations.

Recently, Bradlow, Collier, García-Prada, Gothen, and Oliveira [6]
developed the theory of magical sl2-triples, which is very closely re-
lated to the theory ofΘ-positivity. In fact a real simple Lie group is as-
sociated to a magical sl2-triple if and only if it admits aΘ-positive struc-
ture. Using methods from the theory of Higgs bundles, they then show
that for any simple Lie group G admitting aΘ-positive structure there
exists a non-empty open and closed subset (i.e. a union of connected
components) Pe(S,G) in Rep+(π1(S) = Hom+(π1(S),G)/G, where
Hom+(π1(S),G) denotes the set of reductive representations, such that
Pe(S,G) contains Θ-positive representations. They furthermore show
that thesePe(S,G) are contained in Rep∗(π1(S),G) = Hom∗(π1(S),G)/G
[6, Theorem A, Theorem E]. Using this, we deduce from Theorem D

Theorem E. Let G be a simple Lie group that admits a Θ-positive structure.
Then the non-empty open and closed subsets Pe(S,G) in Rep+(π1(S),G)
consist entirely of Θ-positive representations.

In particular, the union of connected components Pe(S,G) of
Rep+(π1(S),G)) consists entirely of Θ-Anosov representations, and
hence of discrete and faithful representations, and we deduce Theo-
rem A as a corollary.

Observe that the same phenomenon already occurred for Hitchin
components: Hitchin introduced the Hitchin component [25] for
real split groups using Higgs bundle methods. From his interpreta-
tion one gets that all representations in Hitchin components are in
Hom∗(π1(S),G) [27, Lemma 10.1]. This last observation is then used
in the proof by Labourie [27] as well as Fock and Goncharov [12] that
these components consist entirely of discrete and faithful representa-
tions.

Note however that in our case Theorem E does not readily imply
that the set Pe(S,G) agrees with the set of Θ-positive representations,
even though we expect this to be true [36, 6]. Theorem E also does not
imply that the set of Θ-positive representations is open and closed in
Hom+(π1(S),G)/G, a property we conjectured in [36, Conjecture 19].

In the case when G is locally isomorphic to SO(p, q), p ⩽ q, Beyrer
and Pozzetti [1] recently proved the closedness of the set of Θ-positive
Anosov representations in Hom(π1(S),G), thus by Theorem B also the
closedness of the set of Θ-positive representations. They derive this
as a consequence of a family of collar lemmas and fine properties of
the boundary map they establish. A similar approach should also
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work for the exceptional family of Lie groups admitting a Θ-positive
structure.
Acknowledgements: We thank Michel Brion, Steve Bradlow, Brian
Collier, Beatrice Pozzetti, and Jérémy Toulisse for interesting discus-
sions regarding the topics of this paper. We also thank Tengren Zhang
for pointing out a mistake in the previous version.

Outline of the paper: In Section 2, we recall the necessary algebraic
material from [22, 20] and introduce the main definitions: diamonds,
positive configurations, positive circles and positive maps. In Section 3,
we prove three propositions concerning combinatorial properties
of configurations, proper inclusion of diamonds and extension of
positive maps. In Section 4, we introduce the diamond metric on
diamonds and establish its properties. With these preparations we
prove Theorem B and Corollary C in Section 5, Theorem D in Section 6,
and Theorem E in Section 7.
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2. Definitions

2.1. Lie algebra notations. Let G be a simple group.
The roots of G are the nonzero weights of the adjoint action of

a Cartan subspace a of the Lie algebra g of G. They form a root
system Σ ⊂ a∗ (nonreduced in some cases) and the choice of a vector
space ordering on a∗ gives rise to the set Σ+ of positive roots, and the
set ∆ of simple roots. The α-weight space will be denoted by gα ⊂ g.

The parabolic subgroups of G are the subgroups conjugated to
one of the standard parabolic subgroups PΘ (for Θ varying in the
subsets of ∆); namely PΘ is the normalizer in G of the Lie algebra
uΘ B

⊕
α∈Σ+∖span(∆∖Θ) gα. A parabolic subgroup is its own normalizer

so that the space FΘ of parabolic subgroups conjugated to PΘ is
isomorphic to G/PΘ. The unipotent radical of PΘ is the subgroup
UΘ = exp(uΘ).

Two parabolic subgroups P and P′ are called transverse or opposite
if their intersection P ∩ P′ is a reductive subgroup (i.e. its unipotent
radical is trivial); this is equivalent to having UniRad(P) ∩ P′ = {1}.
In that case, there exists Θ ⊂ ∆ such that the pair (P,P′) is conjugated
to (PΘ,P

opp
Θ

) where Popp
Θ

is the normalizer of
⊕
α∈Σ+∖span(∆∖Θ) g−α. The

intersection LΘ B PΘ ∩ Popp
Θ

is a Levi factor of PΘ (and of Popp
Θ

).
We will always work with a parabolic subgroup P ≃ PΘ such that

PΘ is conjugated to its opposite; in this situation it makes sense to
look at transverse elements in FΘ ≃ G/PΘ. In particular we will use
the following notation, for x in FΘ,

PxB Stab(x),
Ux B UniRad(Px)
ΩxB{y ∈ FΘ | y is transverse to x},
SxBFΘ ∖Ωx .

We will sometimes use that, if a and b are transverse points, then
La,b B Pa ∩ Pb is a Levi factor of Pa and Pb. Recall thatΩx is an open
transitive orbit of Ux and that Sx is a proper algebraic subvariety of FΘ.

Given a point a in FΘ, a unipotent pinning, or U-pinning at a, is an
identification s of UΘ with Ua that exponentiates an isomorphism
from uΘ to ua induced by restriction of an automorphism of the Lie
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algebra g. Observe that there are finitely many U-pinnings up to
the action of Lx and that the associated Weyl group acts on those
U-pinnings.

2.2. Cones and semigroup.

Definition 2.1. [20, Theorem 9.2] A positive structure with respect
to FΘ (or a Θ-positive structure) is a semigroup N of U = UΘ such
that, denoting x and y the points of FΘ corresponding to PΘ and Popp

Θ
respectively, N · y is a connected component of Ωx ∩Ωy.

In this case, N is invariant by conjugation by the connected com-
ponent L◦ B L◦

Θ
of LΘ and is a sharp semigroup: for any h, k ∈ N, if

hk = 1, then h = k = 1 (i.e. the only invertible element in N is the
identity element).

We shall see that given a and b transverse in FΘ and an identification
of U with Ua which sends N to a subgroup Na of Ua, then Na· b is a
connected component of Ωa ∩Ωb.

In [20, 22], Guichard and Wienhard have classified all Θ-positive
structures. In particular, they have shown that this new notion of
positivity encompasses Lusztig’s total positivity for real split groups,
and positivity in the context of Shilov boundaries of Hermitian
symmetric subspaces. Moreover they have shown that new classes
of groups and parabolics appear; also, up to natural symmetries, the
semigroup N in the definition is unique.

We first present some conclusion of their construction that we are
going to use in this paper, then concentrate on the notions of diamonds
and positive configurations that play a crucial role in this paper.

2.2.1. The parameterization of the positive semigroup. The papers [22,
Theorem 4.5] and [20, Theorem 1.3] give a precise description of the
possible parameterizations of the semigroup N. We recall here the
material necessary for our purpose.

Fact 2.2. There exist N ⩾ 1, and C a L◦-invariant cone in (uΘ)N such that
the map

(uΘ)N
−→ U

(x1, . . . , xN) 7−→ exp(x1) · · · exp(xN)

induces by restriction a L◦-equivariant diffeomorphism

Ψ : C −→ N .

Furthermore the stabilizer in L◦ of any point h in C is a compact subgroup
of L◦.
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The closure C is also L◦-invariant and the definition 2.1 implies that
the cone C is salient, i.e. the intersection of C and −C is reduced to {0}.

Remark 2.3. A little more precisely, we have that N is the length of
the longest element in a finite Coxeter group associated with Θ and,
for every i = 1, . . . ,N, there is a L◦-invariant cone Ci contained in an
L-irreducible factor of uΘ (and Ci is open in that factor) and such that
C = C1 × C2 × · · · × CN.

2.3. Diamonds. Let a and b be two transverse points in FΘ.

Definition 2.4. A diamond with extremities a and b, associated to a
U-pinning sa at a, is the subset

sa(N) · b .

The terminology diamond was coined in [29] in the context of
G = SO(2,n). To give an idea, in that context FΘ is covered by charts
which are identified with the Minkowski space R1,n−1. Then, in a
suitable chart, a diamond is the intersection of the future time cone F+
of a, with the past time cone F− of b.

It follows that in that case there are precisely two diamonds with
given extremities. However for the split case SL(3,R) Tengren Zhang
has noticed that they are 4 diamonds with given extremities.

By definition, we observe that a diamond makes sense for a real
closed field and is a semi-algebraic set.

We list some first properties of diamonds that are proved in [20,
Section 10].

Proposition 2.5. (1) A diamond with extremities a and b is a connected
component of Ωa ∩Ωb.

(2) Given a diamond sa(N) · b, there exists a U-pinning sb so that

sa(N) · b = sb(N) · a .

(3) Given any diamond V(a, b) then a belongs to the closure of V(a, b)
(4) Let O be any neighbourhood of a and V(a, b) a diamond. Then O

contains a neighbourhood U of a so that U ∩ V(a, b) is connected.

We also remark that

Proposition 2.6. Given a diamond V there is a unique diamond V∗ satisfying
that if V = sb(N) · a then V∗ = sb(N−1) · a. The diamond V∗ is the opposite
diamond to V . A diamond and its opposite are disjoint. Finally any point
in V is transverse from any point in V∗.
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Proof. We just have to remark that the definition of the opposite
diamond does not depend on the choice if extremities. More precisely
if

V = sb(N) · a = sa(N) · b ,
then

sb(N−1) · a = sa(N−1) · b .
by [20, Section 10] . □

As a consequence of the proposition, if c is an element in a diamond
with extremities a and b, will denote by

(1) Vc(a, b) the unique diamond containing c with extremities a
and b;

(2) Vc(a, b) B V∗c(a, b) the diamond opposite to the diamond con-
taining c.

Proof of Proposition 2.5. The first item is a consequence of [20, Theo-
rems 1.3 and 1.4]. The second item is a consequence of [20, Proposition
10.1].

The third item comes from [22, Remark 4.9] and from [20, Section
10.6]. In particular, if x ∈ V, then x = sb(n)· a with n ∈ N, while if
y ∈ V∗, then y = sb(m−1)· a with m ∈ N. Thus

x = sb(nm)· y .

Since N is a semigroup, this means that x belongs to a diamond with
extremities y and b. By the first point x is transverse to y.

The fourth item follows from the fact that the identity belongs to the
closure of N, while the fifth is a consequence of the parametrisation. □

As an immediate consequence of the semigroup property we obtain
the following result that we shall use freely:

Lemma 2.7 (Nesting property). Let c be a point in a diamond with
extremities (a, b).

(1) Then there exist a unique diamond V(a, c) with extremities (a, c)
respectively so that

V(a, c) ⊂ Vc(a, b) .

(2) Moreover, if V(c, b) is the unique diamond with extremities (c, b)
included in V(a, b) then

V(a, c) ∩ V(c, b) = ∅ .

(3) Finally a belongs to the opposite diamond V∗(c, b).
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Figure 1. The nesting of V(c, b) in V(a, b)

Proof. Let us first construct diamonds V0(c, b) and V0(a, c) included in
Vc(a, b). Let us write Vc(a, b) = Nb· a = Na· b and consider the diamonds

V(c, b) = Nb· c , V(a, c) = Na· c .

By construction c = nb· a = na· b with nb ∈ Nb and na ∈ Na. By the
semigroup property

Nb·nb ⊂ Nb , Na·na ⊂ Na ,

which leads to the inclusions

V0(a, c) ⊂ Vc(a, b) ,V0(c, b) ⊂ Vc(a, b) .

We now prove these specific diamonds are disjoint. By the construc-
tion and the inclusion above both V(a, c) and V(b, c) are connected
components of Vc(a, b) \ Sc. It follows that either they are equal or
disjoint. By the sharpness property of N, the identity element does
not belong to the closure of N·na. Let thus O be an open set in Ua
containing the identity and with trivial intersection with N·na. Then
O· b is a neighborhood of b that does not intersect Na· c = Nana· b. Thus
b does not belong to the closure of V(a, c). Thus from the last item
of Proposition 2.5, V(a, c) is different from V(c, b) and by the above
discussion they are disjoint:

V0(a, c) ∩ V0(b, c) = ∅ .

Let us finally prove uniqueness. Let O be neighbourhood of a disjoint
from Sc ∪ Sb. Let U be the associated neighborhood to O by item (5)
of Proposition 2.5. Let V(a, c) be any diamond with extremities (a, c)
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included in V(a, b), then V(a, c)∩U is a union of connected components
of U \ Sa. Since furthemore

V(a, c) ∩U ⊂ V(a, b) ∩U ,

and the latter set is connected by item (5) of Proposition 2.5, hence a
connected component of U \ Sa, it follows that

V(a, c) ∩U = V(a, b) ∩U .

Thus
V(a, c) ∩U = V0(a, c) ∩U = V(a, b) ∩U , ∅ .

Since two diamonds with the same extremities are either disjoint of
equal it follows that V(a, c) = V0(a, c). This concludes the proof of the
first two items.

For the last one, observe that a = n−1
b c ∈ N−1

b c = V∗(c, b). □

2.4. Positive configurations. The following definition plays a central
role in this article:

Definition 2.8 (Positive configuration). Let us equip {1, . . . , p}with
the usual cyclic order, with p ⩾ 3. We say the configuration (a1, . . . , ap)
is positive, if there exists diamonds Vi, j with extremities (ai, a j) for all
i , j so that

(1) Vi, j = V∗j,i,
(2) ai belongs to V j,k, if ( j, i, k) is oriented,
(3) we have Vi, j ⊂ Vk,m, if (k, i, j,m) is oriented.

Proposition 3.1 will give easier criteria to understand positive
triples and quadruples and show that the definition is equivalent to
the definition given in the introduction.

Observe that the choice of Vi, j is forced once the cyclic order is
chosen.

By construction, every subconfiguration of a positive configuration
is positive. On the real projective line, a configuration is positive
exactly if it is cyclically oriented.

Moreover

Proposition 2.9. Positivity of a configuration is invariant under cyclic and
order reversing permutations. In particular

(1) to be positive for a triple is invariant under all permutations,
(2) to be positive for a quadruple is invariant under the dihedral group.

Proof. The definition is invariant under cyclic transformation. If σ0 is
the reverse ordering, we choose the new diamonds V◦σ0(i),σ0( j) = V∗i, j. □
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Figure 2. A positive 5-configuration and some diamonds

Finally, since the Definition 2.8 involves each time to check at most
4 indices, to check that a configuration is positive, it is enough to
check that subquadruples are positive. In the next section we will
give more properties of positive configurations.

2.5. Positive circles and PSL2(R). Let H be a subgroup in G locally
isomorphic to PSL2(R). An H-circle in FΘ is a closed H-orbit, it can be
parameterized by a circle map which is a PSL2(R)-equivariant from
P1(R) to FΘ. The group H is proximal if it contains a proximal element
in FΘ.

Proposition 2.10 (Positive circle). Given a positive structure, there
exists H , a G-orbit of pairs (H,C) so that H is a subgroup of G locally
isomorphic to PSL2(R), C is a an H-circle, satisfying the following properties

(1) H has a compact centralizer,
(2) H is proximal and C is the set of attractive fixed points of hyperbolic

elements of H,
(3) given transverse points a and b in FΘ, there exists (H,C) in H

passing through a and b, such that
• if c is a point in C different from a and b, then

Vc(a, b) ∩ C and V∗c(a, b) ∩ C,
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are the two connected components of C \ {a, b}.
• If furthermore d belongs to the connected component of C \ {c, b}

not containing a, then

Vd(b, c) ⊂ Vd(a, b) .

Proof. It is enough to construct one such group isomorphic to PSL2(R)
and to use the G-action that is transitive on the pairs of transverse
points in FΘ. For this, one just picks the Lie subgroup associated with
a sl2-triple given by the Jacobson–Morozov theorem applied to the
nilpotent element n = log(h) for h a fixed element in the semigroup N.

For the third item, let N2 = sb(exp(R>0n)), so that N2 is included in N.
Then C \ {a, b} has two connected components: which are respectively
N2· a and N2

−1
· a which are included in diamonds opposite to each

other.
Moreover, for the last statement, let us write c = n· a with n in N2.

Observe that
Vn·d(c, b) = Vd(c, b) .

Then

Vd(c, b) = Vn·d(c, b) = nVd(a, b) = nN2· a ⊂ N2a = Vd(a, b) ,

where we used in the inclusion the semigroup property. This con-
cludes the proof.

□

Remark 2.11. A more detailed construction of this positive PSL2(R) can
be found in [20, Section 11].AW: need to up-

date reference —
—— We fix once and for all such a classH and call for (H,C) inH , H a

positive PSL2(R) and C a positive circle. As an important example of
positive configuration, we have

Proposition 2.12. Any cyclically ordered configuration of points in a
positive circle is positive.

Proof. It is enough to prove the results for triples and quadruples.
Let first (a0, a1, a2) be a triple on a circle C. By the last property of

circles, ai+1 belongs to a diamond with extremities (ai, ai+2). Let us
define (where indices are taken modulo 3)

Vi,i+2 B Vai+1(ai, ai+2) ,Vi,i+1 B V∗i+1,i .

Then property (2) of Definition 2.8 is obviously satisfied and the
triple is positive. Let now consider (a0, a1, a2, a3) a quadruple on a
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circle C, such that ai+1 and ai+3 belongs to different components of
C \ {ai, ai+2}. Observe that from the last property of circles we have

Vai+2(ai, ai+3) = Vai+1(ai, ai+3) .

We now define

Wi,i+2 B Vai+1(ai, ai+2) ,
Wi,i+3 B Vai+2(ai, ai+3) = Vai+1(ai, ai+3) ,
Wi,i+1 BW∗

i+1,i .

It then follows from item (3) of Proposition 2.10 that Vai+3(ai, ai+2) =
V∗ai+1

(ai, ai+2), and thus that W∗

i,i+2 =Wi+2,i.
Finally recall that Wi,i+1 = W∗

i+1,i. Thus from item (3) of Proposi-
tion 2.10, Wi+1,i+2 ∩C is the component of C \ {ai+1, ai+2} not containing
ai and ai+3. Let d in Wi+1,i+2 ∩ C, then

Wi+1,i+2 = Vd(ai+1, ai+2) ⊂ Vd(ai, ai+3) =Wi,i+3 ,

where, for the inclusion, we applied twice the last part of the item (3)
of Proposition 2.10.

This concludes the proof. □

2.6. Positive maps.

Definition 2.13 (Positive map). Let S be a cyclically ordered set
containing at least three points. Then a map f from S to FΘ is positive
is the image of every ordered quadruple is a positive quadruple, and
the image of every ordered triple is a positive triple.1

Observe then that the image of every cyclically ordered configu-
ration by a positive map is a positive configuration: indeed to be a
positive configuration only depends on triple and quadruples.

Observe that by Proposition 2.12, the circle map of a positive circle
is positive.

3. Properties of positivity

We prove in this section, three main propositions concerning posi-
tivity:

• The first one, Proposition 3.1, gives various combinatorial
properties of positive triples, quadruples and configurations;
• The second one, Proposition 3.8, gives information about the

limit of diamonds included in a given diamond;

1When S has more than three points, the second requirement follows from the
first



16 O. GUICHARD, F. LABOURIE, AND A. WIENHARD

• The last one, Proposition 3.13, shows that positive maps share
the property of monotone maps: they coincide on a dense
subset with a left-continuous positive map.

3.1. Combinatorics of positivity. The following items of the next
proposition are fundamental properties of positive triples and quadru-
ples.

• The first one gives an easy criterion for positivity of triples,
while the second and third for quadruples. In particular, this
shows that the definition of positivity given in the introduction
is equivalent to Definition 2.8.
• The fourth one gives a recursive way to build positive config-

uration and, formally, the previous property can be deduced
from it.
• The fifth and sixth gives “exclusion” properties that are not

used in this paper.
We are going to prove this proposition and its corollary in the

context of a group defined over R, although by Tarski Theorem, the
statements will be true over every real closed field.

Proposition 3.1 (Combinatorial properties). (1) Assume (a, b) are
transverse and c belongs to a diamond with extremities a and b, then
(a, b, c) is positive.

(2) Assuming (a, c, b) is positive and d belongs to Va(c, b), then (a, c, d, b)
is positive.

(3) Assuming (a, x0, b) and (a, y0, b) are positive then (a, x0, b, y0) is
positive if and only if Vx0(a, b) = V∗y0

(a, b).
(4) Assume that (x0, x1, . . . , xp) is a positive configuration and that

y ∈ Vx2(x0, x1) then

(x0, y, x1, . . . , xp) ,

is a positive configuration.
(5) [Exclusion for triples] Assume (a, b, c, d) is positive, then (a, c, b, d)

is not positive.
(6) [Exclusion for quadruples] Let x0, x1, and x2 be three points

so that (a, xi, b) is positive, then the three quadruples (a, x0, b, x1),
(a, x1, b, x2), and (a, x2, b, x0) cannot be all positive.

The proof of this proposition and of the next Corollary 3.2 will
be given in Section 3.1.3. It is important to remark that all these
properties are true for configurations on P1(R).

Although the last three properties are not used in the sequel they
are important in the study of positivity. Finally we have,
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Corollary 3.2 (Necklace property). Let (a, b, c) be a positive triple. Let
α, β and γ be elements of Va(b, c) ,Vb(a, c) and Vc(a, b) respectively. Then
(α, β, γ) is a positive triple.

3.1.1. Triples and quadruples.

Lemma 3.3. A triple (a0, a1, a2) is positive if and only if a0, a1, a2 all belongs
to diamonds with extremities (a1, a2), (a2, a0) and (a0, a1) respectively.

Proof. We just need to prove the “if” part. Let then

Vi,i+1 B Vai+2(ai, ai+1) , Vi,i+2 B Vai+1(ai, ai+2).

Observe that

Vi,i+1 = Vai+2(ai, ai+1) = V∗ai+2
(ai, ai+1) = V∗i+1,i .

Then Lemma 2.7 provides all the necessary inclusions needed to prove
the triple is positive. □

The following lemma gives a way to go from positive triple to
positive quadruple.

Lemma 3.4. Let (a0, a1, a2, a3) be a quadruple. Assume that all subtriples
are positive. Then the quadruple (a0, a1, a2, a3) is positive, if and only if

ai ∈ V∗ai+2
(ai+1, ai+3) , (1)

ai+2 ∈ Vai+1(ai, ai+3) . (2)

Proof. The “only if” part follows from the definition. It remains to
prove the “if” part. Let (indices are taken modulo 4)

Vi,i+1 B Vai+2(ai, ai+1) ,
Vi,i+2 B Vai+1(ai, ai+2) = Vai+3(ai, ai+2) ,
Vi,i+3 B Vai+1(ai, ai+3) = Vai+2(ai, ai+3) ,

where in the second line we used the hypothesis (1), while in the last
we used the hypothesis (2). Hence by definition

Vi,i+1 = V∗i+1,i ,Vi,i+2 = V∗i+2,i .

It thus follows that for all i and j,

Vi, j = V∗j,i . (3)

From the positivity of all subtriples (ai, ai+1, ai+2) and the previous
lemma, we get the inclusions

Vi,i+1 ⊂ Vi,i+2 , Vi,i+1 ⊂ Vi−1,i+1 . (4)
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From the positivity of the triple (ai, ai+1, ai+3) we get the inclusions

Vi,i+1 = Vai+3(ai, ai+1) ⊂ Vai+1(ai, ai+3) = Vi,i+3 , (5)
Vi+1,i+3 = Vai(ai+1, ai+3) ⊂ Vai+1(ai, ai+3) = Vi,i+3 . (6)

Similarly the positivity of the triple (ai, ai+2, ai+3) yields

Vi+2,i+3 = Vai(ai+2, ai+3) ⊂ Vai+2(ai, ai+3) = Vi,i+3 , (7)
Vi,i+2 = Vai+3(ai, ai+2) ⊂ Vai+2(ai, ai+3) = Vi,i+3 . (8)

All together the equation (3) as well as the inclusions (4), (5), (6), (7),
and (8), prove that (a0, a1, a2, a3) is a positive quadruple. □

3.1.2. Deformation lemmas. We need to prove some deformation lem-
mas.

Lemma 3.5 (Deforming triples). Let a(t), b(t), and c(t) be continuous
arcs from [0, 1] to FΘ so that

(1) for all t in [0, 1], the points in the triple (a(t), b(t), c(t)) are all pairwise
transverse,

(2) the triple (a(0), b(0), c(0)) is positive.
Then, for all t, (a(t), b(t), c(t)) is a positive triple.

Proof. The hypothesis tells us that

c(t) ∈ Ωa(t) ∩Ωb(t) , a(t) ∈ Ωc(t) ∩Ωb(t) , b(t) ∈ Ωa(t) ∩Ωc(t) .

By hypothesis, denoting V(e, d) a diamond with extremities e and d.

c(0) ∈ V(a(0), b(0)) , a(0) ∈ V(c(0), b(0)) , b(0) ∈ V(c(0), a(0)) .

We now use the fact that a diamond with extremities c and d is a
connected component of Ωc ∩Ωd by Proposition 2.5. Then for all t by
continuity

c(t) ∈ V(a(t), b(t)) , a(t) ∈ V(c(t), b(t)) , b(t) ∈ V(c(t), a(t)) .

Thus the result follows from the definition. □

Similarly

Lemma 3.6 (Deforming quadruples). Let γ and η be continuous arcs
from [0, 1] to FΘ so that there exists a and b in FΘ satisfying

(1) for all t in [0, 1], the points in the quadruple (a, γ(t), b, η(t)) are all
pairwise transverse,

(2) the quadruple (a, γ(0), b, η(0)) is positive.
Then, for all t, (a, γ(t), b, η(t)) is a positive quadruple.
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Proof. By applying Lemma 3.5, we obtain that all the subtriples of
(a, γ(t), b, η(t)) are positive. By Lemma 3.4, we only need to check that

a < Vb(γ(t), η(t)) , b < Va(γ(t), η(t)) ,
γ(t) < Vη(t)(a, b) , η(t) < Vγ(t)(a, b) ,
γ(t) ∈ Va(η(t), b) , b ∈ Vγ(t)(a, η(t)) ,
η(t) ∈ Vb(γ(t), b) , a ∈ Vη(t)(b, γ(t)) .

We use again the fact that a diamond with extremities c and d is
a connected component of Ωc ∩ Ωd by Proposition 2.5. Then, the
statement follows by continuity. □

Finally we also have as an immediate consequence of the connect-
edness of the positive cone:

Lemma 3.7 (Connectedness). Let a and b two transverse points. Let C be
any positive circle through a and b.

(1) Assume c is so that (a, c, b) is positive. Then there is an arc t 7→ c(t)
from [0, 1] to Vc(a, b) connecting c = c(0) to c(1) so that (a, c(1), b)
is a positive triple on C.

(2) Assume furthermore that d belongs to Va(c, b) then there are a path
t 7→ c(t) as in the previous item and a path t 7→ d(t) from [0, 1] to
Vc(a, b), so that d(t) ∈ Va(c(t), b) and (a, c(1), d(1), b) are on C.

Proof. Using the U-pinning sb at b, we identify N with a positive
semigroup Nb in Ub. Recall that we have Vc(a, b) = Nb· a. The first
point just follows from the connectedness of the positive cone Nb. For
use in the second point we take a path which is constant for t > 1/2.

Recall that d = m0· c, with m0 ∈ Nb. Let then for t ∈ [0, 1/2],

d(t) = m0· c(t) ,

then we have by the semigroup property d(t) ∈ Va(c(t), b). Observe
also that d(0) = d. Then for t ∈ [1/2, 1], we have c(t) = c(1/2) and we
choose, using the first part, a path t 7→ d(t) with d(t) ∈ Va(c(1/2), d),
and so that d(1) belongs to C. □

3.1.3. Proof of the combinatorial properties.

Proof of item (1) of Proposition 3.1. Assume (a, b, c) satisfies the hypoth-
esis. Let c(t) be path connecting c to a point d in Vc(a, b) obtained by
Lemma 3.7. On a circle, a triple is positive if and only if the three
points are distinct, the result thus follows from Lemma 3.5. □

Proof of item (2) of Proposition 3.1. From the connectedness Lemma 3.7
we obtain deformation c(t), d(t) so that (a, c(t), d(t), b) are pairwise
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transverse, c(0) = c, d(0) = d, (a, c(1), d(1), b) on a circle and d(1) ∈
Va(c(1), b). In particular (a, c(1), d(1), b) is positive and thus by the
deforming Lemma 3.6, (a, c, d, b) is positive. □

Proof of item (3) of Proposition 3.1. The “only if” part follows from the
definition. Then for the “if” part we find by the first part of Lemma 3.7,
paths x(t) and y(t) in Vx0(a, b) and Vy0(a, b) respectively, so that
(x(0), y(0)) = (x0, y0) and x(1), y(1) are on a circle passing through a an
b. Then (a, x(1), b, y(1)) is positive and so is (a, x0, b, y0) by Lemma 3.6,
since x(t) and y(t) are transverse thanks to Proposition 2.5. □

Proof of item (4) of Proposition 3.1. This is an immediate consequence
of item (3) and the fact that in order to check the positivity of a
configuration one only needs to check the positivity of subtriples and
subquadruples. □

Proof of item (5) of Proposition 3.1. If (a, b, c, d) is positive and (a, c, b, d)
is positive we have strict inclusions Va(c, d) ⊂ Va(b, d) and Va(b, d) ⊂
Va(c, d), hence a contradiction. □

Proof of item (6) of Proposition 3.1. Assume that V(a, x0, b, x1) is positive.
Let V =B Vx0(a, b) and V∗ = Vx1(a, b) the opposite to V. If both
(a, x1, b, x2) and (a, x0, b, x2) are positive then we get that x2 belongs to
both V and V∗, which is a contradiction. □

Proof of the necklace property (Corollary 3.2). Let us first remark that
from item (4) of Proposition 3.1, applied three times, the configuration

(a, γ, b, α, c, β) ,

is positive. Thus (γ, α, β) is positive. □

3.2. Inclusion of diamonds.

Proposition 3.8 (Bounded property). Let (a, b, d) be a positive triple and
let c ∈ Vb(a, d). Assume that there exists sequences {bm}m∈N and {cm}m∈N,
converging respectively to b and c and such that, for all m, (a, bm, cm, d) is a
positive quadruple. then

lim
m→∞

(
Vd(bm, cm)

)
⊂ Vc(a, d) .

In particular,

Corollary 3.9 (Inclusion). Let (a, b, c, d) be a positive quadruple points in
FΘ. Then

Vd(b, c) ⊂ Vb(a, d).

Proposition 3.8 will be proved in Section 3.2.2.
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3.2.1. Preliminaries on circles. Let then V(a, d) be a diamond and C
a positive circle passing through a and d so that C is an orbit of a
positive H, isomorphic to PSL2(R).

• Let δ = {δt | t ∈ R}, be the 1-parameter group in H for which d
is the attractive fixed point and a is the repulsive fixed point.
• Let γ = C ∖ {a, d}.
• Let F be the set of fixed points of δ in FΘ.

The result of this section is

Proposition 3.10. For any e in γ, we have Va(e, d) ⊂ Ωa.

This proposition implies Corollary 3.9:

Proof of the Corollary 3.9. Applying Proposition 3.10, we get that

Va(b, c) ⊂ Va(b, d) ∩ Vd(c, a) ⊂ Ωd ∩Ωa .

Since Vc(a, d) is a connected component of Ωd ∩Ωa containing Va(b, c)
it follows that

Va(b, c) ⊂ Vc(a, d) . □

Recall that by definition Sa is the complementary to Ωa. In order to
prove to prove Proposition 3.10, we introduce the following sets

J(e)BVa(e, d) ∩ Sa ,

F(e)BJ(e) ∩ F ,
O+ B {x ∈ FΘ | lim

t→∞
δt(x) = d} ,

O− B {x ∈ FΘ | lim
t→−∞

δt(x) = a} .

We will first prove that the sets J(e) and F(e) are empty. We first prove
the following lemma

Lemma 3.11. For any e in γ,
(1) J(e) is invariant by the semigroup δ+B{δt | t > 0}, i.e. δt(J(e)) ⊂ J(e)

for all t > 0,
(2) F(e) is independent of the choice of e,
(3) if J(e) is not empty, so is F(e),
(4) for all c and b in FΘ so that (a, c, d, b) is a positive quadruple and

V(c, d) ∩ γ ̸ ∅

where V(c, d) is the only diamond in Vc(a, d) obtained by Lemma 2.7,
then

F(e) ⊂ Sc ∪ Sb .
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Proof. We prove the first point. By Proposition 2.12 for t > 0

Va(δt(e), d) ⊂ Va(e, d) .

This implies that Va(e, d) is invariant by δ+ and so is J(e).
The second point is a consequence that F is pointwise fixed by δt:

J(δt(e)) ∩ F = δt(J(e)) ∩ F = J(e) ∩ F .

The third point is a consequence of the compactness of FΘ which im-
plies that any non-empty closed set in FΘ invariant by the semigroup δ+
has a non-empty intersection with F.

Let us prove the last point now, wich will require several steps. Let
be (a, c, d, b) as in the hypothesis. Thus

V(c, d) ∩ γ , ∅ .

Let then V(e, d) the unique diamond in V(c, d) obtained by Lemma 2.7,
and similarly V(c, b) in Vc(a, b) and observe that

F(e) ⊂ J(e) =
(
Va(e, d) ∩ Sa

)
⊂

(
Va(c, b) ∩ Sa

)
. (9)

Now, we remark that by positivity of (a, c, d, b),

V(c, b) ⊂ Ωa.

Thus
V(c, b) ∩ Sa =

(
V(c, b) ∖ V(c, b)

)
∩ Sa. (10)

But since Va(c, d) is a connected component of the open set

Ωc ∩Ωd = FΘ ∖ (Sc ∪ Sd) ,

we get (
Va(c, b) ∖ Va(c, b)

)
⊂ (Sc ∪ Sb) . (11)

Combining inclusions (9), (10) and (11), we get that

F(e) ⊂ (Sc ∪ Sb) . □

We can now prove Proposition 3.10, in other words that J(e) is
empty. By item (3) of Lemma 3.11, it suffices to show that F(e) is empty.
The fact that F(e) is empty follows from item (3) of Lemma 3.11 and
the following result.

Lemma 3.12. Let Q be a subset of FΘ. Assume that there exists nonempty
open sets U and V so that for all c in U, and all b in V,

Q ⊂ Sc ∪ Sb,

then Q is empty.
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Proof. Let q be in Q and set Z B Sq. Then Z is a proper closed Zariski
subset of FΘ. Observe that if u < Z, then

q < Su.

On the other hand we can find c in the nonempty set U ∖ Z and b in
the nonempty set V ∖ Z, and by hypothesis q ∈ (Su ∪ Sv). This shows
that q , q and concludes the proof. □

3.2.2. Proof of the boundedness Proposition 3.8.

Proof. We use the notation of the previous paragraph. Let C be a circle
though a and d. Let γ B Vc(a, d) ∩ C. Since being positive is an open
condition for quadruples, we can find e and f in γ so that (e, bm, cm, f )
is positive for m large enough as well as (a, e, f , d). Thus

Va(bm, cm) ⊂ Va(e, f )

Applying Proposition 3.10, we get that

Va(bm, cm) ⊂ Va(e, f ) ⊂ Vc(a, d) ,

which easily implies the result. □

3.3. Left and right limits of positive maps. Our main result is

Proposition 3.13 (Existence of left and right limits). Let S be a totally
ordered set and ϕ be a positive map from S to FΘ.

Let {bn}n∈N be a sequence of points in S so that a < bn ⩽ bn+1 ⩽ b < c, for
a, b, and c in S.

Then {ϕ(bn)}n∈N converges to a point y in Vb(a, c). Symmetrically, let
{an}n∈N be a sequence of points so that c < a ⩽ an+1 ⩽ an < b. Then
{ϕ(an)}n∈N converges to a point y in Va(c, b).

As an immediate corollary, we show that positive maps defined on
dense subsets extend to positive maps. More precisely:

Corollary 3.14 (Extension of positive maps). Let A be dense subset in
[0, 1]. Assume that we have a positive map ξ from A to FΘ. Then there exists

• a unique left-continuous positive map ξ+ from [0, 1] to FΘ so that ξ
coincide with ξ+ on a dense subset of A,
• a unique right-continuous positive map ξ− from [0, 1] to FΘ so that
ξ coincide with ξ− on a dense subset of A.

Moreover,
• for any triple of pairwise distinct points (x, y, z) in [0, 1]

(ξa(x), ξb(y), ξc(z)) ,

is a positive triple for any choice of a, b, and c in {+,−},
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• if {xm}m∈N, {zm}m∈N are sequences in [0, 1] converging to y, so that
xm < y < zm, then

lim
m→∞
ξam(xm) = ξ−(y) , lim

m→∞
ξbm(zm) = ξ+(y) ,

for any sequences {am}m∈N and {bm}m∈N in {+,−}.

Proof of Proposition 3.13. Let us define xn = ϕ(bn). We can write xn =
mn· xn−1, with mn ∈ Nϕ(c). Thus by induction we have

xn = mn · · ·m1 · x0 .

But we know that Vϕ(c)(x0, ϕ(b)) is a relatively compact region of
Ωϕ(c) by Proposition 3.8. Thus {xn}n∈N is a relatively compact region
of Ωϕ(c). It follows that

πn = mn · · ·m1,

is a bounded sequence in Nϕ(c). We now prove that this sequence
converges. Assume that we have subsequences that converge to
different limits u and v. After extracting further subsequence, we may
find subsequences

qi = πni , pi = πmi , with ni ⩽ mi

such that {qi}i∈N converges to u and {pi}i∈N converges to v. It follows
that u = w1· v with w1 ∈ Nϕ(c). Symmetrically, v = w0·u with w0 ∈ Nϕ(c).
It follows that w0·w1 = 1, thus w0 and w1 are invertible in the closed
semigroup Nϕ(c), hence equal to the identity. In particular u = v and
{xn}n∈N converges.

The proof for the sequence {an}n∈N is symmetric. □

3.3.1. Positivity and continuity. In some cases, it suffices to show that
the image of every triple is positive

Proposition 3.15 (Triples suffice). Let ϕ be a continuous map from an
interval I to FΘ so that the image of every ordered triple is positive, then ϕ is
positive.

Proof. To lighten the notation of this proof, let us write u0 B ϕ(u) for
every u in C. Let z in ]x, y[ and Wz(x, y) = Vz0(x0, y0). Since [x, y] is
connected, Wz(x, y) does not depend on z and we denote it W(x, y):
More precisely, fixing t, the set of z in ]x, y[, so that ϕ(t) belongs to
Wz(x, y) is connected since ϕ is continuous.

Let V(t, y) the unique diamond with extremities t0 and y0 – obtained
in Lemma 2.7 – so that

V(t, y) ⊂W(x, y) . (12)
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Main step: We first prove that if x < t < y, then

W(t, y) = V(t, y) ⊂W(x, y) . (13)

Let us consider

U = {t ∈]x, y[|W(t, y) = V(t, y}

Let us write W(x, y) = N · x, where N is an open semigroup in Uy0 . We
can thus write ϕ(t) = nt· x, with t 7→ nt is a proper continuous map
with values in N, satisfying nx = id. Then V(t, y) = ntW(x, y). We now
proceed to the proof and show that U is open, non empty and closed.

(1) The set U is also the set of t so there exists s, with t < s < y
such that s0 is in V(t, y). In other words, n−1

t ns belongs to N.
Thus U is open.

(2) Since N is open, given s, for all t close enough to x we have
n−1

t ns is in N. Thus ns ∈ ntN, hence s0 ∈ V(t, y). Thus U is non
empty.

(3) If t belongs to U, then for all s > t, s0 belongs to W(t, y) = V(t, y).
Hence for all s > t, n−1

t ns belongs to N. Since u 7→ nu is proper,
given any t in U, we can find s, such that n−1

t ns belongs to a
compact set in N not containing the identity. Thus if {t}m∈N is
a sequence in U converging to t, we can produce a sequence
{s}m∈N converging s with n1

t ns different from the identity and
belonging to N̄. Since s0 = ns· y is transverse to t0 = nt· y, it
follows that n1

t ns actually belongs to N. Hence that s0 belongs
to V(t, y), hence that V(t, y) =W(t, y). We have completed the
proof that U is closed.

The proof of the Assertion (13) is now complete.

Conclusion: Let (a, b, c, d) so that a < c < b < d, with all subtriples of
(a0, b0, c0, d0) positive. By item (2) of Proposition 3.1, we only have to
prove that

Vc0(a, b) = V∗d0
(a, b) ,

Observe that
W(a, b) ⊂W(a, d) = Vb0(a0, d0) ,

by Assertion (13). Thus d0 does not W(a, b) and hence belongs to
W∗(a, b) by Lemma2.7. We thus have

Vd0(a0, b0) =W∗(a, b) = V∗c(a0, b0) .

This completes the proof of the positivity of the quadruple (a0, b0, c0, d0),
hence of the proposition.

□
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4. Triples, Tripods and metrics

In this section, we construct for every positive triple (a, b, c) a
complete metric on the diamond Vc(a, b) in Definition 4.9. We also
show that this metric satisfy contraction properties (Propositions 4.11
and 4.12).

We first do it for special triples that we call tripods.

4.1. Tripods and metrics.

Definition 4.1. A tripod is a triple of pairwise distinct triple of points
on a positive circle. A tripod is always positive. If τ = (x, t, y) is a
tripod, we write

τ− = x , τ0 = t , τ+ = y , τ B (y, t, x) ,Vτ B Vτ0(τ−, τ+) .

LetT0 be the set of tripods. Observe that the stabilizer of any tripod
is compact and that G acts transitively on the space of tripods. In
particular G acts properly on the space of tripods . Let then d be a
G-invariant metric on T0.

4.1.1. Tripods and the parameterization. Let us consider as in Para-
graph 2.2.1, the L◦-equivariant parameterization Ψ : C → N where
C is a convex cone in uN

Θ
for some N (andΨ is constructed from the

exponential map). Note thatΨ extends continuously to a map C→ U
that is also L◦-equivariant.

Let h be the element of C corresponding to the unipotent associated
to the preferred SL2(R) — see Proposition 2.12. Let Kh be the stabilizer
of h in L◦ = L◦

Θ
. Since the stabilizer of a positive triple is compact, it

follows that Kh is compact.
If now x and y are transverse points in FΘ and σ is an isomorphism

of U with Uy (i.e. σ is a U-pinning at y), then the map

Ψσ : C 7→ FΘ, u 7→ σ ◦Ψ(u) · x ,

is a parameterization of the diamond Vt(x, y) with t B Ψσ(h). We then
define

Definition 4.2. Given a tripod τ = (x, t, y) a parameterization of the
diamond Vτ, is a mapΨτ of the formΨσ so thatΨσ(h) = t.

From the definition follows

Proposition 4.3. Given a tripod τ, a parameterization of the diamond
exists and is unique up to post-composition by the stabilizer of τ, or up to
precomposition by Kh.



POSITIVE REPRESENTATIONS 27

The next proposition is crucial; it insures that a sequence of pa-
rameterizations of diamonds associated with tripods converges to
the constant map as soon as one sequence in the image converges,
precisely

Proposition 4.4 (Contraction in corners). Let {τm}m∈N be a sequence
of tripods, with τm = (xm, tm, y).

Assume that {xm}m∈N converges to a point x0 transverse to y. Assume
that there exists a converging sequence {km}m∈N in the cone C, so that

lim
m→∞
Ψτm(km) = x0 . (14)

Then for any convergent sequence {k′m}m∈N in C,

lim
m→∞
Ψτm(k′m) = x0 . (15)

Proof. Let {τm}m∈N, {xm}m∈N, and {tm}m∈N as in the statement. Since x0 is
transverse to y, by replacing τm by umτm where {um}m∈N is a converging
sequence in Uy, we may as well assume that {xm}m∈N is constant and
equal to x.

Using the fact that G acts transitively on tripods, let us write
tm = gm · t0, with gm in the connected component of the identity of
Lx,y = Px ∩ Py. Thus

Ψτm(h) = gm · t0 = gm ·Ψτ0(h) = gmσ(Ψ(h)) · x .

Note that the U-pinning σ : U→ Uy extends to an isomorphism σ of P
with Py. We denote by g0

m the element of L◦ such that σ(g0
m) = gm. Up

to maybe precomposing by an element of Kh, we may assume that
Ψτm is the map k 7→ σ(Ψ(g0

m · k)) · x.
Therefore we have, for any {ℓm}m∈N in C, that {Ψτm(ℓm)}m∈N converges

to x = x0 if and only if the sequence {g0
m · ℓm}m∈N converges to 0 in C.

For any y in C, let

K(y) B C ∩
(
y − C

)
,

where u − A B {u − x | x ∈ A} .

Since C is salient, K(y) is compact for any y.
From the previous discussion, we get that the sequence {cm =

g0
m · km}m∈N converges to 0. Thus, using again the fact that C is salient,

for every positive real R, the sequence of compact sets {K(R· cm)}m∈N
converges to {0}.

Let now {k′m}m∈N be a sequence converging in C. Since by hypothesis
{km}m∈N converges in C, there exists a positive real R such that, for all m,
R· km − k′m belongs to C. In other words: k′m belongs to R· km −C. Thus,
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for all m, g0
m · k′m belongs to K(R· cm). Hence the sequence {g0

m · k′m}m∈N
converges to 0. This means that the sequence {Ψτm(k′m)}m∈N converges
to x = x0 as wanted. □

4.1.2. Tripod metrics. We choose once and for all a Euclidean dis-
tance d0, associated to the Riemannian g0, on C which is invariant
by Kh. Note that this distance extends to C.

Definition 4.5. Given a tripod τ = (x, t, y), letΨτ be a parameterization
of Vτ, let

g+τ B Ψ
∗

τg0 , g−τ B Ψ
∗

τg0 , gτ = g+τ + g−τ ,
as well as d+τ , d−τ , and dτ the associated distance so that

d±τ ⩽ dτ ⩽ d+τ + d−τ .

The metric gτ is the diamond metric (for tripods) on Vτ. while dτ is the
diamond distance.

We then have

Proposition 4.6 (Completeness). The diamond metric is independent of
the choice of the parameterization and only depends on τ. Moreover, dτ is
complete on Vτ.

Proof of Proposition 4.6. The independence on the parameterization is
a consequence of Proposition 4.3 and the fact that d0 itself is invariant
under the group Kh.

Let us now prove the completeness. Let {um}m∈N be a Cauchy
sequence for dτ, then it is a Cauchy sequence for both d+τ and d−τ . It
follows that {vm}m∈N and {wm}m∈N are both Cauchy sequences, where

vm = Ψ
−1
τ (um), wm = Ψ

−1
τ (um) .

Since C is complete with respect to the metric d0, there exist v and w
in C so that

lim
m→∞

vm = v, lim
m→∞

wm = w .

Since by constructionΨτ andΨτ extend continuously to the closure
of C,

Ψτ(v) = Ψτ(w) = lim
m→∞

um C u .

Obviously u belongs to Vτ. Thus by construction u = ny· x and
u = nx· y where ny belongs to Uy and nx belongs to Ux. Since x and y
are transverse, it follows that u is transverse to both y and x. Thus u
belongs to Vτ. Hence dτ is complete. □
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Proposition 4.7 (Contraction for tripods). Let {τm}m∈N be a sequence
of tripods. Assume that Vτm+1 ⊂ Vτm and that⋂

m∈N

Vτm = {z} . (16)

For any positive R, let Vτm(R) be the ball of radius R and center τ0
m with

respect to dτm . Then on Vτm(R), we have

gτ0 ⩽ km· gτm ,

with {km}m∈N converging to zero.

Proof. Since G acts transitively on the space of tripodsT0, it follows that
τm = hmτ0, for some hm in G. Since our construction is G-equivariant,
we observe that gτm = h∗mgτ0 . Then, we take

km = sup
{

gτ0(w,w)
gτm(w,w)

| w ∈ TVτm(R)
}

= sup
{

gτ0(w,w)
gτ0(Th−1

m w,Th−1
m w)

| w ∈ TVτm(R)
}

= sup
{

gτ0(Thm(v),Thm(v))
gτ0(v, v)

| v ∈ TVτ0(R)
}
. (17)

The hypothesis (16) says that hm converges uniformly on every com-
pact set of Vτ0 to the constant map. It follows that {hm}m∈N also
converges C1 to zero on any compact set in Vτ0 . Thus, equality (17)
shows that {km}m∈N converges to zero. □

4.2. Positive triples, tripods and metric. Our goal is to construct a
complete metric on the diamond associated to a positive triple and to
prove a generalization of the contraction property (Proposition 4.4).

4.2.1. Approximating triples: the tripod norm. We will first approximate
in a rough sense positive triples by tripods. For any positive triple
t = (x, z, y), let

K(t) B inf{dτ(z, τ0) | τ ∈ T0 , (τ+, τ−) = (x, y)} .

We call K(t) the tripod norm. Observe that K(t) depends continuously
on t, and that the tripod norm vanishes for tripods. Let also

D(t,K0) B {τ ∈ T0 | (τ+, τ−) = (x, y) , dτ(z, τ0) ⩽ K(t)} ,
D(t) B D(t,K(t)) .

Proposition 4.8. (1) Given K0 ⩾ K(t), the set D(t,K0) is compact and
non-empty.

(2) K(t) = 0 if and only if t is a tripod,
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(3) For any K0 there exists a constant A, such that if t is a tripod with
K(t) ⩽ K0, then for τ0 and τ1 in D(t), then

gτ0 ⩽ Agτ1 .

Proof. Let t = (a, b, c) be a positive triple. Let {τm}m∈N be a sequence of
tripods such that (τ−m, τ+m) = (a, c) and

{dτm(b, τ0
m)}m∈N ,

is bounded. Let {gm}m∈N be a sequence of elements in La,c = Pa ∩ Pc

so that {g−1
m (τ0

m)}m∈N is constant and equal to τ0. Let τ B (a, τ0, c). It
follows that

{dτ(g−1
m (b), τ0)}m∈N ,

is bounded. Since dτ is a complete metric, and in particular every
bounded set is compact, the sequence {g−1

m (b)}m∈N — after extracting
a subsequence — converges to e with (a, e, c) positive. Since G acts
properly on the space of tripods, it follows that {gm}m∈N is bounded.
Thus after taking a subsequence {τm}m∈N converges to a tripod τ∞,
with τ0

∞
in Vt. Since D(t,K0) is non-empty for K0 > K(t), it follows that

D(t,K0) is compact. The result for K0 = K(t) follows from the fact that

D(t) =
⋂

K0>K(t)

D(t,K0) .

The second assertion is an immediate consequence of the first. The
third follows from the first as a consequence of the G-equivariance of
the assignment τ 7→ dτ. □

4.2.2. The diamond metric for triples. The following definition is one of
the goal of this section

Definition 4.9. Let t be a positive triple – which is not a tripod. The
diamond metric (for triples) gt is the Riemannian metric on Vt defined
by

gt B
1

Vol(D(t))

∫
D(t)

gτ d Vol(τ) ,

where Vol is a G-invariant volume form onT0. The associated distance
is the diamond metric dt.

As an immediate corollary of Proposition 4.8 and Proposition 4.6,
we have

Corollary 4.10. The diamond metric takes finite values and is complete.
Moreover if the sequence of positive triples {tm}m∈N converges to a tripod τ,
then {gtm}m∈N converges to gτ on every compact of the diamond Vτ.
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The following are two contractions properties of the diamond
metric that we shall use in the sequel,

Proposition 4.11 (Contraction). Let {tm}m∈N be a sequence of positive
triples, with tm = (am, bm, cm). Assume that the sequence {K(tm)}m∈N of
tripod norms is bounded. Assume that Vtm+1 ⊂ Vtm and that⋂

m∈N

Vtm = {z} . (18)

For any positive R, let Vtm(R) be the ball of radius R and center am with
respect to dtm . Then on Vtm(R), we have

gt0 ⩽ km· gtm ,

with {km}m∈N converges to zero.

Proposition 4.12 (Contraction in corners). Let {tm}m∈N be a sequence
of positive triples, where tm = (am, bm, cm). Assume that

(1) the sequence {K(tm)}m∈N of tripod norms is bounded,
(2) {am}m∈N and {cm}m∈N converge to transverse points a and c,
(3) {um}m∈N is a sequence of elements of FΘ, so that um belongs to Vtm , the

sequence {dtm(bm,um)}m∈N uniformly bounded, and limm→∞ um = a.
Then limm→∞(bm) = a.

Proof of Proposition 4.11. By the Definition 4.9 of the diamond metric
for triples, and Proposition 4.8 it follows that we can find a constant
A, such that for all m, we can find a tripod τm, with

dτm(τ0
m, bm) ⩽ A ,

1
A

gτm ⩽ gtm ⩽ Agτm .

The result now follows from the corresponding proposition for tripods:
Proposition 4.7. □

Proof of Proposition 4.12. Let {tm}m∈N be a sequence of positive triples
satisfying the hypothesis of the proposition where tm = (t−m, t0

m, t+m). By
the first hypothesis and Proposition 4.8, we can find a constant A, a
sequence of tripods {τm}m∈N with τ±m = t±m and so that

dτm ⩽ Adtm .

In particular, we have that {dτm(tm, τ0
m)}m∈N and {dτm(um, τ0

m)}m∈N are
uniformly bounded. The result now follows from a double appli-
cation of Proposition 4.4. Indeed, since {dτm(tm, τ0

m)}m∈N is uniformly
bounded, it follows that tm = Ψτm(km) with {km}m∈N bounded. Hence
by Proposition 4.4, with k′m = h, yields that

lim
m→∞

(τ0
m) = a .
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Applying again Proposition 4.4 to {k′m}m∈N withΨτm(k′m) = um yields
that

lim
m→∞

(um) = a .

This concludes the proof. □

5. Positive representations are Anosov

In this section we introduce the notion of positive representations
of a surface group. We then show that any Θ-positive representation
is Θ-Anosov, establishing Theorem B and Corollary C from the
introduction.

Definition 5.1 (Positive representations). Let G be a simple Lie group
admitting a Θ-positive structure. A representation ρ : π1(S) → G is
Θ-positive if there exists a non-empty π1(S)-invariant subset A of
∂∞π1(S) and a positive ρ-equivariant map ξ from A to FΘ. The map ξ
is called the positive boundary map of ρ and the image of ξ is the positive
limit curve of ρ.

We also say that a representation is positive if it is Θ-positive for
some Θ.

To establish the Anosov property we first extend the positive
boundary map to a left- and a right-continuous boundary map using
Corollary 3.14. We prove that these extensions are continuous, and
then deduce the Anosov property using the contraction property of
the diamond metric (Proposition 4.11).

5.1. Properness. The following definition will be used several times
in the sequel: an application f defined on a subset A of a topological
set X, with value in some topological set Y is bounded if for every
compact set K in X, f (A ∩ K) is empty or relatively compact.

Lemma 5.2. Let A be a dense set in the circle. Let ϕ be a positive map from
A to FΘ. Let A3

+ be the intersection of A3 with the set TS1 of pairwise distinct
triple in S1. Then ϕ3 is bounded as a map from A3

+ in T .

Proof. Let χ = (x1, x2, y1, y2, z1, z2) be an oriented sextuplet in S1. Let
Iχ be the subset of (S1)3 given by

Iχ = {(X,Y,Z) | x1 < X < x2 < y1 < Y < y2 < z1 < Z < z2} .

Let ϕ be a positive map and

KBϕ3 (Iχ ∩ A
)
.

It is enough to show that K ⊂ T , where the closure is taken in F3
Θ

.
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Let us find by density triples (a0, a1, a2), (b0, b1, b2), and (c0, c1, c2) in
A, so that

(x1, x2, a0, a1, a2, y1, y2, b0, b1, b2, z1, z2, c0, c1, c2) ,

is cyclically oriented. To simplify our notation, we use the same
notation for any point in the above 15-tuples and its image by ϕ.

From the positivity of the map and thus the image of of the 15-tuple
defined above, it follows that if (x, y, z) belongs to K, then

x ∈ Va1(c2, a0) , y ∈ Vb1(a2, b0) , z ∈ Vc1(b2, c0) .

Thus if (a, b, c) belongs to K, then

a ∈ Va1(c2, a0) , b ∈ Vb1(a2, b0) , c ∈ Vc1(b2, c0) .

Thus using the inclusion Corollary 3.9, we get

a ∈ Vb1(c1, a1) , b ∈ Vc1(a1, b1) , c ∈ Vc1(b1, c1) .

Thus by the necklace Corollary 3.2, (a, b, c) is a positive triple and thus
belongs to T . This concludes the proof. □

Let ρ be aΘ-positive representation, A a non-empty π1(S)-invariant
subset of ∂∞π1(S) and ξ : A→ FΘ the positive ρ-equivariant boundary
map. Then, by Corollary 3.14, there exists a unique right-continuous
ρ-equivariant boundary map ξ+ : ∂∞π1(S) → FΘ and a unique left-
continuous ρ-equivariant boundary map ξ− : ∂∞π1(S)→ FΘ, coincid-
ing with the map ξ on some dense subset of A.

Proposition 5.3. Let ρ : π1(S)→ G. Let ξ+ be a positive π1(S)-invariant
map from ∂∞π1(S) to FΘ.

Let Tπ1(S) be the set of pairwise distinct triple in ∂∞π1(S), T the set of
positive triples in FΘ. Let Ξ+ be the map from Tπ1(S) to T /G, defined by

Ξ+(x, y, z) B [ξ+(x), ξ+(y), ξ+(z)] .

Then the image of Ξ+ is relatively compact.

Proof. The map Ξ+ is invariant by the diagonal action of π1(S). The
result follows then from Lemma 5.2 using the fact that π1(S) acts
cocompactly on Tπ1(S). □

5.2. An a priori bound on the tripod norm. For any positive triple t,
let K(t) be the real constant and D(t) the set of tripods, both defined
in paragraph 4.2. Then Proposition 5.3 implies an a priori bound on
the tripod norm.
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Proposition 5.4. Let ρ : π1(S)→ G. Let ξ be a ρ-equivariant positive map
from a π1(S)-invariant dense subset of ∂∞π1(S) to FΘ. Then there exists a
constant A so that for all triple of pairwise distinct points t in the closure of
ξ(∂∞π1(S)), we have

K(t) ⩽ A .

Proof. This is an immediate consequence of Proposition 5.3 and the
fact that K is a continuous function on T +. □

5.3. Continuity of equivariant positive maps. Let ξ+ : ∂∞π1(S)→ FΘ
the right-continuousρ-equivariant boundary map, andξ− : ∂∞π1(S)→
FΘ the left-continuous ρ-equivariant boundary agreeing on a dense
subset of A.

Let Tπ1(S) be the set of triples of pairwise distinct points of ∂∞π1(S).
For t = (x, y, z) in Tπ1(S), let us define

τ(t) = (ξ+(x), ξ+(y), ξ+(z)) .

Lemma 5.5. The π1(S)-invariant function f defined by

f (x, y, z) = dτ(t)(ξ+(y), ξ−(y)) .

is bounded.

Proof. The function f is π1(S)-invariant, it thus suffices to check that
f is bounded on a fundamental domain U for the action of π1(S) on
∂∞π1(S)3+.

We know that ξ3
+ is bounded. Thus there exists a compact K in T

which contains ξ3
+(U) and thus ξ3

+(U) and ξ3
−
(U).

It follows that for any complete distance d0 on FΘ there exists ϵ > 0
such that for any t = (x, z, y) in U

d0(∂Vτ(t), ξ−(z)) ⩾ ϵ ,
d0(∂Vτ(t), ξ+(z)) ⩾ ϵ .

Recall now that dτ(t) is complete on Vy(x, z). Since K is compact, and
τ(t) belongs to K, it follows that all the metrics dτ(t) are equivalent on
compact sets of the diamond. This implies that for all t in U,

dτ(t)(ξ+(y), ξ−(y)) < A ,

where A depends on K and ϵ0. In other words, f is bounded by A. □

Lemma 5.6. The map ξ+ is left-continuous.

Proof. Let {xm}m∈N be a sequence of points of ∂∞π1(S), as well as
points x and y so that (xm, x, y) is oriented with respect to the ori-
entation on ∂∞π1(S), and that {xm}m∈N converges to x. Let tm =
(ξ+(xm), ξ+(x), ξ+(y)).
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Recall that by Corollary 3.14, {ξ+(xm)}m∈N converges to ξ−(x).
We now apply Proposition 4.12 to the following setting:

am = ξ+(xm) , b = ξ+(x) , um = ξ−(x) , cm = ξ+(y) .

Since
{dtm(bm,um)}m∈N = {dtm(ξ+(x), ξ−(x))}m∈N ,

is bounded by Lemma 5.5 and {K(tm)}m∈N is bounded by Proposi-
tion 5.4, we get that

lim
m→∞
ξ+(xm) = ξ+(x) .

This proves that ξ+ is left-continuous. □

As a consequence we obtain

Proposition 5.7. Let ρ : π1(S)→ G be a positive representation and ξ the
positive ρ-invariant boundary map from a π1(S)-invariant dense subset of
∂∞π1(S) to FΘ. Then ξ extends to a ρ-equivariant positive continuous map.

5.4. The Anosov property. We are now in the position that we can
prove Theorem B in the introduction. More precisely we show

Proposition 5.8. Let G admit aΘ-positive structure. Letρ : π1(S)→ G be a
positive representation and ξ : ∂∞π1(S)→ FΘ the ρ-equivariant continuous
positive boundary map. Then ρ is Θ-Anosov and its boundary map is ξ.

Let us start with a more general lemma

Lemma 5.9. Let {b0
m}m∈N and {b1

m}m∈N be two sequences of elements of FΘ
converging to c. Let (a0, a0, c, d1, d0) be positive quintuple of points in FΘ so
that

(a0, d0, b0
m, b

1
m, d1, a1)

is a positive configuration. Let Vm be the unique diamond with extremities
(b0

m, b1
m) so that Vm is a subset of the diamond Vd0(d0, d1). Then

lim
m→∞

Vm = {c} .

Proof. Let zm so that zm belongs to Vm, we want to prove that

lim
m→∞

zm = c .

Thanks to Corollary 3.9, we can extract a subsequence so that

lim
m→∞

zm = p ,

with p in V(d0, d1), where V(d0, d1) is the diamond with extremities d0
and d1 included in Vd0(a0, a1). In particular p belongs toΩa0 ∩Ωa1 . It
follows that

z ∈ Vd0(a0, c) ∩ Vd1(a1, c) ∩Ωa .
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Let V = Vd0(a0, c), and recall that by Lemma 2.7,

Vd1(a1, c) ⊂ V∗ .

Finally remark that

V ∩Ω = N· c ,V
∗

∩Ω = N−1· c ,

for some semigroup N in U, which satisfies N = exp(C) where C is
salient (see Section 2.2.1). Thus

N ∩ N−1 = {id} .

Thus z = c, which is what we wanted to prove. □

Proof. Let us choose an hyperbolization of S which defines a π1(S)-
invariant cross ratio on ∂∞π1(S). Let us also define an orientation on
∂∞π1(S). For any oriented positive triple t = (x, y, z), let us consider the
harmonic (with respect to the cross ratio) quadruple q(s) = (x, y, z,w(s)).
Let then

Yt B Vξ(z)(ξ(y), ξ(w(s))) .
By construction Yt is an open neighborhood of ξ(z). Moreover if
(x, y1, y0, z) is an oriented positive quadruple,

Yx,y0,z ⊂ Yx,y1,z . (19)

Finally, since ξ is continuous , by Lemma 5.9

lim
y→z

Yx,y,z = {ξ(z)} . (20)

We now show the Anosov property from Assertion (20). Let us
spell out the details. Recall that we have chosen a uniformisation of
the surface. Let us now identify the space of triples in the boundary
at infinity with the unit tangent bundle of the universal cover UH2.
Let {ϕs}s∈R be the geodesic flow on UH2. Let F be the trivial bundle
FΘ × UH2. The action of π1(S) on UH2 and FΘ — through ρ— gives
rise to an action of π1(S) on F .

LetU be the subbundle with open fibers given by

U = {(x, v) ∈ F | v ∈ UH2, x ∈ Yv} .

The bundle U is invariant by the π1(S)-action, moreover it has a
canonical section σ0 given by

σ0(x, y, z) = ξ(z) .

Let us lift the flow {ϕs}s∈R to a flow {Φs}s∈R on F acting trivially on the
first factor. By assertion (19), for all positive s

Φ−s(U) ⊂ U .
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Moreover the section σ0 is invariant by {Φs}s∈R.
The diamond metric gt and the diamond distance dt on each Yt

gives a metric on each fiber ofU which depends continuously on the
base and is equivariant under the action of π1(S).

For any R, letU(R) the neigbourhood of the image of the section
σ0, given by

U(R) = {(x, v) ∈ F | v ∈ UH2, dv(x, σ0(v)) ⩽ R} .

It now follows for assertion (20) and Proposition 4.11, that for every u
in UH2/π1(S), there is su so that, for all (x,u) inU(R)

for all s ⩾ su, gΦs(x,u) ◦ T(x,u)Φ−s ⩽
1
2

g(x,u) . (21)

Let now s be the real valued function on UH2 defined by

s(u) = inf{su | su satisfies assertion (21) onU(R)} .

The function u 7→ s(u) is upper semicontinuous and invariant under
the action of π1(S). Thus by compactness of UH2/π1(S) the function
has an upper bound s0. Then, for all s greater than s0, for all w inU(R)

Φ∗sg ⩽
1
2

g ,

onU(R). In other words, the action of {Φ−s}s∈R is contracting onU
and σ0 is an invariant section.

Thus ρ is FΘ-Anosov and z 7→ ξ(z) is the limit curve. □

Now Corollary C in the introduction follows now directly from the
openness of the set of Θ-Anosov representation.

Remark 5.10. The definition of Θ-positive representations can be made in
more generality for non-elementary word hyperbolic group Γwhose boundary
admits a cyclic ordering. This holds if Γ is a surface group, but also if Γ
is virtually free. For example, an appropriate extension of the arguments
in this section show that a representation of Γ is Θ-Anosov if it admits a
ρ-equivariant positive boundary map ξ : ∂∞Γ→ FΘ.

6. Closedness

In this section we consider the space Hom∗(π1(S),G) of homomor-
phisms from π1(S) to G, which (even when restricted to a finite index
subgroup) do not factor through a proper parabolic subgroup of G.
We show that the set ofΘ-positive representations HomΘ−pos(π1(S),G)
is an open and closed subset of Hom∗(π1(S),G), hence a union of
connected components.
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Proposition 6.1. The set of Θ-positive representations is a subset of
Hom∗(π1(S),G).

Proof. Let us first note that since the centralizer of a positive triple
is compact, the centralizer of a positive representation is compact
as well. Let ρ : π1(S) → G be a positive representation with ρ-
equivariant positive boundary map ξ : ∂∞π1(S) → FΘ. Then ρ is Θ-
Anosov with boundary map ξ. This remains true when restricting the
representation to a finite index subgroup. To argue by contradiction we
can thus assume that without loss of generality ρ(π1(S)) is contained in
a proper parabolic subgroup of G. We consider the semi-simplification
ρss of ρ, which is its projection to a Levi factor of the parabolic
subgroup. Then by [17, Proposition 2.39] the semi-simplification is
Θ-Anosov with ρss-equivariant boundary map ξss. The G-orbit of
ρss in Hom(π1(S),G) is the unique closed orbit in the closure of the
G-orbit of ρ; there exists thus a path gt ∈ G such that ρss is the limit
of gtρgt

−1. Since the boundary map ξss is transverse, Lemma 3.5
implies that the boundary map ξss is also positive as well. But this is a
contradiction because the centralizer of ρss in G contains the center of
the Levi factor of the parabolic subgroup which is non-compact. □

By a classical result of Borel and Tits [4, Corollaire 3.3] (proved
also by Morozov [31] in characteristic zero), the set Hom∗(π1(S),G) is
contained in the set of reductive homomorphisms, i.e. representations
ρ : π1(S) → G, whose Zariski closure is reductive. Thus a direct
consequence of Theorem 6.1 is

Corollary 6.2. Let ρ : π1(S)→ G be a Θ-positive representation, then the
Zariski closure of ρ(π1(S)) is reductive.

We expect that the list of possible Zariski closures of Θ-positive
representations is indeed restrictive. Classifications of the Zariski
closures for maximal representations were given in [9, 10, 23, 24] and
for Hitchin representations in [18, 34].

Since the set of Θ-positive representations is open in Hom(π1(S),G)
by Corollary C, it is also open in Hom∗(π1(S),G)

We will now show

Theorem 6.3. The set of Θ-positive homomorphisms is closed in the set
Hom∗(π1(S),G).

This implies Theorem D in the introduction. We will first prove the
following proposition of independent interest

Proposition 6.4. Let {ρm}m∈N be a sequence of Θ-positive representations
converging to a representation ρ∞. Let ξm be the limit curve of ρm. Assume
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that we can find x0 and y0 in ∂∞π1(S) so that {ξm(x0), ξm(x0)}m∈N converges
to a transverse pair, then ρ∞ is positive.

6.1. Proof of proposition 6.4. We fix a countable set A in ∂∞π1(S),
invariant by π1(S) and containing x0 and y0. We may now assume, by
the Cantor diagonal argument, that {ξm|A}m∈N converges simply to a
map ξ∞ from A to FΘ. By hypothesis ξ∞(x0) and ξ∞(y0) are transverse.

For any pair of distinct points x, y in A, let c so that (c, x, y) are
pairwise distinct and

W∞(x, y)B lim
n→∞

Vξn(c)(ξn(x), ξn(y)) ,

the convergence being for the Hausdorff topology, and using again the
Cantor diagonal extraction, we can assume that all those sequences
converge of all (x, y) distinct in A. Observe that W∞(x, y) only depends
on x, y and the choice of a connected component of ∂∞π1(S) ∖ {x, y}.
Also, the following equivariance property holds: ρ∞(γ)W∞(x, y) =
W∞(γ · x, γ. · y).

Lemma 6.5. Assume that ξ∞(x) and ξ∞(y) are transverse then W∞(x, y) is
a closure of a diamond with vertices x and y and is Zariski dense.

Proof. Since ξ∞(x) and ξ∞(y) are transverse, W∞(x, y) is the closure of
a diamond (see Proposition 3.8). It thus contains an open set, and in
particular is Zariski dense. □

Lemma 6.6. For every pairs of distinct points (x, y) and (z, t) in A, one has

W∞(x, y)
Z
=W∞(z, t)

Z

where M
Z

denotes the Zariski closure of a set M. In particular, for all distinct
x and y, W∞(x, y) is Zariski dense.

Observe that only the last assertion depends on the assumption
that ξ∞(x0) and ξ∞(y0) are transverse.

Proof. We shall use freely the following fact. If γ is an algebraic
automorphism of a variety V, if B is a Zariski closed subset so that
γ(B) ⊂ B then γ(B) = B.

We first prove that if [u, v] ⊂ [w, s], then we have

W∞(u, v)
Z
=W∞(w, s)

Z
. (22)

Let us prove this fact. We can always find an element γ of π1(S)
such that

γ[w, s] ⊂ [u, v] .



40 O. GUICHARD, F. LABOURIE, AND A. WIENHARD

Thus
ρ∞(γ)

(
W∞(w, s)

Z)
⊂W∞(u, v)

Z
⊂W∞(w, s)

Z
.

Thus by the initial observation we get that

W∞(w, s)
Z
⊂W∞(u, v)

Z
⊂W∞(w, s)

Z
,

and thus the assertion (22) follows. Let now γ in π1(S) so that

γ[x, y] ⊂ [x, y] , γ[x, y] ∪ [z, t] , ∂∞π1(S) .

We can then find distinct points u and v so that(
γ[x, y] ∪ [z, t]

)
⊂ [u, v] .

Thus, applying thrice assertion (22), we have

W∞(x, y)
Z
=W∞(γ· x, γ· y)

Z
=W∞(u, v)

Z
=W∞(z, t)

Z
.

The last assertion follows from the fact that ξ∞(x0) and ξ∞(y0) are
transverse and thus W∞(x0, y0) is Zariski dense by lemma 6.5. □

We are now in the position to show that ρ∞ is Θ-positive. This
follows from the following proposition:

Proposition 6.7. For any triple of points (x, y, z), the triple

(ξ∞(x), ξ∞(y), ξ∞(z)),

consists of pairwise transverse points. For any positive quadruple of points
(x, y, z,w), the quadruple

(ξ∞(x), ξ∞(y), ξ∞(z), ξ∞(w)) ,

is positive.

Proof. Let x, y, and z be a triple of pairwise distinct points in ∂∞π1(S).
Let us denote for simplicity xn = ξn(x), yn = ξn(y) and zn = ξn(z) for n
inN ∪ {∞}. We choose the diamonds by letting

V0
n = Vzn(xn, yn), V1

n = Vyn(xn, zn) V2
n = Vyn(zn, yn).

Since W∞(x, y), W∞(x, y) and W∞(x, y) are Zariski dense, we can pick
three points a, b, and c so that

(1) a ∈W∞(x, y), b ∈W∞(y, z) , c ∈W∞(z, x),
(2) a, b, c are pairwise transverse,
(3) any point in {a, b, c} is transverse to any point in {x∞, y∞, z∞}.

Let now pick sequences {am}m∈N, {bm}m∈N, and {cm}m∈N in V0
n, V1

n, and
V2

n respectively and converging to a, b, and c respectively.
We will now apply the necklace property several times. By Propo-

sition 3.2, (an, bn, cn) is a positive triple and since (a, b, c) are pairwise
transverse it follows that (a, b, c) is a positive triple.
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Then, since xn belongs to Vbn(an, cn), it follows that x∞ belongs to
Vb(a, c). Since x∞ is transverse to both a and c, x∞ belongs to Vb(a, c).
Symmetrically y∞ belongs to V∗c(a, b), z∞ belongs to Va(c, b). Applying
Proposition 3.2 again, (x∞, y∞, z∞) is a positive triple.

The fact that the quadruple (x∞, y∞, z∞,w∞) is positive, now follows
from Proposition 3.1. □

6.2. Proof of Theorem 6.3. We consider a sequence {ρm}m∈N of Θ-
positive representations converging to a representation ρ∞. Let
{ξm}m∈N be the corresponding sequence of positive limit maps.

We fix a countable set A in ∂∞π1(S), invariant by π1(S). We may
now assume applying the Cantor diagonal argument, that {ξ|A}m∈N
converges simply to a map ξ∞ from A to FΘ. We then have two
possible cases:

(1) Either there exists x, y ∈ A such that ξ∞(x) is transverse to
ξ∞(y),

(2) Or for all x, y ∈ A the flags ξ∞(x) and ξ∞(y) are not transverse.
If we are in case (2), Theorem A.1 applied to H = ρ∞(π1(S)) implies

that ρ∞(π1(S)) is contained in a proper parabolic subgroup of G. This
contradicts that ρ∞ lies in Hom∗(π1(S),G). Thus case (2) is not possible
and we are in case (1). We can apply Proposition 6.4 to obtain that ρ∞
is positive.

7. Connected Components

In this section, we prove that Theorem D implies the existence
of components consisting solely of discrete faithful representations.
for any simple Lie group G admitting a Θ-positive structure. More
precisely, we show that the unions of the connected components
Pe(Σ,G) of Rep+(π1(S),G), (where Σ is a Riemann surface modelled
on S) introduced in [6] using methods from the theory of Higgs
bundles consist entirely of Θ-positive representations. In particular
they consist solely of discrete faithful representations.

Let us recall that for real split Lie groups G, the Hitchin component
was originally defined by Hitchin as the image of the Hitchin sectionΦ
which assigns to a tuple of holomorphic differentials on a Riemann
surface Σ a G-Higgs bundle on Σ. Let us denote the image of Φ
by P(Σ,G). Through the non-abelian Hodge correspondence the
set P(Σ,G) corresponds to a subset of the representation variety
Rep+(π1(S),G), which we denote by the same symbol. Hitchin showed
that P(Σ,G) is open and closed and the map Φ gives an explicit
parameterization of the components ofP(Σ,G). In the case of maximal
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representations a similar but more complicated parameterization of
the space of maximal representations was obtained in several works by
Bradlow, García-Prada and Gothen. For simple Lie groups admitting a
Θ-positive structure, the authors of [2] (see also [6] for classical groups
and [13] for Sp(2n)) in a similar way define subsets Pe(Σ,G) of the
moduli space of G-Higgs bundles by giving precise parameterizations
of the set. They prove that the sets Pe(Σ,G) are open and closed in
Rep+(π1(S),G). They further prove that all representations in Pe(Σ,G)
have compact centralizer and do not factor through a proper parabolic
subgroup. This implies that Pe(Σ,G) is contained in Rep∗(π1(S),G).
They further show that these sets Pe(Σ,G) contain an open set of
Θ-positive representations.

Thus Theorem D implies

Theorem 7.1. The open and closed subsetsPe(Σ,G) in Hom+(π1(S),G)/G
consist entirely of Θ-positive representations.

Proof. It is an immediate consequence of Theorem D and the fact
that Pe(Σ,G) ⊂ Rep∗(π1(S),G) that if a connected component of
Pe(Σ,G) ⊂ Rep∗(π1(S),G) contains a Θ-positive representation, then
the entire component of Pe(Σ,G) ⊂ Rep∗(π1(S),G) consists of Θ-
positive representations. Here is one way to construct a Θ-positive
representations. Consider an embedding of SL2(R), such that the
induced map from PSL2(R) to FΘ is a positive circle, then the cor-
responding Fuchsian representation is positive. These Fuchsian
representations can now in addition be twisted by a representation
of π1(S) into the centralizer of this SL2(R) in G. This is called a twisted
positive Fuchsian representation. We call a component of Pe(Σ,G)
standard if it contains a twisted positive Fuchsian representation.

When G is not locally isomorphic to Sp4(R), or SO(p, p + 1), ev-
ery component of Pe(Σ,G) is standard [6]. For Sp4(R) there exist
exceptional connected components which do not contain any twisted
positive Fuchsian representation [16], but embedding Sp4(R) diag-
onally into Sp8(R) these exceptional components are sent into a
standard component for Sp8(R). Thus the expectional components
for Sp4(R) consist entirelyΘ-positive representations. For SO(p, p+ 1)
there also exist exceptional connected components which do not
contain any twisted positive Fuchsian representation, but embedding
SO(p, p + 1) → SO(p, p + 2), these components are sent to standard
components for SO(p, p + 2) and thus they consist also entirely of
Θ-positive representations [6].

□



POSITIVE REPRESENTATIONS 43

As a corollary we obtain

Corollary 7.2. The subsets Pe(Σ,G) of Hom+(π1(S),G)/G only contain
discrete faithful representations.

We expect that the sets Pe(Σ,G) coincide precisely with the set of
Θ-positive representations. We also wonder whether positivity is the
only phenomenon for representation varieties of surface groups that
leads to entire components made of discrete faithful representations.

Appendix A. Transversality in the space of flags

Our goal is to prove the following result of independent interest:

Theorem A.1. Let P be a parabolic and P∗ an opposite parabolic. Let H be
a subgroup of G. Assume that no element in a given orbit of H in G/P is
transverse to P∗. Then there is a finite index subgroup of H which is included
in some parabolic.

This result is also sketched in [12, Lemma 7.9], but we prefer to give
an independent and simple proof based on Tits systems.

A.0.1. Bruhat cell decomposition. We use freely the following standard
facts on Bruhat decompositions, see for example [26, 35].

Let G be a semisimple Lie group over R. Let B be a minimal
parabolic subgroup, A a maximal split real torus, W the Weyl group,
∆ a choice of simple roots, that we identify with the corresponding
reflections on the Lie algebra of A. Then we have the Bruhat cell
decomposition

G =
⊔
w∈W

BwB .

Moreover, let us denote by ℓ the word metric on W coming from the
generators ∆, calling ℓ(w) the length of w. Let C(w) the Zariski closure
of BwB then

C(w) =
⊔

h∈W(w)

BwB ,

where W(w) is a subset of W containing w so that for any h in W(w)
different from w,

ℓ(h) < ℓ(w) .

There exists a unique element w0 of longest length in W and the cell
Bw0B is precisely the union of all subgroups B′ conjugate to B and
transverse to it.
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If J is a proper subset of ∆, let WJ be the subgroup of W generated
by the reflections in J, then

PJ B
⊔

w∈WJ

BwB ,

is a standard parabolic subgroup of G.
We shall need the following lemma which is true for general Coxeter

groups by [33]. For Weyl groups, it follows from [5, Chap. VI, §1,
Exercise 17-b].

Lemma A.2. Every involution in W different from w0, is conjugated to an
involution of WJ for some proper subset J of ∆.

Proof of Theorem A.1. After conjugation we may assume that the para-
bolic P contains the minimal parabolic subgroup B. Let us first notice
that if π be the projection from G/B to G/P and π∗ be the projection on
G/P∗ where P∗ is the opposite parabolic. Then if x and y in G/B are so
that π(x) and π∗(y) are not transverse, then x and y are not transverse.
Thus it is enough to prove the proposition when P = B.

Let Z be the Zariski closure of H and Z0 the irreducible component
(as an algebraic variety) of Z containing the identity. Recall that Z0 is
a finite index subgroup of Z [3, Paragraph 1.5]. It is thus enough to
prove the result for H an irreducible (as an algebraic variety) algebraic
group of G.

We will use the algebraic irreducibility for the following fact, which
follows at once from the definition of irreducibility as an algebraic
variety:

(∗) If H is included in a finite union of C(w) for w in a subset A of W then H
is included in C(a) for some a in A.

The hypothesis now translates into the fact that H does not intersect
Bw0B, where w0 is the longest element in W. Thus by (∗) and the
Bruhat cell decomposition H is included in C(w) for w in W different
from w0. Let s be the element in W with the shortest length amongst
the w so that H ⊂ C(w). Since H is invariant under taking the inverse,
H is also included in C(s−1). We now show by contradiction that s is
an involution. If s is different from s−1, then

H ⊂ C(s) ∩ C(s−1) =
⋃
a∈As

C(a) , (23)

where for all a in As, ℓ(a) < ℓ(s). Using (∗) again, equation (23) implies
that H ⊂ C(a) for some a with ℓ(a) < ℓ(s), a contradiction.
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Thus s is an involution different from w0. Then Lemma A.2 implies
that C(s) – hence H – is included in a parabolic. The result is proved. □
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