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This spring’s program (January 12, 2015 until May 22, 2015) con-
centrates on dynamical systems arising from the classification of locally
homogeneous geometric structures on manifolds.

What is a geometric structure?

Geometry concerns spatial relationships and quantitative measure-
ments, whereas Topology concerns the loose organization of points. Ev-
ery geometric space has an underlying topological structure. Given a
topological manifold Σ, and some geometry modeled on a homogeneous
space X, can the local geometry of X (invariant under G) be put on
the topology of Σ? If so, in how many ways? How does one understand
the different ways of locally imparting the G-invariant geometry of X
into Σ? The resulting moduli space (roughly speaking, the space of
geometric structures on Σ) often has a rich geometry and symmetry
of its own, and may be best understood, not as space but rather as a
dynamical system. Here is a familiar example: The sphere S2 has no
Euclidean geometry structure. In other words, there is no metrically
accurate world atlas. Therefore the moduli space of Euclidean struc-
tures on S2 is empty. In contrast, the 2-torus T 2 has many Euclidean
structures. The corresponding moduli space naturally identifies with
the quotient of the upper halfplane H2 by PGL(2,Z), the group of in-
tegral homographies, as depicted in Figure ??. This quotient enjoys a
rich and well-studied hyperbolic geometry of its own, which had been
described in the mid-nineteenth century.

Some historical background

The subject’s roots indeed go back to the nineteenth century. Follow-
ing Sophus Lie and Felix Klein’s work on continuous groups of symme-
try, the Erlangen Program focused on the idea that a classical geometry
(such as Euclidean geometry or projective geometry) is just the study
of the G-invariant objects on a homogeneous space X. For instance,
Euclidean geometry occurs when X = En and G is the group Isom(En)
of Euclidean isometries. In classical differential-geometric terms, this
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Figure 1. PGL(2,Z)-invariant tiling of the upper half-
plane H2.

structure agrees with the notion of a flat Riemannian metric. Pro-
jective geometry concerns X = RPn and G = PGL(n+ 1,R) with a
similar differential-geometric description.

The theory of crystallographic groups and their classification by
Bieberbach is another historical source. This is equivalent to the classi-
fication of flat Riemannian manifolds, and in turn, to the classification
of discrete groups of Euclidean symmetries.

Yet another source arose from integration of analytic differential
equations, which related to conformal mappings of plane domains, as
studied by Schwarz, Klein and Poincaré, and many others.

This was part of a larger development of the theory of connections
by Ricci, Levi-Civita and É. Cartan, which generalized classical surface
theory. Einstein’s theory of relativity used these ideas and also was a
major contribution.

Some of the most important examples arise from geometric strc-
tures on surfaces. In higher dimensions, the moduli spaces are often
finite sets, since the fundamental group is overdetermined in this case.
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For instance, by the Mostow rigidity theorem a manifold of dimension
greater than 2 admits at most one hyperbolic structure. In dimension
two, the moduli spaces often admit symplectic structures, and natu-
ral Hamiltonian flows constructed out of the topology of the surface
and the invariants of G provide ways of navigating around the moduli
space.

Geometric structures and their models

Start with a geometry in the sense of Lie and Klein, that is, a ho-
mogeneous space X upon which a Lie group G act transitively. In
other words, we restrict to “geometries” in which neighborhoods of all
points “look the same.” We model a manifold M locally on X as fol-
lows. Choose an atlas of coordinate charts on M , mapping coordinate

patches U ⊂M by homeomorphisms U
ψ−→ ψ(U) ⊂ X. We require that

on overlapping coordinate patches, the coordinate change locally lies
in G. Therefore the G-invariant geometry on X is transplanted locally
to M . For example, a Euclidean structure defines notions of distance,
angles, lines, area locally satisfying Euclidean rules. Similarly, a pro-
jective structure on M defines notions of lines, etc. which satisfy rules
of projective geometry, such as Pappus’s theorem.

The notion of local coordinates in X on Σ and the above notion of a
(G,X)-structure was first explicitly defined by Charles Ehresmann in
the 1930’s. This notion was rejuvenated in the 1970’s when Thurston
formulated his Geometrization Program for 3-manifolds in the context
of (G,X)-structures. In this theory, hyperbolic geometry plays the
prominent role.

One convenient way to globalize the coordinate atlas of a geomet-

ric structure involves the universal covering space M̃ of the geometric
manifold M . If M is already simply connected, a geometric structure
boils down to an immersion of M into the model space X. In general,
one can describe the geometric structure in terms of a developing map

M̃
dev−−→ X and a compatible monodromy (or holonomy) representation

π1(M)
ρ−→ G. The developing map globalizes the coordinate charts and

the monodromy representation globalizes the coordinate changes.
While some developing maps are bijective and identify M with a

quotient X/Γ, others may just identify M with quotients of proper
domains Ω ⊂ X. Others may not even be covering spaces of domains,
and may wildly wrap M̃ onto all of X in an extemely complicated way.
In the nicest cases the holonomy image Γ may be a discrete subgroup
of G, but in the wildest cases it may even be dense. The developing
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map/holonomy representation itself displays potentially complicated
dynamical behavior.

Let us now describe two important sources of examples: (1) Tilings
and discrete symmetries, as epitomized by Euclidean crystallographic
groups and flat Riemannian manifolds; (2) Monodromy of differential
equations, as epitomized by projective structures on Riemann surfaces
(that is, CP1-manifolds) and classical Kleinian groups and uniformiza-
tion.

Tilings and discrete symmetries. Regular tilings in Euclidean space
led to the notion of a crystallographic group, which in modern parlance,
is just a lattice Γ (a discrete subgroup of finite covolume) in the group
Isom(En).

Gradually the point of view changed, as the role of the transforma-
tions between the tiles became more prominent: The shape of the tile
is less relevant than the motions of the tiler.

Figure 2. Identifications of a crystal to make a Eu-
clidean manifold

The Bieberbach theorems gave an effective classification of crystallo-
graphic groups Γ, as finite extensions of lattices Λ ⊂ Rn of translations.
Geometry arises through the quotient M = E/Γ, which is often a man-
ifold with a Euclidean structure. That M is actually a quotient of
the model space X — that is, dev is a homeomorphism — relates to
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the metric nature of the structure, and we will see more complicated
phenomena later. Nevertheless, this example underscores the intimate
relationship between geometric structures and discrete subgroups of
Lie groups.

An interesting development is the understanding of the analog of the
Bieberbach theorems in indefinite metric, and in particular the con-
struction and classification of geodesically complete spacetimes when
there are two space dimensions and one time dimension. Figure ??
depicts one type of example, a so-called Margulis spacetime, whose
fundamental group is a free group of rank two.

Figure 3. Cross-section of a tiling arising from a prop-
erly discontinuous group of affine Lorentz isometries in
dimension three

Monodromy of differential equations. Another precursor of the
theory of geometric structures on surfaces is the study of differential
equations on complex domains. Even on R, solutions of periodic linear
differential equations on R may not be periodic. The solutions f of

f ′(z) = a(z)f(z),

when a(z + T ) = a(z) (where T is the period), are not necessarily
periodic, but satisfy

f(z + T ) = λf(z)

for some λ. The solution f looks like a developing map for a geometric
structure, where λ generates the monodromy.
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Similarly, on the unit disc ∆, Hill’s equation

w′′(z) + q(z)w(z) = 0

leads to Riemann surfaceM with a projective structure (a CP1-structure).
If w1(z), w2(z) is a basis of the space of solutions on ∆, then the pro-
jective solution

f(z) := w1(z)/w2(z)

defines a map ∆ → CP1. If furthermore q(z) is periodic with respect
to a Fuchsian group Γ, then f defines a developing map for a CP1-
structure on the quotient ∆/Γ.

These classical examples are both basic and extremely rich. For q =
0, the developing map is the embedding of the disc ∆ into the projective
line CP1. If q is sufficiently small, the developing map embeds ∆ as
a domain bounded by a fractal curve (a quasicircle) (see Figures ??
and ??). However at this stage the developing map remains injective.

As q increases, the developing map does not embed M̃ , nor admits a
boundary. The asymptotic behavior of the monodromy as q −→ ∞ is
an active subject of research related to mathematical physics.

Moving from ordinary differential equations to partial differential
equations produces a wealth of new examples of fundamental impor-
tance, such as Yang–Mills equations, harmonic maps and Hitchin sys-
tems.

Figure 4. A quasi-Fuchsian CP1-structure
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Figure 5. A quasicircle limit set

Moduli spaces

Isomorphism classes of (G,X)-structures on Σ locally modeled on X
form a space, called the moduli space, which enjoys its own interesting
geometry and dynamics.

Here are two examples: (1) Moduli of Euclidean tori; (2) Projective
triangle tilings. In the first case, the moduli space of unmarked struc-
tures is the quotient space H2/PGL(2,Z) and in the second case the
moduli space of (either marked or unmarked structures) is the half-
open interval [0,∞), parametrized by a cross-ratio invariant.

Moduli of Euclidean tori. Euclidean structures on T 2 form a space
enjoying hyperbolic geometry. If M is a Euclidean manifold homeo-
morphic to T 2, then the geometric structure identifies M as a quotient
E2 by a lattice Λ ⊂ R2. In this context, a marking of M is just a basis
of π1(M) which identifies with Λ.

The moduli space of unit-area marked Euclidean structures identifies
with the upper halfplane in C as follows. A marked Euclidean structure
is then just the choice of a parallelogram of area 1 with one horizontal
side. Corresponding to the other side of the parallelogram is a complex
number τ with positive imaginary part, which is a point in the Poincaré
upper halfplane H2.
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Changing the marking amounts to applying an element of GL(2,Z) to
the parallelogram, which corresponds to applying the associated inte-
gral linear fractional transformation of PGL(2,Z) to τ ∈ H2. Therefore
the corresponding moduli space of unit area unmarked Euclidean tori
identifies with the quotient H2/PGL(2,Z), as depicted in Figure ??.
Note that the group associated with changing the markings preserves
the hyperbolic geometry of the upper halfplane H2.

Projective triangle tilings. Now let us move from tiling the Eu-
clidean plane E2 by parallelograms to tiling domains in the projective
plane by triangles. As E2 ⊂ RP2 is a domain, and isometries of E2 ex-
tend to projective transformations of RP2, every Euclidean structure is
a projective structure. Now the familiar tiling of the Euclidean plane by
equilateral triangles deforms projectively in a nontrivial way. Figure ??
depicts a projective deformation of this tiling. Here the developing map
is not onto, but remains injective. Similarly, the Klein-Beltrami model
embeds the hyperbolic plane H2 in the projective plane RP2, where
the isometries of H2 extend as projective transformations. Figure ??
depicts a projective deformation of a triangle group in H2. The new
domain Ω is tiled by triangles. Furthermore Ω is bounded by a C1

convex curve which is nowhere C2.
The symmetry group of each of these tesselations of domains Ω con-

tains a finite-index subgroup Γ0 such that Ω/Γ0 is a surface with an
RP2-structure. These provide examples where the developing map is
injective but not surjective. In contrast, Figure ?? depicts an RP2-
structure on T 2 whose developing map is neither injective nor surjec-
tive.

Dynamics

To make the moduli space more tractable, it is often useful to in-
troduce some extra topological structure, called a marking. Changing
the marking leads to the action of a group which defines a dynamical
system.

We saw that the moduli space of unmarked unit-area Euclidean
structures on T 2 is the quotient of H2 by PGL(2,Z), whereas H2 is the
moduli space of marked Euclidean structures. Although the PGL(2,Z)-
action is not free, the quotient has a nice structure. However, some-
times the moduli space of unmarked structures is not a space in the
classical sense: it may not admit nonconstant continuous functions.
Therefore studying the space of marked structures, together with the
group action corresponding to changing the marking, is more natural.
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Figure 6. Exotic developing map for RP2-structure on T 2

Figure 7. Projective deformation of tiling by Euclidean
equilateral triangles

In two dimensions, this is described by the action of the mapping class
group of Σ.

Here is an example of chaotic dynamics. A marked complete affine
structure on T 2 is an identification of T 2 as a quotient of the affine
plane R2 by a discrete group Γ of affine transformations. The moduli
of marked complete affine structures on T 2 identifies with R2, where
standard Euclidean structures on T 2 all correspond to the origin. Cor-
responding to changing marking is the standard linear action of of
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Figure 8. Projective deformation of hyperbolic triangle group

GL(2,Z). In this case, the quotient space is non-Hausdorff and doesn’t
even support nonconstant continuous functions.

In this way, classification of geometric structures naturally leads to
interesting dynamical systems. Here is an example related to a vener-
able subject in number theory.

The dynamics of Markoff triples. Sometimes a marked geometric
structure on Σ identifies with its holonomy representation. Thus the
moduli space of marked structures identifies with a subset of an alge-
braic set: the coordinates are matrix entries and the defining equations
arise from the defining relations in π1(M).

A simple and fundamental example is the space of equivalence classes
of pairs of matrices in SL(2,C), corresponding to representations of the
free group on two generators. In this case Σ is the once-punctured
torus. Since the nineteenth century, we know that such a pair of ma-
trices is described (up to equivalence) by the traces x, y of the two
generators and the trace z of their product. Thus the moduli space
identifies with C3. Further imposing the natural boundary condition
around the puncture leads to the cubic equation

x2 + y2 + z2 − xyz = t,

where t ∈ C corresponds to the trace of holonomy around the punc-
ture. This moduli space has a rich group of symmetries generated by
polynomial automorphisms such as

(x, y, z) 7−→ (x, y, xy − z)

and permutations, corresponding to changes of markings. When t = 0,
this is the classical Markoff equation, arising from the classification of
binary quadratic forms. For other values of t, the dynamics ranges from
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proper dynamics (with a Hausdorff quotient space) to dynamically
interesting chaos.

Figure 9. A cubic surface parametrizing geometric
structures on a surface

Conclusion

Rooted in classical origins, our research area is thriving. The study
of geometric structures involves many fields and diverse techniques:
ergodic theory, geometric analysis, geometric group theory, Lie theory
and combinatorics. As a natural extension of classical Riemann surface
theory and Lie theory, it relates to the interests of many mathemati-
cians and theoretical physicists. Many more connections are expected,
notably with the companion program “Geometric and Arithmetic As-
pects of Homogeneous Dynamics.” Both the NSF-funded GEAR Re-
search Network and the European Research Council have supplemented
the MSRI budget to spread intellectual benefits of our MSRI program
to a broader group of mathematicians. This program has been instru-
mental in expanding, clarifying and consolidating the general field.


