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1 Introduction

Let Γ be the fundamental group of a compact surface. Let λq be the
irreducible q-dimensional representation of SL(2, R) in SL(q, R). We
shall say a representation ρ of Γ in SL(q, R) is Fuchsian (or q-Fuchsian)
if ρ = λq ◦ι, where ι is a discrete faithful representation of Γ in SL(2, R).
We shall also say by extension the image of ρ is Fuchsian, and that an
affine action of a surface group is Fuchsian, if its linear part is Fuchsian.

Our main result is the following theorem

Theorem 1.1 A finite dimensional affine Fuchsian action of the fun-

damental group of a compact surface is not proper.

In even dimensions, this is an easy remark, which has also been
made in [2]. For dimension 4p + 1, this theorem follows from the use
of Margulis invariant and lemma 4.1, also due to Margulis (observation
also made in [2]). These invariant and lemma were introduced in the
work of Margulis [14] [15] in dimension 3, and later generalized in [16] [2]
[9] [3] with his coauthors H. Abels and G. Soifer and also by T. Drumm
in [9]. Therefore, our proof shall concentrate on dimensions 4p + 3
although we shall recall the proof in other dimensions in section 6.

This case bears special features: one should notice that G. Margulis
has exhibited proper affine actions of free group (with two generators)
on R

3 [14] [15], constructions later explained by T. Drumm in [5] [6] [8]
and by V. Charette and W. Goldman in [4]. Therefore, surface groups
behave differently than free groups in these dimensions.

∗
L’auteur remercie l’Institut Universitaire de France.
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When dim(E) = 3, our result is a theorem of G. Mess [17], for
which G. Margulis and W. Goldman [11] have obtained a different proof
using Margulis invariant and Teichmüller theory. Our proof is based
on similar ideas, but uses instead of Teichmüller theory a result on
Anosov flows and a holomorphic interpretation of Margulis invariant,
hence generalizing to higher dimensions.

It is a pleasure to thank M. Babillot, W. Goldman, G. Margulis for
helpful conversations, as well as the referee for the interpretation of the
isomorphism of section 3 as an Eichler-Shimura isomorphism.

2 Representations of SL(2, R), surfaces and con-

nections

In this section, we describe the irreducible representation of SL(2, R) of
dimension 2n + 1 as the holonomy of a flat connection.

It is well known that in dimension 3, the irreducible representation of
SL(2, R) is associated with the Minkowski model of the hyperbolic plane
H

2. More precisely, there exists a flat connection on E = R⊕TH
2, such

that the action of SL(2, R) lifts to a connection preserving action on this
bundle. Hence, we obtain a 3-dimensional representation of SL(2, R).
Furthermore, the Minkowski model is obtained using the section (1, 0)
of E.

We will now be more precise and explain this construction in more
details in higher dimensions.

2.1 A flat connection

Let H
2 be the oriented hyperbolic plane with its complex structure. Let

Lk be the complex line bundle over H
2 defined by

Lk = (TH
2)⊗

k

C .

Let
E = R⊕ L1 ⊕ . . .⊕ Ln.

Notice now that SL(2, R) acts on all Lk, hence on E, by bundle auto-
morphisms.

If Y is a section of E, Y0 will denote its component on the factor
R, and Yk its component on Lk. The space of sections of the bundle V
will be denoted Γ(V ). The metric on Li, induced from the Riemannian
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metric on H
2 will be denoted 〈, 〉. By definition, if Y ∈ Lk, X ∈ L1,

then iXY is the element of Lk−1 such that

∀Z ∈ Lk, 〈iXY,Z〉 = 〈Y,X ⊗ Z〉.

Let ∇ be the Levi-Civita connection on L1, and, by extension, the
induced connection on Lk. We introduce the following connection ∇ on
E, defined if X ∈ TH

2, Y ∈ Γ(E) by







(∇XY )0 = LXY0 + 1
2 (n + 1)〈X,Y1〉

∀k > 0, (∇XY )k = (n− k + 1)X ⊗ Yk−1 +∇XYk

+1
4(n + k + 1)iXYk+1.

Consider the family or real numbers, defined for k ∈ {0, n− 1}, by

a0 = 1, ak+1 =
1

22k+1

j=k
∏

j=0

(
n + j + 1

n− j
).

Define a metric of signature (n, n + 1) on E by

bY,Zc =
k=n∑

k=0

(−1)k+1ak〈Yk, Zk〉.

The main result of this section is the following statement

Proposition 2.1 The connection ∇ is flat, and preserves the metric

b, c. Furthermore, the SL(2, R) action on E preserves the metric b, c
and the connection ∇. The resulting (2n+1)-representation of SL(2, R)
is irreducible.

Proof: Long but straightforward computations (cf appendix 7) show
that ∇ is flat, preserves b, c. Furthermore, the SL(2, R) action on E
obviously preserves the metric b, c and the connection ∇.

We finally have to check that the corresponding representation of the
group SL(2, R) is irreducible. For that let S1 ⊂ SL(2, R), a subgroup
isomorphic to the circle fixing a point x0. The corresponding action on
Lk(x0) is given by

eiθ(u) = ekiθu.

This shows the representation is the irreducible 2n+1 dimensional one.
q.e.d.
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3 Cohomology and holomorphic differentials

Let S = H
2/Γ be a compact surface. Let ρ be a (2n + 1)-Fuchsian

representation of Γ. In this section, we shall describe the vector space
H1

ρ (Γ, R2n+1) in terms of holomorphic (n + 1)-differentials on S.
We use the notations of the previous sections. Let ES = E/Γ be the

vector bundle over S = H
2/Γ coming from E.

Let Hq the vector space of holomorphic q-differentials on S. Let
Λp(ES) the vector space of p-forms on S with value in ES . The flat
connection ∇ gives rise to a complex

0 −→ Λ0(E)
d∇
−→ Λ1(E)

d∇
−→ Λ2(E) −→ 0.

The cohomology of this complex is H∗
ρ (Γ, R2n+1). From the metric on

H
2, we deduce an isomorphism ω 7→ ω̌ of L∗k with Lk. We define now a

map Φ by

Φ :

{
H2n+1 → Λ1(E)

ω 7→ (X 7→ iX ω̌ ∈ Ln ∈ E).

We first prove:

Proposition 3.1 For every holomorphic (n + 1)-differential ω

d∇(Φ(ω)) = 0.

Furthermore, if Φ(ω) = d∇u, then ω = 0.

Proof: By definition,

d∇Φ(ω)(X,Y ) = ∇XiY ω̌ −∇Y iX ω̌ − i[X,Y ]ω̌.

Hence, if n > 1

d∇Φ(ω)(X,Y ) =
2n

4
(iX iY ω̌ − iY iX ω̌) + (∇XiY ω̌ −∇Y iX ω̌ − i[X,Y ]ω̌).

Notice that iXiY ω̌ is symmetric in X and Y . Finally, the holomorphicity
condition on ω implies

∇XiY ω̌ −∇Y iX ω̌ − i[X,Y ]ω̌ = 0.

A similar proof (but with different constants) yields the result for n = 1.
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Next, assume Φ(ω) = d∇u. The (non Riemannian) metric on E
and the Riemannian metric on H

2 induce a metric on Λ∗(E), which
we denote b, cΛ. One should notice here that even though this metric
is neither positive nor negative, since Φ(ω) is a section of a bundle on
which the metric is either positive or negative, we have

bΦ(ω),Φ(ω)cΛ = 0 ⇒ Φ(ω) = 0 ⇒ ω = 0.

Let (d∇)∗ be the adjoint of d∇. One has, if (X1, X2) is a basis of TH
2,

(d∇)∗(φ(ω)) = −

k=2∑

k=1

∇Xk
(iXk

ω̌).

A short calculation shows

(d∇)∗(φ(ω)) = −
k=2∑

k=1

∇Xk
(iXk

ω̌),

and this last term is 0 by holomorphicity. We have just proved that

(d∇)∗Φ(ω) = 0.

Hence, Φ(ω) = d∇u implies

bΦ(ω),Φ(ω)cΛ = b(d∇)∗Φ(ω), ucΛ = 0.

This ends the proof q.e.d.
It follows from the previous proposition that Φ gives rise to a map

(also denoted Φ) from Hn+1 to the space H1
ρ (Γ, R2n+1). We have:

Corollary 3.2 The map Φ is an isomorphism from Hn+1 to the space

H1
ρ (Γ, R2n+1).

Proof: Indeed, we have just proved that Φ is injective. Furthermore,
if χ(S) is the Euler characteristic of S, we have

dim(H1
ρ (Γ, R2n+1)) ≤ (2n + 1)χ(S).

But, by Riemann-Roch,

dim(Hn+1) = (2n + 1)χ(S).

Hence, the corollary follows q.e.d.
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3.1 Note added to the proof : Eichler-Shimura isomor-

phism

W. Goldman and the referee have both explained to me that the isomor-
phism between Hn+1 and H1

ρ (Γ, R2n+1) is a fairly well known instance
of an Eichler-Shimura isomorphism. Indeed, let V = R

2n+1, κ be the
canonical line bundle over S. Then Hn+1 is the space H0(S; o(κn+1)) of
global holomorphic sections of κn+1. The global holomorphic sections of
κ−n over P

1 form a vector space isomorphic to V ⊗C; this isomorphism
is equivariant with respect to the natural actions of SL(2, R). Thus,
there is a sheaf homomorphism

V ∗ −→ o(κ−n),

which defines a holomorphic section of

κ⊗ V ⊗ κ−1−n,

and a cohomology class

Zn ∈ H1(S;V ⊗ κ−1−n).

Hence if ω ∈ H0(S; o(κn+1)), the product ω.Zn belongs to H1(S, V ).
The Eichler-Shimura isomorphism is the map ω 7→ ω.Zn.

The original references to the Eichler-Shimura isomorphism (case
n=1) are [10] [19] and a useful reference is [13].

This interpretation explains the isomorphism of 3.2, although the
point of the construction made in this section is to have an explicit
isomorphism at the level of forms in our setting.

4 A de Rham interpretation of Margulis invari-

ant

The irreducible representation of SL(2, R) of dimension 2n+1 preserves
a metric b, c of signature (n, n + 1).

4.1 Loxodromic elements

We define a loxodromic element in SO(n, n+1) to be R-split and in the
interior of a Weyl chamber. This just means all eigenvalues are real and
have multiplicity 1. Recall that 1 always belong to the spectrum of a
loxodromic element. Notice that all the elements, except the identity,
of a (2n + 1)-Fuchsian surface group are loxodromic.
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4.2 The invariant vector of a loxodromic element

Chose now, once and for all, an orientation on R
2n+1. The light cone -

without the origin - has two components. Let’s also choose one of these
components.

Let γ be a loxodromic element. It follows from the previous choices
that we have a well defined eigenvector, the invariant vector, denoted
vγ , associated to the eigenvalue 1.

Indeed, all the other eigenvectors are lightlike. We order all the
eigenvalues not equal to 1, in such a way that λi < λi+1. Thanks to our
choices, we may pick one eigenvector ei in the preferred component of
the light cone for all the eigenvalues λi different than 1. We now choose
vγ of norm 1, such that (vγ , e1, . . . , e2n) is positively oriented.

4.3 Margulis invariant

Let Iso(n, n + 1) = R
2n+1

o SO(n, n + 1) be the group of orientation
preserving isometries of R

2n+1 as an affine space. For γ in Iso(n, n+1),
γ̂ denotes its linear part. We shall say an element of Iso(n, n + 1) is
loxodromic if its linear part is a loxodromic element of SO(n, n + 1).

The Margulis invariant ( [14] [15] ) of a loxodromic element γ of
Iso(n, n + 1) is

µ(γ) = bγ(x) − x, vγ̂c,

where x is an element of R
2n+1. A quick check shows µ(γ) does not

depend on x.

4.4 Margulis invariant and properness of an affine action

Let γ1 and γ2 be two loxodromic elements. Let E+
i (resp. E−i ) be the

space generated by the eigenvectors of γ̂i corresponding to the eigenval-
ues of absolute value greater (resp. less) than 1.

We say γ1 and γ2 are in general position if the two decompositions

R.vγ̂i
⊕E+

i ⊕E−i ,

are in general position.
Notice that for a (2n+1)-Fuchsian group, two (non-commensurable)

elements are loxodromic and in general position.
In [14] [15] (see also [7]) G. Margulis has proved the following magic

lemma
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Lemma 4.1 If two loxodromic elements γ1, γ2, in general position, are

such that µ(γ1)µ(γ2) ≤ 0, then the group generated by γ1 and γ2 does

not act properly on R
2n+1.

Drumm’s articles [7], [9] as well as the survey by Abels [1] contain
a more accessible and lucid proof of this lemma.

4.5 An interpretation of Margulis invariant

Let ρ a representation of Γ in Iso(n, n + 1), whose linear part, ρ̂, is
Fuchsian. Let ES = R⊕L1 ⊕ . . .⊕ Ln the flat bundle over S described
in 2.1 whose holonomy is ρ̂.

We describe now ρ as an element of H1
ρ̂(Γ, R2n+1).

Let α ∈ H1
ρ̂(Γ, R2n+1), interpreted as an element of Λ1(ES). Let ∇α

be the flat connection on F = R⊕ES defined by

∇α
X(λ, V ) = (LXλ, λ.α(X) +∇XV ).

We claim there exists α ∈ H1
ρ̂(Γ, R2n+1) such that the holonomy of ∇α

is ρ. Of course, here, R
p

o SL(p, R) is identified with a subgroup of
GL(p + 1, R).

Let now c be a closed curve on S, represented in homotopy by the
conjugacy class of some element γ. Since vρ̂(γ) is invariant under ρ̂(γ),
it gives rise to a parallel section vc of E|c.

We first prove the following statement:

Proposition 4.2 Let c, ρ, γ, α be as above. Then

µ(ρ(γ)) =

∫

c

bα, vcc.

Proof: We shall use the previous notations. We parametrise c by the
circle of length 1. Let π be the covering H

2 → S. Consider a lift c̃ of
c on the universal cover of S. The bundle π∗F becomes trivial. The
canonical section σ corresponding to the R factor in F , gives rise to a
map

i : H
2 → R

2n+1,

taking value in the affine hyperplane

P = {(1, u) ∈ R
2n+1}.
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Let c̄ = i ◦ c̃, and let’s identify ρ(γ) with γ. By definition now:

µ(γ) = bρ(γ)(c̄(0)) − c̄(0), vγ̂c

= bc̄(1)− c̄(0), vγ̂c

=

∫ 1

0
b ˙̄c(s), vγ̂cds.

Now, we interpret the last term on F and we obtain

µ(γ) =

∫ 1

0
b∇α

ċ(s)σ, vc(s)cds

=

∫ 1

0
bα(ċ(s)), vc(s)cds

=

∫

c

bα, vcc.

This ends the proof q.e.d.

4.6 The invariant vector as a section

In this paragraph, we assume n = 2p + 1, so that our representation is
of dimension 4p + 3.

We use the notations of the previous paragraphs. In particular, let
γ ∈ Γ. Let v = vρ̂(γ). Let c be the closed geodesic (for the hyperbolic
metric) corresponding to the element γ.

Recall that vγ gives rise to a section vc along the closed geodesic,
which is parallel.

In this paragraph, we wish to describe vc explicitly. Let J the com-
plex structure of S. Let’s introduce the following section (along c)
defined by

(wc)2k = 0

(wc)2k+1 = J(−4)k
l=k∏

l=1

(
p− l

p + l + 1
) ċ⊗ . . .⊗ ċ

︸ ︷︷ ︸

2k+1

.

Proposition 4.3 The section wc of ES is parallel along c. Further-

more, there exists ε ∈ {−1, 1} independent of c such that

vc = ε
wc

√

bwc, wcc
.
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Proof: A straightforward computation shows that wc (hence vc) is par-
allel. Furthermore wc is a spacelike vector, and by construction vc has
norm 1.

It remains to prove that vc has the correct orientation. For that
consider any geodesic arc u in H2 parametrized by [0, L]. We have a
basis of E|u(t) given by

B(t) = (1, u̇, Ju̇, . . . , u̇⊗ . . .⊗ u̇
︸ ︷︷ ︸

n

, Ju̇⊗ . . .⊗ u̇
︸ ︷︷ ︸

n

).

We may now consider the isometry γ(u) sending B(0) to B(L). This is
a loxodromic isometry. Next, consider the following section of E along
u given by

(wu)2k = 0

(wu)2k+1 = J(−4)k
l=k∏

l=1

(
p− l

p + l + 1
) u̇⊗ . . .⊗ u̇

︸ ︷︷ ︸

2k+1

.

This section is parallel along u and therefore gives rise to a vector
proportional to the invariant vector of γ(u).

Next, by continuity, this proportion is constant. Applying this re-
mark to a lift in the universal cover of our closed geodesic, this ends the
proof q.e.d.

5 Main theorem in dimension 4p + 3

Again, let ρ be a representation of a compact surface group Γ in the
group of affine transformations of an affine space of dimension 4p + 3,
whose linear part ρ̂ is Fuchsian.

Notice first that for every non trivial element γ of Γ, ρ̂(γ) is loxo-
dromic. Indeed, as an element of SL(2, R), γ is conjugate to a diagonal
matrix

(
λ 0
0 λ−1

)

where λ < 1. Now, the eigenvalues of ρ̂(γ), are those of its 2n-th
symmetric power:

λ2n < λ2n−2 < . . . λ2 < 1 < λ−2 < . . . < λ2−2n < λ−2n.
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This proves ρ̂(γ) is loxodromic.
We assume now that ρ(Γ) acts properly on R

4p+3. The representa-
tion ρ is described from ρ̂ as an element α of H1

ρ̂ (Γ, R4p+3).
According to proposition 3.2, this element α is described by a holo-

morphic (2p + 2)-differential ω.
Let γ ∈ Γ, and c the corresponding closed geodesic. From proposi-

tion 4.2, we get

µ(ρ(γ)) =

∫

c

bα, vcc.

From proposition 4.3, we deduce there exists a constant K1 just
depending on p such that

µ(ρ(γ)) = K1

∫

c

biċω, Jċ⊗ . . .⊗ ċ
︸ ︷︷ ︸

2p+1

cdt.

From the constructions explained in the paragraph 2.1, we finally
obtain there exists a constant K2 just depending on p such that

µ(ρ(γ)) = K2

∫

c

〈iċω̌, J ċ⊗ . . .⊗ ċ
︸ ︷︷ ︸

2p+1

〉dt

= −K2

∫

c

=(ω(ċ⊗ . . .⊗ ċ
︸ ︷︷ ︸

2p+2

))dt.

Let US be the unit tangent bundle of S. Let f be the function
defined on US by

f(u) = =(ω(u⊗ . . .⊗ u
︸ ︷︷ ︸

2p+2

)).

From lemma 4.1 and the previous computation, we obtain that the
integral of f along closed orbits of the geodesic flow has a constant sign.
On the other hand, let λ be the Lebesgue measure, we have

∫

US

fdλ = 0.

Indeed, let β be a complex number such that β2p+2 = −1. Scalar
multiplication by β defines a diffeomorphism of US, which preserves
both the orientation and the Lebesgue measure. Lastly f ◦ β = −f and
this proves the last formula.

The conclusion of the proof follows at once from the following lemma,
since the Lebesgue measure for the geodesic flow of a constant curvature
surface is the Bowen-Margulis measure.
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Lemma 5.1 Let M be a compact manifold equipped with a topologically

transitive Anosov flow. Let ν be the Bowen-Margulis measure. Let f be

a Hölder function defined on M such that its integral on every closed

orbit is positive, then the integral of f with respect to ν is positive.

I could not find a proper reference in the literature of this specific
lemma, for which I claim no originality. G. Margulis has suggested to
use a central limit theorem of M. Ratner [18]. We shall rather explain
a proof using the notions of pressure and equilibrium states.

Proof: Let’s denote by M the space of invariant probability mea-
sures. For any µ in M, h(µ) will be its entropy. Recall that the Bowen-
Margulis measure maximizes the entropy. Next define the pressure of a
Hölder function f by

P (f) = sup
µ∈M

(
h(µ) +

∫

M

fdµ
)
.

By definition, an invariant measure µ is called an equilibrium state for
f , if P (f) = h(µ) +

∫

M
fdµ. Hence, the Bowen-Margulis measure is an

equilibrium state for the zero function.
Thanks to results of Bowen, every Hölder function admits a unique

equilibrium state. This is stated as theorem 20.3.7 in [12]. Further-
more, according to proposition 20.3.10 of [12], two Hölder continuous
functions with the same equilibrium state are equal up to the addition
of a constant and a coboundary. More precisely, this result is stated in
the case of diffeomorphisms but the proof generalizes for flows.

Now, let f be as in the lemma. Assume that
∫

M
fdν = 0 and

let’s look for a contradiction. Recall that for a topologically transitive
Anosov flow, as a consequence of the shadowing lemma, every invariant
measure is a weak limit of barycenters of measures supported on closed
orbits [20]. Hence

∀µ ∈M,

∫

M

fdµ ≥ 0.

It follows that

P (−f) = P (0) = h(ν) = h(ν) +

∫

M

(−fdν).

Hence, the zero function and −f have the same equilibrium state ν.
It follows from the above discussion that f is a cohomologous to a
constant. On one hand, this constant is zero, since

∫

M
fdν = 0. On the
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other hand, this constant is non zero because integrals of f over closed
orbits are positive. Here is our contradiction. Actually, the proof would
work for any measure in the measure class of a Gibbs measure, although
we shall not need it. q.e.d.

6 Other dimensions

The other dimensions are either easy (even case) or follows from the
immediate use of Margulis invariant (4p + 1 case) as we shall explain
now. Similar arguments can be found in [2].

Let λ be the representation of SL(2, R) of even dimension. Let h
be a loxodromic element of SL(2, R). Then 1 will not belong to the
spectrum of λ(h). It follows, that if ρ is a representation of Γ in even
dimension whose linear part is Fuchsian then for all γ in Γ not equal to
the identity then ρ(γ) does not act properly.

Last, in dimensions 4p + 1, the Margulis invariant is such that
µ(γ−1) = −µ(γ). It follows at once from lemma 4.1, that if ρ is a
representation of Γ in dimension 4p + 1 whose linear part is Fuchsian,
if γ1 and γ2 are non-commensurable elements of Γ then ρ(γ1) and ρ(γ2)
generate a group that does not act properly on the affine space. Of
course, the point in our previous discussion is that in dimension 4p + 3
then µ(γ−1) = µ(γ), hence such an argument do not work and actually,
free groups (even Fuchsian ones) can act properly, see [14], [15] and [7].

7 Appendix A: some computations

We explain here how to make the computations delayed from the proof
of proposition 2.1. Let X, Z two commuting vector fields on H

2. Let
ω the Kähler form of H

2 defined by ω(Z,X) = 〈JZ,X〉. Let’s first
introduce the following notation. If f is a function of Z and X then

f(Z,X) = f(Z,X) − f(X,Z).

With these notations at hands, we have

Z ⊗ 〈X,Y 〉 =
1

2

(
Z ⊗ iXY

)
= −

1

2

(
iZ(X ⊗ Y )

)
= −ω(Z,X)JY.

Let R̄ be the curvature tensor of ∇ and recall that

R̄(Z,X)Yk = kω(Z,X)JY.
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Let R be the curvature tensor of ∇. We first have

(R(Z,X)Y )0 =

+
1

2
(n + 1)(n)〈Z,X〉 ⊗ Y0 +

1

8
(n + 1)(n + 2)〈Z, iXY2〉 = 0.

Next

(R(Z,X)Y )1 = +
1

2
n(n + 1)Z ⊗ 〈X,Y1〉+ R̄(Z,X)Y1

+
1

4
(n + 2)(n− 1)iZ(X ⊗ Y1) +

1

16
(n + 2)(n + 3)iZ iXY3

= ω(Z,X)JY
(
−

1

2
n(n + 1) + 1 +

2

4
(n + 2)(n− 1)

)
= 0.

It remains to consider the case k > 1. We get

(R(Z,X)Y )k = R̄(Z,X)Yk + (n− k + 1)(n− k + 2)(Z ⊗X ⊗ Yk−2)

+
1

4

(
(n− k + 1)(n + k)Z ⊗ iXYk + (n + k + 1)(n− k)iZ(X ⊗ Yk)

)

+
1

16
(n + k + 1)(n + k + 2)iZiXYk+2.

Hence

(R(Z,X)Y )k

= ω(Z,X)JY
(
−

2

4
(n− k + 1)(n + k) + k +

2

4
(n + k + 1)(n− k)

)

= 0.

We have just proved the connection ∇ is flat. Now, we show ∇ preserves
b, c. Let Y a section of E. Then

b∇XY, Y c =

k=n∑

k=0

(−1)k+1ak〈(∇X)Yk, Yk〉 =

−〈LXY0, Y0〉+

k=n∑

k=1

(−1)k+1ak〈∇XYk, Yk〉 −
1

2
(n + 1)〈〈X,Y1〉, Y0〉

+(−1)k+1
k=n∑

k=1

ak
(n + k + 1)

4
〈iXYk+1, Yk〉

+(−1)k+1
k=n∑

k=1

ak(n− k + 1)〈X ⊗ Yk−1, Yk〉.

14



We make a change of variables in the last term, and get

b∇XY, Y c

= LXbY, Y c −
1

2
(n + 1)〈〈X,Y1〉, Y0〉+ na1〈X ⊗ Y0, Y1〉+

k=n∑

k=1

(−1)k
(
ak+1(n− k)− ak

(n + k + 1)

4

)
〈X ⊗ Yk, Yk+1〉.

To conclude, we just have to remark that

a1 =
n + 1

2n
,

ak+1

ak

=
n + k + 1

4(n− k)
.
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