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Abstract

The main result proved here is a topological version of Zimmer’s
cocycle superrigidity theorem. A number of applications is also given
concerning lattice actions, rigid geometric structures, and the coho-
mology of actions of higher rank semisimple groups with coefficients in
vector-bundles.

0 Introduction

The main result obtained here is Theorem 1.2, which corresponds to a topo-
logical, and more generally Cr, version of Zimmer’s Cocycle Superrigidity
Theorem. Zimmer’s theorem is concerned with cocycles over actions of a
semisimple Lie group G of real rank at least 2 and its lattices by automor-
phisms of a finite measure space, while here we consider actions of G by
automorphisms of principal bundles such that the actions of certain sub-
groups of G on the base are topologically transitive. Our results, in fact,
extend the main theorem of [18].

The proof given here is not just an adaptation of the classical proofs. We
shall sketch in the appendix how to obtain Margulis-Zimmer superrigidity
using the ideas of our proof. We should point out, however, that there are
no essentially new ideas in the approach given here. Its main advantages are
that it is perhaps a shorter and in a sense more axiomatic way of presenting
old, and beautiful, ideas.

In its general form, the main theorem gives information about the action
only on an open dense G-invariant subset of the manifold. Using an idea
due to Zimmer ([18]), which is explained in Section 6, Theorem 1.2 can be
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specialized so as to yield a conclusion that holds everywhere on the manifold.
(Theorem 1.6.)

Part of the content of the main theorem can be rephrased in cohomo-
logical terms, which is done in Section 7. The main result in that direction,
Theorem 7.1, gives conditions for the vanishing of certain cohomology classes
associated to actions of G on vector bundles. One useful consequence of The-
orem 7.1 is Corollary 7.4, which gives conditions for smooth G-actions on
vector bundles to preserve a connection.

The main applications of Theorem 1.2 obtained here are Theorems 1.7
and 1.8. The former, discussed in Section 8, solves in a very special case a
general problem posed by Zimmer of classifying smooth actions of lattices
in G on compact or finite volume manifolds. The latter theorem, discussed
in section 9, is concerned with the notion of rigid geometric A-structures,
introduced by Gromov in [4]. We show that if a subgroupK of G preserves a
rigid geometric A-structure and G and K satisfy the dynamical assumptions
of the main theorem, then G itself must also leave invariant some rigid
geometric structure, although it may only be defined on an open dense G-
invariant set.

We would like to thank Y. Benoist, P. Pansu and D. Witte for their
helpful suggestions during the preparation of the manuscript.

1 Statements of the main results

The general setting for the theorems discussed here will be a C s (s ≥ 0)
right principal H-bundle π : P →M over a manifold M , where H is a real
algebraic group. Suppose, moreover, that a Lie group G acts on P by left
principal bundle automorphisms, the action being C s.

For a given subgroup L ⊂ H and open subset U ⊂M , we refer to a C s

L-subbundle Q of P |U as a Cs L-reduction of P over U . The L-reduction is
said to be G-invariant if U is a G-invariant set and G acts by automorphisms
of Q, that is, Q is a G-invariant subset of P .

An important definition is the following.

Definition 1.1 (Cf. [17, 9.2.2].) Let L ⊂ H be a real algebraic subgroup
and suppose that P admits a G-invariant C s L-reduction over some G-
invariant open dense subset U ⊂ M . The conjugacy class of L in H will
be called a Cs-algebraic hull of the G-action on P if L is minimal in the
following sense: there is no proper real algebraic subgroup L1 ⊂ L such that
P admits a G-invariant Cs L1-reduction over some open dense G-invariant
subset of M .
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Let G denote the connected component of a semisimple real algebraic
group. Recall that the real-rank of G, rankRG, is the dimension of a maximal
split torus in G. A 1-parameter subgroup T of G is said to be R-semisimple
if for each linear representation ρ of G ρ(a) is diagonalizable with real eigen-
values for all a ∈ T .

Our main goal is to prove the following theorem.

Theorem 1.2 (Topological superrigidity) Suppose G has real rank at
least 2 and that it acts by H-bundle automorphisms on some C s principal
H-bundle P over a manifold M such that the action is also C s. Assume
that

(i) H is the Cs algebraic hull of the G-action;

(ii) every R-semisimple 1-parameter subgroup of G acts topologically tran-
sitively on M and admits a dense set of recurrent points, i.e., points
that are contained in their own ω-limit sets.

Assume furthermore that there is a subgroup K ⊂ G with the following
properties:

(iii) K acts topologically transitively on M ,

(iv) K commutes with some R-semisimple 1-parameter subgroup of G,

(v) the Cs algebraic hull of the K-action does not contain a nontrivial
normal subgroup of H.

Then, there exists a continuous surjective homomorphism ρ : G→ H and a
Cs section σ of P |U , for some open dense G-invariant subset U of M , such
that for all g ∈ G and x ∈ U ,

gσ(x) = σ(gx)ρ(g).

The theorem can also be stated as follows. Given a homomorphism ρ
of G into H and a G-action on M , we can build a G-action on the trivial
bundle M × H, which we call a ρ-action, such that g(x, h) = (gx, ρ(g)h),
g ∈ G, (x, h) ∈M ×H. Then the conclusion of the theorem is that, at least
on some open dense G-invariant subset of M , the original G-action on P is
Cs conjugate to a ρ-action. (The conjugacy is given by Φ(x, h) = σ(x)h.)

The theorem above is different from the topological superrigidity theo-
rem of [18] in that we do not assume the existence of invariant measures
or of a parabolic invariant structure. The latter is replaced with the much
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weaker hypothesis (v) on the hull of a smaller group, which can actually be
just a 1-parameter subgroup.

In the C0 case of the theorem M need only be a Baire topological space.
IfM is actually a finite dimensional topological manifold (or, more generally,
a second countable, locally compact metrizable space), then the recurrence
condition (ii) on 1-parameter groups follows from topological transitivity,
as a simple argument shows. Moreover, if the G-action on M preserves an
ergodic probability measure whose support is M , an application of Moore’s
ergodicity theorem and Poincaré recurrence gives the following corollary, in
which topological transitivity and recurrence are replaced by ergodicity of
G.

Theorem 1.3 Suppose that a connected semisimple group G of real-rank
at least 2 acts by H-bundle automorphisms on some C s principal H-bundle
P over a manifold M such that the action is also C s. Assume that the
action preserves an ergodic probability measure whose support is M and
that H is the Cs algebraic hull of the G-action. Assume moreover that
there is a noncompact subgroup K ⊂ G such that K commutes with some
R-semisimple 1-parameter subgroup of G and the C s algebraic hull of the
K-action does not contain a nontrivial normal subgroup of H. Then, there
exists a continuous surjective homomorphism ρ : G → H and a C s section
σ of P |U , for some open dense G-invariant subset U of M , such that for all
g ∈ G and x ∈ U ,

gσ(x) = σ(gx)ρ(g).

The next result uses an observation due to Zimmer [18] that will be
explained in section 6. Zimmer’s result complements our main theorem by
giving conditions for the section σ to be defined on the entire manifold. We
first state a couple of definitions.

Let V be a smooth real algebraic variety equipped with a real algebraic
left action of H. By a Cs geometric structure on P of type V we mean a C s

section of the associated V bundle PV .

Definition 1.4 ([18]) Suppose that G is the identity component of a real al-
gebraic semisimple group. A geometric structure ϕ on P is called a parabolic
invariant if it is invariant by some parabolic subgroup of G.

Definition 1.5 ([18]) The G-action on the H-bundle P is said to be effec-
tive relative to the geometric structure σ : M → PV if, for some x ∈M , the
group of automorphisms of Px fixing (g∗σ)(x) for all g ∈ G is trivial, where
E is associated to ϕ as indicated earlier.
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Theorem 1.6 In addition to the assumptions of the main theorem, suppose
there exists a Cs parabolic invariant relative to which the G-action is effec-
tive. Then the Cs section σ obtained in the main theorem is defined over
the whole manifold.

We state now an application of the main theorem to smooth actions of
a lattice group Γ in G. The main new point is that no invariant volume
form or measure will be assumed. Even though our primary concern here is
the action of Γ on some compact manifold M , it will be necessary to refer
to an induced action by G, defined by a standard suspension construction.
We recall that an action on M by a lattice Γ in a Lie group G induces in
a canonical way an action of G on the manifold N := (G ×M)/Γ, which is
the quotient of G×M by the action of Γ given by

(g, x) · γ := (gγ, a(γ)−1x).

G acts locally freely onN , so that the foliation ofN by fibersM[g] := p−1([g])
is preserved by the action and is everywhere transverse to the G-orbits. We
denote the transversal foliation by M. Also remark that each fiber of M is
diffeomorphic to M .

Since N may fail to be compact (when the lattice is not uniform), it will
be necessary to assume the existence of a Riemannian metric on N with
norm ‖ · ‖ for which ‖g∗‖ is uniformly close to 1 for all g sufficiently close
to e. In particular, as G is connected, ‖g∗‖ is uniformly bounded for each
g ∈ G. (This is clearly satisfied for the model actions, for example, the
suspension of the affine action of SL(n,Z) on the n-torus.)

Also with respect to ‖ ·‖, we say that k ∈ G is an Anosov element if TM
decomposes as a continuous direct sum of subbundles

TM = E− ⊕E+

such that k (resp., k−1) is uniformly contracting on E− (resp., E+), i.e.,
there is λ, 0 < λ < 1, such that ‖k∗|E−‖ ≤ λ (resp., ‖(k−1)∗|E+‖ ≤ λ). We
call E− (resp., E+) the stable (resp., unstable) subbundle of k.

Theorem 1.7 We assume that a lattice Γ of G = SL(n,R), n ≥ 3, acts
smoothly on a compact manifold M of dimension n. Suppose, moreover,
that for the induced G-action on N = (G ×M)/Γ, (i) every R-semisimple
1-parameter subgroup of G acts topologically transitively on N and (ii) some
regular element k of G is Anosov. Then M is a flat torus for some smooth
Riemannian metric and the Γ-action is a standard affine action with respect
to that metric.
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We point out that the standard actions on tori satisfy the conditions of
the theorem. We do not know, however, how to restate condition (ii) in
terms of Anosov elements in Γ, rather than in G.

Theorems concerning the rigidity of actions of lattices on tori have been
obtained by several authors. We mention [5, 10, 8, 9, 14, 3] among others. To
our knowledge Theorem 1.7 is the first global result of such kind which makes
no reference to invariant measures, or to assumptions on the topology of the
original manifold. We also point out that the Franks-Newhouse theorem,
which implies that codimension-1 Anosov diffeomorphisms can only exist on
tori, is not used here.

The result below is an application of the main theorem to rigid geometric
structures. The notion of a rigid geometric A-structure was introduced in [4]
and it generalizes the classical geometric structures of finite type of Cartan.
We show in section 9 that under the dynamical assumptions of the main
theorem, if a subgroup K ⊂ G preserves a smooth rigid geometric structure,
then G must also preserve a (possibly different) rigid geometric structure on
a G-invariant open dense set. More precisely, we have the following theorem.

Theorem 1.8 Let G be a connected semisimple Lie group of real rank at
least 2 that acts on a smooth manifold M so that every R-semisimple 1-
parameter subgroup of G acts topologically transitively on M . Let K be a
subgroup of G that commutes with some R-semisimple 1-parameter subgroup
of G and acts topologically transitively on M . Suppose moreover that K
preserves a smooth rigid A-structure on M . Then G preserves a smooth
rigid A-structure on some open dense G-invariant set U ⊂M .

An important example of rigid structure is an affine connection. We
prove in section 7 that under the same conditions of the theorem above,
if the K-action preserves a connection on some open dense subset of M ,
then so does G. This will be consequence of a general cohomology vanishing
result for G-actions on vector bundles over M .

2 The topological Furstenberg lemma

Let P be, as before, an H-principal bundle over M and T a group that acts
on P by bundle automorphisms. Let V be a smooth real algebraic variety
and suppose that both T and H act on V algebraically, and that the actions
commute. Let Φ be a T ×H-equivariant map from P |U into V , where U is
an open dense set in M . The proposition below, which will be referred to as
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the Topological Furstenberg Lemma, gives conditions for Φ to take values in
a single H-orbit in V . It will be of basic importance throughout the paper.

The usual set up of a Cs principal H-bundle P over a manifold M is now
in place. V is a smooth real algebraic variety equipped with an algebraic
action of H.

Proposition 2.1 Let T be a 1-parameter group of homeomorphisms of P
commuting with the right H-action and let S be a real algebraic group iso-
morphic to either the additive group R or the multiplicative group R− {0}.
We suppose that S acts algebraically on V , commuting with the action of
H. Let Φ be an H ×R-equivariant continuous map from P |U into V , where
U is an open dense T -invariant subset of M . (More precisely, there is a
homomorphism ρ from T into S such that

Φ(lph) = h−1ρ(l)Φ(p) = ρ(l)h−1Φ(p)

for all l ∈ T , h ∈ H and p ∈ P |U .) Then, after possibly having to restrict
Φ to P |U ′ for some open dense subset U ′ of U , Φ takes values into a single
H-orbit in each of the following two cases:

1. T acts on M topologically transitively and S acts trivially on V .

2. T acts on M topologically transitively with a dense set of recurrent
points, and S acts possibly nontrivially on V .

Proof. We recall the following stratification theorem for algebraic actions
due to Rosenlicht ([4]). If a real algebraic group B acts regularly on a
smooth real algebraic variety V , then V decomposes as a disjoint union
V = V1 ∪ · · · ∪Vm of B-invariant smooth subvarieties Vi such that the union
Fi := Vi∪· · ·∪Vm is Zariski closed in V for each i ≤ m, Vi open and dense in
Fi and the B-orbit of a point of Vi is closed in Vi. Furthermore, the quotient
Vi/B has a natural structure of smooth real algebraic variety for each i and
the quotient map Vi → Vi/B is a smooth fibration for each i. In particular,
each B-orbit is embedded into V .

We let now Vi, i = 1, . . . ,m, be the smooth varieties given by the Rosen-
licht stratification for the action of H × S on V . We first observe that Φ,
restricted to some open and dense subset of the form P |U ′ , U ′ ⊂ U , must
take values into a single stratum Vi. In fact, for any x ∈ U with dense
T -orbit in M and any p ∈ P in the fiber above x the image under Φ of
the T ×H-orbit of p is entirely contained in some Vi, since these strata are
T × H-invariant. But Vi is open in its closure so, by continuity, Φ−1(Vi)
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is open, T × H-invariant, and contains a dense subset of P |U . Therefore,
Φ−1(Vi) is of the form P |U ′ as claimed.

Consequently, the restriction of Φ to P |U ′ factors through the bundle
projection to define a continuous T -equivariant map Φ̄ from U ′ into a smooth
real algebraic variety, Wi = Vi/H. In case (1), this map is T -invariant, hence
constant by topological transitivity, and the claim follows.

In order to consider case (2), we first remark that every recurrent point
under the action of S on Wi is a fixed point. In fact, by the recurrence
assumption and the fact that orbits of S are locally closed, the stabilizer
subgroup of S for that point must be a nontrivial Zariski closed subgroup of
S, hence it must be all of S since S is 1-dimensional; that is, every recurrent
point must be a fixed point for S. The set of S-fixed points of Wi is closed,
and by the assumption (2), a dense set of points in x is taken under Φ̄ to
that set. Therefore, Φ̄ is S-invariant and the argument of part (1) applies,
concluding the proof. �

Corollary 2.2 Let V be a smooth real algebraic variety equipped with a
regular action of a real algebraic group S isomorphic to R or R − {0} (as
real algebraic groups). Let T be a 1-parameter group of homeomorphisms of
a topological space M acting topologically transitively and having a dense set
of recurrent points. Suppose that φ : U → V is a continuous map defined on
an open dense T -invariant subset U ⊂M and T -equivariant, i.e., there is a
continuous homomorphism ρ : T → S such that

φ(lx) = ρ(l)φ(x)

for each l ∈ T and each x ∈ U . Then, Φ is constant and its value is a fixed
point under S.

Proof. SetH = S and P = M×S. T acts on P on the left as l(x, s′) = (lx, s′)
and S acts on the right as (x, s′)s = (x, s′s). Define Φ : U × S → V as
Φ(x, s) := s−1φ(x). Then, since S is abelian, the equivariance condition of
the proposition is satisfied and the claim follows. �

It will be helpful to keep in mind the following trivial remark. Suppose
that manifolds N1 and N2 are equipped with Cs actions of groups B1 and
B2, resp., and let ρ : B1 → B2 be a homomorphism. Let F : W → N2

be a Cs map from an open subset W of N1 that satisfies the following
equivariance condition: For each b ∈ B1 and x ∈ W such that bx ∈ W ,
we have F (bx) = ρ(g)F (x). Then there is a unique C s map F̄ from the
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B1-saturation of W into N2 that restricts to F on W and satisfies: For all
x ∈ B1W and all b ∈ B1, F̄ (bx) = ρ(b)F̄ (x). In other words, in such a
situation we may assume without loss of generality that W is B1-invariant.
F̄ is, of course, given by F̄ (bx) = ρ(b)F (x), for b ∈ B1 and x ∈W , and it is
immediate to check that it is well-defined.

3 H-pairs

We denote by Es(P |U , V ) the space of all geometric structures of type V
and class Cs, defined over an open subset U ⊂ M. Recall that these are
simply the H-equivariant Cs maps from P |U into V . A group B of Cs

automorphisms of P leaving U invariant defines a left-action on E s(P |U , V )
by g ·ϕ := ϕ◦g−1, for g ∈ B and ϕ ∈ Es(P |U , V ). Given p ∈ P |U , we denote
by ep the evaluation map which associates to ϕ ∈ E s(P |U , V ) its value ϕ(p).
Remark that ep ◦ g = eg−1p.

Definition 3.1 (H-pair for B) Let W be a subset of E s(P |U , V ), where
U is an open dense B-invariant subset of M and W is assumed to be B-
invariant, i.e. b · ϕ ∈ W for all ϕ ∈ W . We say that (W,V ) defines a C s

H-pair for B if the following conditions hold:

1. For each p ∈ P |U , the evaluation map ep : W → V is injective and
Wp := ep(W ) is a real subvariety of V .

2. For each p, p′ ∈ P |U ,

τp,p′ := ep ◦ e
−1
p′ : Wp′ →Wp

is an H-translation, that is, one finds h ∈ H such that τp,p′(v) = hv
for all v ∈Wp′.

3. H acts transitively and effectively on V .

Heuristically, an H-pair can be thought of as follows. Starting with a
principal H-bundle and an algebraic H-space V , one forms the associated
bundle whose typical fiber is V . Then an H-pair is an algebraic subset of
sections of this associated bundle. The reader is advised to think of the
corresponding situation when one replaces the word ‘algebraic’ by ‘linear,’
and studies vector spaces of sections of a vector bundle as in [12].

It should be remarked that condition 3 implies that V is a homogeneous
space of the form H/H0, where H0 does not contain a nontrivial normal
subgroup of H.
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The collection of all H-translations fromWp into V is naturally identified
with H/Fp, where Fp is the group Fp := {h ∈ H | hv = v for all v ∈ Wp}.
Moreover, it follows from property 2 that for each p ∈ P |U and b ∈ B, there
is h ∈ H such that ep(b · ϕ) = hep(ϕ), for all ϕ ∈ W . (The H-translation
corresponding to h is τb−1p,p.) Therefore, one associates to each p ∈ P |U a
Cs homomorphism

ρp : B → Np/Fp, ρp(b) = ep ◦ b ◦ e
−1
p ,

where Np := {h ∈ H | hv ∈Wp for all v ∈Wp}. In other words,

ep(b · ϕ) = ρp(b)ep(ϕ),

for ϕ ∈W and b ∈ B.
The H-translations τp,q : Wp → Wq satisfy the following elementary

properties, which we are going to use freely in the sequel and to which the
reader is advised to refer when checking formal computations.

τbp,q = τp,b−1q

ρp(b)τp,q = τp,qρq(b)

ρph(b) = h−1ρp(b)h

τph,qh′ = h−1τp,qh
′

τbp,b′q = ρp(b)
−1τp,qρq(b

′)

where p, q ∈ P |U , b, b′ ∈ B and h, h′ ∈ H.
We say that an H-pair (W1, V ) is contained in another H-pair (W2, V ) if

W1 ⊂ Es(P |U1
, V ), W2 ⊂ Es(P |U2

, V ) are defined over open and dense sets
U1 and U2 and for every ϕ1 ∈W1 one finds ϕ2 ∈W2 such that the two maps
agree over U1 ∩ U2.

It will be convenient in what follows to identify pairs (W1, V ) and (W2, V )
if each one is contained in the other. This indeed defines an equivalence re-
lation and we write [W,V ] for the class represented by (W,V ). We say that
[W1, V ] is contained in [W2, V ], and write [W1, V ] < [W2, V ], if a represen-
tative of the former is contained in a representative of the latter. Due to
the fact that we consider open dense sets, < defines a partial ordering.

We say that the H-pair [W,V ] for B is maximal if it is equal to any other
H-pair in which it is contained.

Definition 3.2 (Invariant and hyperbolic pairs) A C s H-pair (W,V )
for B defined over a dense B-invariant open set U ⊂M will be called invari-
ant if b · ϕ = ϕ for all ϕ ∈W and b ∈ B. It is A-hyperbolic, for a subgroup
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A of B, if ρp(a) is a R-semisimple element of the real algebraic group Np/Fp

(defined earlier) for every p ∈ P |U and a ∈ A.

Lemma 3.3 Every Cs H-pair for B is contained in a maximal C s H-pair
for B. Similarly, every invariant (resp., hyperbolic) C s H-pair for B is
contained in a maximal invariant (resp., maximal hyperbolic) C s H-pair for
B.

Proof. We will construct for any given increasing sequence of C s H-pairs
for B,

[W 1, V ] < [W 2, V ] < · · · < [W i, V ] < · · · ,

a Cs H-pair for B, [W∞, V ], which contains each one in the sequence. The
claim will then follow from Zorn’s lemma.

We choose a representative (W i, V ) for each pair, where W i is a subset
of Es(P |Ui

, V ), and Ui is an open dense B-invariant subset of M . By the
Baire property, the intersection of all Ui is nonempty (in fact, dense) so that
we can fix a p0 ∈ P that projects to a point in that intersection. For each
p ∈ P |Ui

, we denote W i
p := ep(W

i) and define

ψi
p := ep ◦ e

−1
p0

: W i
p0
→W i

p,

which is an H-translation, by definition of an H-pair. Therefore, we may
regard ψi

p as an element of H/F i
p0

, where F i
p0

is the (real algebraic) subgroup
of H that fixes W i

p0
pointwise. Thus, we obtain a Cs H-equivariant map

Ψi : P |Ui
→ H/F i

p0

defined by Ψi(p) := ψi
p. Remark that for any given w ∈ W i

p0
we recover

ϕ ∈W i by the equation ϕ(p) = Ψi(p)w.
The sequence of subvarieties W i

p0
of V is increasing, so the sequence

of real algebraic subgroups F i
p0

is decreasing. By the descending chain
condition for algebraic groups there must be a finite index i0 such that
F i

p0
= F i0

p0
=: F∞p0

for all i ≥ i0. Consequently, for all i, j ≥ i0, the maps
Ψi,Ψj agree on P |Ui∩Uj

. (Remark that if, say, j ≥ i, then the H-translation

ψi
p is the restriction of ψj

p to W i
p and is of the form w 7→ hw for some h ∈ H

and all w ∈W j
p0

, so that ψi
p = ψj

p if F i
p0

= F j
p0

.)
The preceding shows that a map Ψ∞ can be defined on P |∪i≥i0

Ui
ex-

tending all Ψi, for i ≥ i0 and is, in particular, a Cs map. Moreover, if W∞
p0

denotes the Zariski closure of the union of all W i
p0

, i ≥ i0, we have that F∞p0

must fix W∞
p0

pointwise, hence F∞p0
is the full subgroup of H that does so.
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We now define on the B-invariant dense open set U∞ :=
⋃

i≥i0
Ui an H-

pair (W∞, V ) for B as follows. Set W∞ ⊂ Es(P |U∞ , V ) to be the collection
of Cs maps ϕw, w ∈W∞

p0
, defined by

ϕw(p) := Ψ∞(p)w.

It is now routine to check that properties 1, 2, and 3 in the definition
of an H-pair are satisfied. In fact, property 1 results from H-translations
being injective; for property 2, remark that τp,p′ : W∞

p′ → W∞
p is the H-

translation that corresponds to Ψ∞(p)Ψ∞(p′)−1; and property 3 holds since
V and the H-action on it have not changed.

The homomorphisms ρ∞p associated to the just constructed H-pair can
be described as follows. For each i and p ∈ P |Ui

, there is a Cs (hence C∞)
homomorphism ρi

p : B → N i
p/F

i
p such that ep(g · ϕ) = ρi

p(g)ep(ϕ) for all
ϕ ∈W i and g ∈ B. It follows that for the same i, p, g,

Ψi(g
−1p) = ρi

p(g)Ψi(p).

Since Ψi and Ψj agree on P |Ui∩Uj
, for i, j ≥ i0, we must have, for p in

that set, that ρj
p(g) = ρi

p(g) for all g ∈ B. We thus obtain a family of
homomorphisms ρ∞p from B into N∞

p /F∞p extending p 7→ ρi
p over P |U∞ such

that Ψ∞(g−1p) = ρ∞p (g)Ψ∞(p). Remark that the homomorphisms depend
Cs on p. Here, N∞

p denotes the algebraic subgroup of H that fixes W∞
p as

a set (not necessarily pointwise). It contains F∞p as a normal subgroup. It
now follows from the definition of ϕw ∈W

∞ that ep(g ·ϕw) = ρ∞p (g)ep(ϕw).
(The action of B on W∞ is canonically defined by restricting the natural
action on the space of geometric structures over U .)

If each H-pair (W i, V ) is invariant, the same property is clearly inher-
ited by (W∞, V ). If they are hyperbolic, let g ∈ B, p ∈ P |U∞ , and consider
the decomposition ρ∞p (g) = lulelh into unipotent, elliptic and R-semisimple
parts. Then for all p ∈ U∞, the union of W i

p, i ≥ i0, is fixed pointwise by lu
and le. Since W∞ is the Zariski closure of that union, lu and le must be the
unit element in N∞

p /F∞p . �

4 H-pairs for centralizers

The same set up of section 3 is still in force. Furthermore, we assume that
a Lie group G acts Cs on P by principal bundle automorphisms and that
B is a subgroup of G. If Z is a subgroup of the centralizer, ZG(B), of B

12



in G, we would like to know when an H-pair for B can be shown to be an
H-pair for Z as well. The next lemma gives sufficient conditions for that to
happen.

Lemma 4.1 Suppose that (W,V ) is a maximal invariant C s H-pair for B,
and that B acts topologically transitively on M . Then (W,V ) is an H-pair
for Z. More precisely, if W is defined over an open dense B-invariant set
U ⊂M , its elements can be extended above the saturation U ′ = Z ·U so that
(W,V ), now defined above U ′, is a Cs H-pair for Z. The same conclusion
holds if (W,V ) is a maximal T -hyperbolic C s H-pair for B for some T ⊂ B
such that T acts on M topologically transitively with a dense set of recurrent
points.

Proof. Fix z ∈ Z and define z ·W to be the set of all maps z · ϕ := ϕ ◦ z−1,
ϕ ∈W . It is immediate to check that (z ·W,V ) is a C s H-pair for B defined
over z(U).

Set W z := z ·W ∪W and W z
p := ep(W

z) = Wz−1p ∪Wp. . We claim
that (W z, V ) is a Cs H-pair for B, defined over U z := z(U) ∩ U . To show
that, we first check that the evaluation maps ep : W z → V are injective, for
p in some open dense B-invariant H-invariant subset of P .

For any p, q0 ∈ P |Uz , we recall that the H-translation τp,q0
on Wq0

may
be regarded as an element of H/Fq0

, where Fq0
is the subgroup of H that

leaves Wq0
pointwise fixed. Define now a map

Ψz
q0

: P |Uz → H/Fq0
×H/Fq0

Ψz
q0

(p) = (τp,q0
, τz−1p,q0

).

Notice that H × B act on H/Fq0
×H/Fq0

diagonally, H acting on the left
and B acting on the right via the homomorphism ρq0

: B → Nq0
/Fq0

. The
map is H ×B-equivariant:

Ψz
q0

((h, b) · p) := Ψz
q0

(bph−1) = hΨz
q0

(p)ρq0
(b)−1 =: (h, b) ·Ψz

q0
(p)

where p ∈ P |Uz and (h, b) ∈ H ×B.
Applying the topological Furstenberg lemma, it follows that Ψz

q0
, re-

stricted to P |U ′ for some open dense B-invariant subset U ′ ⊂ U z, takes
values into a single H-orbit. We can now conclude that the evaluation map
eq : W z →W z

q is injective for all q ∈ P |U ′ in the following way. If q ∈ P |U ′ ,
ϕ1 ∈W , and z · ϕ2 ∈ z ·W , then

(ϕ1(q), z · ϕ2(q)) = (τq,q0
(ϕ1(q0)), τz−1q,q0

(ϕ2(q0)))

= (hτp,q0
(ϕ1(q0)), hτz−1p,q0

(ϕ2(q0)))

= (hϕ1(p), hϕ2(z
−1p))

= h(ϕ1(p), z · ϕ2(p)).

13



Therefore, if ϕ1(q) = z ·ϕ2(q), we conclude ϕ1(p) = z ·ϕ2(p) for all p ∈ P |U ′ .
It also follows from the equality (τq,q0

, τz−1q,q0
) = (hτp,q0

, hτz−1p,q0
) that

τq,p : W z
p → W z

q is an H-translation given by τq,p(w) = hw. Such h is
uniquely defined up to right translation by elements in the group

F z
p = Fz−1p ∩ Fp = {h ∈ H | hw = w for all w ∈W z

p }.

The third property of an H-pair is trivially satisfied since V and the H-
action on it have not changed.

The previous discussion shows that (W z, V ) is an H-pair for B defined
over z(U) ∩ U and by construction it contains (W,V ). We can now use the
maximality of (W,V ) to conclude that

[W,V ] = [z ·W,V ] = [W z, V ].

In particular, each ϕ ∈ W extends above a 〈z〉-invariant open dense subset
of M , which is also B-invariant and we may assume that W is 〈z〉-invariant.
Since z is an arbitrary element of Z, we conclude that W is Z-invariant. In
particular, (W,V ) is an H-pair for Z. �

Lemma 4.2 Let Z be a group of H-bundle automorphisms commuting with
the B-action. Assume that the action of B on M is topologically transitive
and there exists a Cs H-pair (W,H/H0) for B. Then, there exists a Cs H-
pair (W ′,H/F ) for Z such that F is a subgroup of H0. Moreover, denoting
by π the natural projection from H/F onto H/H0, there is ϕ ∈W ′ such that
π ◦ ϕ ∈W .

Proof. The H-pair (W,H/H0) for B is defined over some open dense B-
invariant subset U ⊂M and we recall that H0 does not contain a nontrivial
normal subgroup of H. Fix a point q0 ∈ P |U . By translating q0 in its fiber
by some appropriate element in H, we may assume without loss of generality
that Wq0

(the image of W in H/H0 under the map eq0
) contains the coset

H0, i.e. there is ϕ0 ∈ W such that ϕ0(q0) = H0. Notice that if p ∈ P |U ,
then

ϕ0(p) = τp,q0
H0.

The group F := Fq0
of elements ofH that fixWq0

pointwise is a subgroup
of H0 (since it fixes, in particular, the coset H0), hence it does not contain
a nontrivial normal subgroup of H.

Let N := Nq0
be, as before, the subgroup of H that stabilizes Wq0

, which
contains F as a normal subgroup, and set A := N/F .

14



We regard P1 := P |U ×A as a principal bundle with group H1 = H ×A
and right-action given by the product action. We define on H/F a right
H1-action given by

τ · (h, a) = h−1τa,

for τ ∈ H/F and (h, a) ∈ H1 and introduce the map

ψ : P1 → H/F, ψ(p, a) := τp,q0
a.

Notice that π(ψ(p, e)) = ϕ0(p), for p ∈ P |U . A simple calculation also shows
that ψ is H1-equivariant, i.e. ψ(ph, aa′) = h−1ψ(p, a)a′, for (p, a) ∈ P1 and
(h, a′) ∈ H1. Moreover, with respect to the left B-action on P1 given by

b · (p, a) := (bp, ρq0
(b)a),

ψ is B-invariant. In fact,

ψ(b(p, a)) = ψ(bp, ρq0
(b)a)

= τbp,q0
ρq0

(b)a

= τp,b−1q0
ρq0

(b)a

= τp,q0
a

= ψ(p, a).

Therefore, ({ψ},H/F ) defines an invariant C s H1-pair for B. By Lemma
3.3, there exists a maximal Cs invariantH1-pair forB containing ({ψ},H/F ),
which we denote (W1,H/F ).

Define a left Z-action on P1 by

z · (p, a) := (zp, a).

It is immediate to check that the Z-action commutes with both the B-action
and the H1-action on P1. Therefore, by Lemma 4.1, (W1,H/F ) is an H1-
pair for Z. Let now W ′ be the space of maps ϕ : P → H/F of the form
ϕ(p) := ϕ1(p, e) for some ϕ1 ∈ W1, where e is the identity element in A.
It also follows that (W ′,H/F ) defines a Cs H-pair for Z. Finally, as we
already noted above, ϕ0 is the image of some element of W ′ under the map
from W ′ to W defined by post-composition with π. �
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5 Proof of the main theorem

Before beginning the proof of the main theorem, we collect a few facts
concerning semisimple algebraic groups of real rank at least 2. The reader
may refer to [2] or [12] for the facts stated here.

Let G denote a semisimple real algebraic group and T a maximal real
split torus. It will now be assumed that G has real rank at least 2. Let
R = R(T,G) denote the set of roots of the adjoint action of T on the Lie
algebra g of G and let Tα denote the codimension one torus defined as the
identity component of the kernel of α in T . Then the centralizer ZG(Tα) of
Tα is a reductive R-group whose semisimple part Sα is isomorphic to either
SL(2,R) or PSL(2,R). Sα, moreover, intersects T in a one dimensional
torus Ťα such that Tα and Ťα together generate T . The centralizer of Ťα in
G also is a reductive group whose semisimple part contains Tα.

Essentially the same argument as in [12, 1.2.2, p.39] gives the following
claim.

Proposition 5.1 Each g ∈ G can be written as a product g = g1g2 . . . gl,
where, for each i, 1 ≤ i ≤ l, gi ∈ ZG(Tα) for some α ∈ R.

With these facts, we can now begin the proof of the main theorem. The
Cs algebraic hull, H0, of K determines a Cs K-invariant geometric structure
ϕ0 : P |U0

→ H/H0, where U0 is some open dense K-invariant subset of M .
It is immediate to check that ({ϕ0},H/H0) is a Cs H-pair for K defined
over U0.

We can now apply Lemma 4.2 to obtain a Cs H-pair for 〈h0〉, where
h0 is some R-semisimple element of G commuting with K, which exists by
assumption. That R-semisimple element is contained in some real split torus
T , and the same lemma implies the existence of a C s H-pair for T , which
is clearly also an H-pair for any of the Tα or Ťα.

Lemma 4.2 once again, applied now to Tα for any fixed α, gives a Cs H-
pair for the centralizer of Tα. The result is a Cs H-pair which is hyperbolic
for Ťα, since the latter group is contained in the semisimple part of that
centralizer. Using Lemma 3.3 we obtain a maximal hyperbolic C s H-pair
(W,V ) for Ťα.

We claim there exists a T -hyperbolicH-pair for T . To obtain such a pair,
fix α ∈ R and a maximal Ťα-hyperbolic Cs H-pair for Ťα, which we denote
(W,H/L). We may assume that α and (W,H/L) have been chosen so that
L is minimal, that is, if β ∈ R and (W ′,H/L′) is a maximal Ťβ-hyperbolic
Cs H-pair for Ťβ such that L′ ⊂ L, then L′ = L. By the descending chain
condition for algebraic groups such α and (W,H/L) indeed exist.
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Lemma 4.1 implies that (W,H/L) is also an H-pair for any element of
T , since T centralizes Ťα. Let now Π be a hyperplane in T ∗ (the dual space
of T ) spanned by roots and complementary to α, and let u ∈ T be a nonzero
vector orthogonal to Π with respect to the Killing form. We apply Lemma
4.2 to obtain a Cs H-pair (W ′,H/F ) for the centralizer of u in G, where
F ⊂ L. Notice, in particular, that (W ′,H/F ) is an H-pair for T . On the
other hand, for any root β ∈ Π, Sβ centralizes u, and since Ťβ ⊂ Sβ, we
conclude that (W ′,H/F ) is Ťβ-hyperbolic. Using the minimality of L we
conclude that F = L. Moreover, by the second part of Lemma 4.2 and the
fact that F = L, the intersection W0 := W ∩W ′ is not empty. Since both
(W,H/L) and (W ′,H/L) are H-pairs for T , the intersection (W0,H/L) also
defines an H-pair for T .

We claim that (W0,H/L) is the desired T -hyperbolic H-pair for T . First
notice that since (W,H/L) is Ťα-hyperbolic and (W ′,H/L) is Ťβ-hyperbolic,
(W0,H/L) is both Ťα-hyperbolic and Ťβ-hyperbolic for all roots β ∈ Π. But
Ťα and the groups Ťβ for β ∈ R ∩ Π together span T . Therefore, as T is
abelian, (W0,H/L) is T -hyperbolic.

Let (W,V ) be a maximal Cs T -hyperbolic H-pair for T . We wish to
prove that it is an H-pair for the centralizer ZG(Tα) for each root α. To
that end, let α be a root and let Π ⊂ T ∗ be now a hyperplane containing
α and spanned by roots. Let u ∈ T be a nonzero element annihilated by
all the elements of Π (in particular, u ∈ Tβ for all β ∈ R ∩Π) and consider
a maximal 〈u〉-hyperbolic H-pair for T , (W ′, V ), containing (W,V ). By
Lemma 4.1, (W ′, V ) is an H-pair for ZG(u), hence it is Ťβ-hyperbolic for
all β ∈ Π ∩ R, since Ťβ ⊂ Sβ ⊂ ZG(Tβ) ⊂ ZG(u). But u together with the
groups Ťβ generate T , so that (W ′, V ) is T -hyperbolic. By maximality, we
obtain that W ′ = W , so that (W,V ) is an H-pair for ZG(u). But u ∈ Tα,
so that ZG(Tα) ⊂ ZG(u), hence (W,V ) is an H-pair for ZG(Tα), as claimed.

We claim, now, that the H-pair (W,V ) obtained above is, in fact, an
H-pair for the whole group G, defined over some G-invariant open dense set
U ⊂ M . For that, all that is needed to show is that W is G-invariant, but
this is now a consequence of Proposition 5.1.

The section of P |U asserted in the main theorem is obtained as follows.
Fix p0 ∈ P |U and let Wp0

, Np0
, Fp0

, ρp0
: G→ Np0

/Fp0
be as before. Denote

by Ψp0
the map

p ∈ P |U 7→ Ψp0
(p) := τp,p0

∈ H/Fp0

and by Ψ̄p0
the postcomposition of Ψp0

with the projection from H/Fp0
onto
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H/Np0
. Notice that Ψp0

satisfies

Ψp0
(gp) = Ψp0

(p)ρp0
(g)−1

for all g ∈ G and p ∈ P |U , so that Ψ̄p0
is G-invariant. Therefore, we obtain

a G-invariant Np0
-reduction of P over some G-invariant open dense subset

of M . But H already is the Cs algebraic hull of G, so H = Np0
and since H

is transitive on V , we conclude that Wp0
= V . Since, furthermore, H acts

on V effectively, Fp0
must be trivial. Therefore, Ψ is an H-equivariant map

from P |U onto H (i.e., Ψ(ph) = h−1Ψ(p)) and is, in particular, a bijection
from each fiber Px, x ∈ U .

We can now define a Cs section σ of P |U by setting Ψ(σ(x)) = e, where
e is the identity element in H and x is any element in U . The equation
gσ(x) = σ(gx)ρp0

(g) can be checked as follows, using the injectivity of Ψ on
fibers:

Ψ(gσ(x)) = Ψ(σ(x))ρp0
(g)−1

= ρp0
(g)−1

= ρp0
(g)−1Ψ(σ(gx))

= Ψ(σ(gx)ρp0
(g)).

6 Parabolic invariants

A Cs geometric structure ϕ : P → V can also be described as a C s section
of the bundle P ×H V := (P × V )/ ∼ over M , where ∼ is the equivalence
relation on the product such that (p, v) ∼ (ph, h−1v). If we represent by pv
an equivalence class, the section associated to ϕ is written as

x ∈M 7→ E(x) := pϕ(p)

for any p in the fiber Px of P above x. (This is well-defined due to the
H-equivariance of ϕ.) The action of g ∈ G on E is denoted

(g∗E)(x) := gE(g−1x) = pϕ(g−1p).

Suppose that F →M is a smooth (C∞) vector bundle with n-dimensional
fibers and let P be an H-reduction of the bundle of frames of F , so that
H is a subgroup of GL(n,R). An element p ∈ P is a linear isomorphism
from R

n into the fiber Fx above x = π(p). (GL(n,R) operates on the right
by postcomposition with π.) The reduction may arise due to the existence
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of some further geometric structure on F , such as a volume form, when
H = SL(n,R).

Let V be the Grassmannian of k-planes in R
n equipped with the natural

action of GL(n,R). A continuous H-equivariant map ϕ : P → V defines a
continuous subbundle of F of fiber dimension k. If E(x) ⊂ Fx denotes the
subspace at x ∈ M , then for any p ∈ P above x, E(x) = pϕ(p), i.e., the
image of ϕ(p) under the linear map p. Supposing now that F is a subbundle
of TM , then any diffeomorphism g of M operates on E by the induced
derivative map dgx on TxM . The action on E becomes

(g∗E)(x) := (dg)g−1xE(g−1x) = pϕ(g−1p),

for any p ∈ Px. If E is preserved by a subgroup B of G, one has for each
x ∈M a map

gB ∈ G/B 7→ (g∗E)(x) = pΦ(p)(gB) ∈ {k-dimensional subspaces of TxM},

where Φ(p), for each p ∈ P , is the map from G/B into the Grassmannian
variety defined by Φ(p)(gB) = ϕ(g−1p).

We give now an example of a parabolic invariant. Let f ∈ G be contained
in a split R-torus T ⊂ G. Let U be the maximal unipotent subgroup con-
tracted by f , so that for any g ∈ U one has f ngf−n → e as n tends to +∞,
and denote by ZG(T ) the centralizer group of T in G. Then B = ZG(T )U
is a parabolic subgroup and each g ∈ B has the property that the set

{fngf−n| n ∈ N}

is relatively compact in G. For χ ∈ R, and x ∈ M , where M is now
a compact smooth manifold and G operates on M smoothly, we define a
subspace E(x) of Fx by the following property ([7, S.2.6]): A nonzero vector
v belongs to E(x) if and only if

lim sup
n→∞

1

n
log ‖(dfn)xv‖ ≤ χ.

It is immediate to check that E is preserved by B. If E arises due to a
gap in the Mather spectrum of f (cf. [15, 2.8, p.121]), then E is a Hölder
continuous parabolic invariant.

The next theorem is due to Zimmer [18]. We provide below a proof
adapted to our notations.

Theorem 6.1 Let P be a Cs (s ≥ 0) principal H-bundle defined over a
manifold M and G a semisimple Lie group acting on P by principal bundle
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automorphisms all of whose R-semisimple 1-parameter subgroups act topo-
logically transitively on M , with a dense set of recurrent points. We suppose
that H is real algebraic and is a Cs algebraic hull of the action. We also
suppose that on some open dense G-invariant set U ⊂ M , P |U admits a
Cs section σ such that gσ(x) = σ(gx)ρ(g) for all g ∈ G and x ∈ U , where
ρ : G→ H is a continuous surjective homomorphism. If ϕ : P → V is a C s

parabolic invariant, then there exists w ∈ V whose H-orbit W is a compact
real subvariety of V and for each p ∈ P there exists hp ∈ H such that

ϕ(g−1p) = hpρ(g)w

for all g ∈ G. Consequently, if F denotes the normal subgroup of H that
fixes W pointwise, and if P/F denotes the principal H/F -bundle obtained
from P in a natural way, then the section σ̄ of (P/F )|U induced from σ
extends to a Cs section on P/F .

We now proceed to the proof of Theorem 6.1. Let P be as before a
principal H-bundle over a manifold M and suppose that a Lie group G acts
on P by bundle automorphisms. We suppose that there is a C s section σ
of P |U , for an open dense G-invariant subset U ⊂ M , and a continuous
homomorphism ρ : G → H such that gσ(x) = σ(gx)ρ(g) for all g ∈ G and
x ∈ U . Also suppose there exists a Cs H-equivariant function ϕ : P → V ,
where V is a real algebraic variety equipped with a real algebraic H-action,
such that ϕ is invariant under a parabolic subgroup B of G. Recall that
G/B is compact.

Denoting by C(G/B, V ) the space of continuous maps from G/B into V
with the topology of uniform convergence, we obtain a continuous map

Φ : P → C(G/B, V ),

such that Φ(p)([g]) := ϕ(g−1p). Then we have the following lemma.

Lemma 6.2 There is an element w ∈ V such that

Φ(p)([g]) = hpρ(g)w,

for all g ∈ G and p ∈ P |U , where hp is the unique h ∈ H such that p =
σ(x)h−1

p , where x is the base point of p.

Proof. Define the map ξ := ϕ ◦ σ : U → V and remark that for any g ∈ B
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and x ∈ U , we have

ξ(bx) = ϕ(σ(bx))

= ϕ(bσ(x)ρ(b)−1)

= ρ(b)ϕ(bσ(x))

= ρ(b)ϕ(σ(x))

= ρ(b)ξ(x).

If T is a real algebraic 1-parameter subgroup of B associated to an R-split
group, we can apply the corollary of the Topological Furstenberg Lemma
to conclude that ξ is constant, equal to some w ∈ V . Therefore, given any
g ∈ G and p ∈ P |U , we write p = σ(x)h−1

p for some hp, so that

Φ(p)([g]) = ϕ(g−1σ(x)h−1
p )

= ϕ(σ(g−1x)ρ(g)−1h−1
p )

= hpρ(g)w

which is the claim. �

Lemma 6.3 We suppose now that the variety V is of the form H/H0 and
that ρ is a surjective homomorphism from G to H. Let f : G/B → V
be defined by f(gB) := ρ(g)w and suppose that a sequence hjf converges
uniformly to a continuous function θ : G/B → V , for hj ∈ H. Then there
is h ∈ H such θ = hf .

Proof. This is a consequence of [17, 3.1.4] and the next lemma. �

Lemma 6.4 ([18]) Let W ⊂ PN be a quasiprojective irreducible variety
that is not contained in a proper projective irreducible subspace. Let X be a
projective irreducible variety and f : X → W a regular surjection. Suppose
that hj is a sequence in GL(N + 1,R), such that hj(W ) ⊂ W and hjf
converges uniformly to a continuous function θ : X → W . Then {hj} is
bounded in PGL(N + 1,R).

Proof. Fix a metric on PN and choose ε > 0 such that d(W,Y ) ≥ ε for
every proper projective subspace Y ⊂ PN . Choose j1 large enough so that
j ≥ j1 implies

sup
j
d(hjf(x), θ(x)) ≤

ε

2
.
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Let Tj = hj/‖hj‖. Then if hj is not bounded in PGL(N + 1,R), by passing
to a subsequence we can assume that Tj converges in the space of N + 1
by N + 1 real matrices to a matrix T with ‖T‖ = 1 and det T = 0. Let
X1 = f−1(PN−[kerT ]). ThenX1 ⊂ X is (Zariski) open and dense. Observe
that if y ∈ PN − [ker T ], then hjy = Tjy converges to Ty, in the image V of
T in PN . Therefore, if x ∈ Z1, hjf(x) converges to Tf(x) ∈ V . Since hif(x)
converges to θ(x), we have θ(X1) ⊂ V . Therefore θ(X) ⊂ V . However, this
contradicts the fact that θ must be surjective. (Namely, if y ∈ W , choose
xj ∈ X such that f(xj) = h−1

j (y). By passing to a subsequence, we can
assume that xj converges to some x ∈ X. Then hjf(xj) converges to θ(x)
since X is compact and hjf converges uniformly to θ. Thus y = θ(x).) �

Using the previous result, the set U of Lemma 6.2 can be taken to be
the entire manifold M . Theorem 6.1 now follows easily. Notice that the
section claimed in the conclusion of Theorem 6.1 is deduced from ϕ in the
same way that σ was obtained from Ψ at the end of section 5.

Theorem 1.6 is a consequence of the calculation given below, which shows
that the group F that arises in Theorem 6.1 must be trivial if the action is
effective relative to ϕ. We use the description of ϕ as a section x 7→ E(x) =
pϕ(p) of P ×H V . For any given x ∈M and p0 ∈ Px, we can define for each
h0 in F an automorphism A of Px by A(p0h) := p0h0h. A then induces a
transformation on (P ×H V )x, still denoted A, and we have

A(g∗E)(x) = Apϕ(g−1p) for some p = p0h ∈ P

= p0h0hϕ(g−1p)

= ph′ϕ(g−1p) for some h′ ∈ F

= pϕ(g−1p)

= (g∗E)(x),

for all g ∈ G. Therefore A, hence h0, is the identity.

7 Cohomology vanishing

Let E be a Cs vector bundle over a Cs manifold M . Suppose that E is
equipped with a Cs action by bundle automorphisms of a Lie group G. We
denote by Γs(E|U ) the space of all Cs sections of E|U , where U is some
open subset of M . If U is G-invariant, G acts on Γs(E|U ) by defining g∗α
for α ∈ Γs(E|U ) and g ∈ G so that (g∗α)(x) := gα(g−1(x)), for all x ∈ U .

We now define a cohomology group Ȟ1
s (G,E) associated to a Cs action

of G on E as follows. A Cs o.d. 1-cocycle (for open and dense) is a map θ
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from G into Γs(E|U ), for some open dense G-invariant U ⊂M , such that θ
is Cs as a map from G× U into E and

θ(g1g2) = θ(g1) + g1∗θ(g2)

for all g1, g2 ∈ G. We call U the domain of θ. A Cs o.d. 1-cocyle θ is an
o.d. coboundary if there is an α ∈ Γs(E|V ), for some open dense G-invariant
V ⊂M , such that over U ∩ V

θ(g) = α− g∗α

for all g ∈ G.
The Cs o.d. first cohomology group Ȟ1

s (G,E) is now defined as the
quotient of the space of o.d. cocycles by the space of o.d. coboundaries. It
is clear that for any given subgroup B of G there is a linear map

Ȟ1
s (G,E) → Ȟ1

s (B,E)

obtained by restriction of the cocycles from G to B.

Theorem 7.1 Let G be a connected semisimple Lie group of real rank at
least 2 that acts on a Cs vector bundle E over M by automorphisms, the
action being Cs. We assume that every R-semisimple 1-parameter subgroup
of G acts topologically transitively on M and admits a dense set of recurrent
points. Let K be a subgroup of G that acts on M topologically transitively
and commutes with some R-semisimple 1-parameter subgroup of G. Then,
the restriction map

Ȟ1
s (G,E) → Ȟ1

s (K,E)

is injective.

It will be convenient to have E as an associated vector bundle to a
principal bundle P , which may be taken to be the bundle of frames of E.
Thus, let P be a Cs principal H-bundle over M , where H is a real algebraic
group, and write E = (P × V )/H. Here V is a finite dimensional vector
space upon which H operates via a linear representation η : H → GL(V )
and the right H-action on the product is given by

(p, v)h := (ph, η(h)−1v)

for p ∈ P, v ∈ V, h ∈ H. We may also suppose that G acts on P by bundle
automorphisms and that the induced G-action on E, by operating on the
first factor of the product, is the one of the theorem.
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We denote by πP and πE the base point projections from P and E onto
M , respectively, and define the bundle

π : P ×M E = {(p, α) ∈ P ×E | πP (p) = πE(α)} →M.

P ×M E is a principal bundle over M with group given by the semidirect
product A := Hnη V , where η is the linear representation of H into GL(V )
that appears in the definition of E. A has multiplication defined by

(h, u)(h′, u′) = (hh′, η(h)u′ + u)

for (h, u), (h′, u′) ∈ H × V . The right action of A on P ×M E is defined as

(p, α)(h, u) = (ph, α− pu),

where an element p in the fiber of P above x ∈ M is being regarded as a
linear isomorphism from V onto the fiber Ex of E at x, so that pu is an
element of Ex for each u ∈ V .

Starting with an action of G by automorphisms of P , we can define for
each Cs o.d. 1-cocycle θ an action of G on (P ×M E)|U , where U is the
domain of θ, as follows. For each g ∈ G and (p, α) ∈ (P ×M E)|U , we set

g(p, α) = (gp, gα + θ(g)(πP (gp))).

It is a consequence of the cocycle identity satisfied by θ that the definition
above indeed yields an action.

We identify H with the subgroup of A consisting of elements of the form
(h, 0), where h ∈ H and 0 is the zero element of V .

Lemma 7.2 Let θ be an o. d. 1-cocycle with domain U representing a
class in Ȟ1

s (G,E). The bundle (P ×M E)|U with the G-action derived from
θ admits a Cs G-invariant reduction Q with structure group H over some
open dense G-invariant set V ⊂M if and only if θ represents the 0 class in
Ȟ1

s (G,E).

Proof. We first assume that θ is a coboundary of the form θ(g) = β − g∗β,
for some Cs section β of E|V . A G-invariant H-reduction is obtained by
setting

Q := {(p, β(πP (p)) | πP (p) ∈ V }.

Conversely, assume that a Cs G-invariant H-reduction Q exists and that
it is defined on an open and dense subset U of M . The projection map
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(p, α) 7→ p from Q into P |U is a Cs isomorphism of principal H-bundles and
we denote its inverse by p 7→ (p, γ(p)). From the equality

(ph, γ(ph)) = (p, γ(p))(h, 0) = (ph, γ(p))

we conclude that γ(ph) = γ(p) for all p ∈ Q and h ∈ H, so that γ is of the
form β ◦ πP for some Cs section β of E|U . A simple calculation now shows
that θ = β − g∗β. �

We remark that if L is a subgroup of Hnη V , then L fixes a point in V if
and only it is conjugate to a subgroup of H, as a simple calculation shows.

Lemma 7.3 Let L be a subgroup of H nη V and let N be a closed normal
subgroup of L such that L/N is a semisimple group with finitely many con-
nected components and N fixes a point in V . Then L also fixes a point in
V .

Proof. The set W ⊂ V of fixed points by N is a nonempty affine subspace
of V . Since N is a normal subgroup of L, W is stabilized by L, so we have
an affine action of L̄ = L/N on W . If L̄ fixes a point of W , then the same
is true for L. Moreover, if L̄0 is the connected component of the identity of
L̄ and L̄0 fixes a point in W , then L̄ also fixes a point, as one easily sees
by averaging over the finite group L̄/L̄0. Therefore, to show that L fixes a
point in V it suffices to show that a connected semisimple Lie group acting
on a linear space V by affine transformations must have a fixed point.

We have thus reduced to problem to showing that a connected semisim-
ple subgroup S of H̄ n V , where H̄ is any closed subgroup of GL(V ), is
conjugate in H̄ n V to a subgroup of H̄. This, in turn, is a consequence
of the similar claim for the Lie algebra of S. By a standard argument one
shows that the assertion for the Lie algebra of S is a consequence of White-
head’s lemma concerning the vanishing of the first cohomology group for
semisimple Lie algebras. ([16, p. 220].) �

The theorem can now be proved as follows. Let θ be a 1-cocycle for G
with domain U whose restriction to K is a coboundary. From the discussion
above we can assume that the algebraic hull HK for the K-action on (P ×M

E)|U associated to θ is contained in H. Denote by HG a representative of
the algebraic hull for the G-action on (P ×M E)|U . We may assume that
HK is a subgroup of HG and we denote by N the maximal normal subgroup
of HG that is contained in HK . According to the main theorem, HG/N is
a homomorphic image of G, hence it is semisimple, and the lemmas above
conclude the proof.
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Corollary 7.4 We assume the same conditions of the previous theorem and
consider the natural action of G on E that comes from a C∞ G-action on
a C∞ principal bundle P . If K preserves a Cs connection on E over some
K-invariant open dense subset of M , then G also preserves a C s connection
on E over some G-invariant open and dense subset of M .

Proof. If ∇ denotes an arbitrary Cs connection on E and g ∈ G, we denote
by g · ∇ the natural push-forward of ∇ under g, which is also a connection
on E. The difference

θ(g) := ∇− g · ∇

defines a 1-cocycle with coefficients in the vector bundle E∗⊗E∗⊗E, where
E∗ denotes the dual bundle to E. It is immediate that a G-invariant C s con-
nection exists exactly when θ defines a trivial element in Ȟ1

s (G,E∗⊗E∗⊗E).
Therefore, the claim is a consequence of the previous theorem. �

Corollary 7.5 We assume the same conditions of the previous theorem.
Let E be a vector bundle associated to P and suppose that K preserves a C s

volume form on E. Then G also preserves the same volume form.

Proof. We first remark that if Ω is a volume form on E|V preserved by K,
for an open dense K-invariant set V ⊂M , and if G preserves some volume
form Ω′ on E|U for some open dense G-invariant set U ⊂M , then Ω = fΩ′

for some continuous K-invariant function on U ∩ V . In particular f must
be constant since the action of K is topologically transitive. It follows that
Ω is itself G-invariant. We can now prove the existence of Ω′ by applying
the theorem to the cocycle θ(g) defined by the equation

(g−1)∗Ω = eθ(g)Ω.

Then θ gives an element in Ȟ1
s (G,L), where L is the trivial bundle with

fiber R, so that the Cs sections of L are the Cs functions on M . �

8 Lattice actions

We give here the proof of Theorem 1.7. The notations used in that theorem
are now in force. Observe that if k ∈ G is Anosov, then the same is true
for any conjugate gkg−1. Moreover, if l centralizes k and lies in a compact
subgroup, then (some power of) kl is also Anosov. In particular, the Anosov
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regular element k referred to in the theorem can be assumed without loss of
generality to lie in some Cartan subgroup A and, therefore, to be part of an
R-semisimple 1-parameter subgroup. It is also important to remark that,
after conjugation by some element in G, the Cartan subgroup A containing
k may be assumed without loss of generality to intersect Γ in a cocompact
lattice in A. ([13].) Therefore, the A-orbit of [e] in G/Γ is compact.

Before we begin the proof of the theorem, we make a general remark
about smooth cohomology. Let N be, for the moment, a topological space
equipped with an n-dimensional lamination F . I.e., N admits an open
cover {Uα : α ∈ I} such that each Uα is homeomorphic to R

n × Tα via a
homeomorphism ϕα : Uα → R

n × Tα, where Tα is a topological space, such
that the changes of coordinates ϕα ◦ ϕ

−1
β have the following form on their

domain of definition:

(x, t) ∈ R
n × Tβ 7→ (F1(x, t), F2(t)) ∈ R

n × Tα,

where F2 is a homeomorphism and F1(·, t) is, for each t, a smooth diffeo-
morphism all of whose derivatives depend continuously on t. We call a
foliation or lamination with such continuously varying smooth structure on
leaves an HP-lamination (for Hirsch and Pugh). One can also define a C r

HP-lamination in an obvious way.
An object such as a map, connection, tensor field, etc., defined on N will

be called F -regular for an HP-lamination F if it is smooth along the leaves
of F and its derivatives along the leaves vary continuously on the transversal
direction. A homeomorphism φ : N → N is F -regular if, by definition, it
sends leaves homeomorphically onto leaves and the restrictions of φ and φ−1

to leaves are smooth maps. In a similar way one defines an F -regular flow
φt : N → N , t ∈ R.

An example of an F -regular vector bundle is the tangent bundle TF to
the lamination F . The prime situation to keep in mind is that in which φ
is Anosov on TM and F is the stable Anosov foliation.

Denote by ∇̄ the Levi-Civita connection for a Riemannian metric on N
(not yet assumed to be as in the theorem). We define for each g ∈ G a
(2, 1)-tensor field B̄g on TM such that

B̄g(X,Y ) := g−1
∗ (∇̄g∗Xg∗Y )− ∇̄XY

for vector fieldsX,Y tangent toM. We also introduce for an HP-lamination
F and g ∈ G preserving F a tensor B̄Fg , which is defined as above except
that ∇̄ is now the Levi-Civita connection for the Riemannian metric induced
on the leaves of F .
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For the next lemma, let F be an HP-lamination in a manifoldN equipped
with an F -regular Riemannian metric on the leaves and let ∇̄ be its Levi-
Civita connection, which is also F -regular. Let E be an F -regular vector
bundle on N equipped with an F -regular metric and a compatible con-
nection ∇ that is also F -regular. The vector bundles E ⊗ (T ∗F)⊗

m

are,
then, F -regular and are automatically equipped with an F -regular metric
and compatible F -regular connection, which we also call ∇. Let φ be an
F -regular homeomorphism of N and Φ an F -regular automorphism of E
above φ such that the following properties are satisfied:

1. φ is uniformly contracting, i.e., there is λ, 0 < λ < 1, such that
‖φ∗‖ ≤ λ;

2. each derivative of B̄Fφ is bounded;

3. Φ−1 is uniformly contracting, i.e., there is Λ, 0 < Λ < 1, such that for
each η ∈ E, ‖Φ−1(η)‖ ≤ Λ‖η‖;

4. each derivative of B is bounded, where B is the section of T ∗F⊗E∗⊗E
defined by B(X, η) := Φ∇ϕ−1

∗ XΦ−1(η) −∇Xη.

We observe that Φ acts on the right on sections of (T ∗F)⊗
m

⊗E in the
following way: if T : N → (T ∗F)⊗

m

⊗ E is a section, Φ∗T is the section
defined by

(Φ∗T )x(X1, . . . , Xm) = Φ−1(Tϕ(x)(ϕ∗X1, . . . , ϕ∗Xm)).

Due to 1 and 3, this action is also contracting.

Lemma 8.1 Let E be, as above, an F-regular vector bundle over N and
denote by E the space of F-regular sections of E. Let Φ be an F-regular
automorphism of E satisfying the conditions enumerated above. Then the
first cohomology group for the Z-action induced by Φ on E is trivial. More
precisely, if T : Z → E is a 1-cocycle, there exists S ∈ E such that

T (1) = S − Φ∗S.

The same holds, mutatis mutandis, for an R-action.

Proof. The proof is standard. To find S, we define

Sk :=

k−1∑

i=0

(Φi)∗T1
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where T1 := T (1), and remark that Sk converges uniformly to a continuous
section S of E that solves the cohomological equation.

To prove that S is F -regular it suffices to show that for each positive
integer k the sequence {∇kSm : m ∈ N} of sections of E⊗(T ∗F)⊗

k

converges
uniformly as m approaches ∞. Remark that it is enough to prove the claim
for k = 1 since the general case follows by induction, by replacing ∇k−1Sm

for Sm.
Using that

(Φ−1)∗(∇ϕ−1
∗ X(Φ∗T1)) = ∇XT1 +B(X,T1)

we can write

∇XxS
m =

m−1∑

r=0

r∑

i=1

Φ−r+i−1Bφr−i+1(x)(φ
r−i+1
∗ X, (Φi−1)∗T1)

+
m−1∑

r=0

Φ−r(∇φr
∗XT1)φr(x).

Taking norms, we obtain

‖∇Sm −∇Sl‖ ≤
Λl

(1− λ)(1 − Λ)
‖B‖‖T1‖+

(λΛ)l

1− λΛ
‖∇T1‖

which shows that ∇Sm indeed converges. �

The previous lemma will be used later in the following situation.

Lemma 8.2 Let F be an HP-foliation of a manifold N , invariant under an
F-regular flow φt, t ∈ R,that satisfies the boundedness condition in property
2 and uniformly contracting on F according to the definition in 1. Suppose
that Ě and Eβ are F-regular φt-invariant vector bundles such that Eβ is
a subbundle of Ě. Suppose, moreover, that the action of (φ−1)∗ on E :=
(Ě/Eβ)∗⊗Eβ is uniformly contracting, in the sense of 3. Then, there exists
a φt-invariant F-regular subbundle Eα of Ě such that Ě = Eα ⊕ Eβ. If
the R-action on N has a dense set of recurrent points, the subbundle Eα is
unique.

Proof. Finding Eα is a cohomological problem for which the previous lemma
applies. We have to show that the exact sequence of φt-invariant F -regular
vector bundles

0 −→Eβ
i
−→ Ě

π
−→ Ě/Eβ −→ 0
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splits in an F -regular and φt-invariant way.
Let τ : Ě/Eβ → Ě be an F -regular splitting, not necessarily invariant,

and define T (t) := τ − (φt)∗τ . Then T takes values in Eβ and is a cocycle
for the R-action on the bundle E = (Ě/Eβ)∗ ⊗ Eβ of endomorphisms from
Ě/Eβ into Eβ. We can now apply the previous lemma to get a section S
of E which is a coboundary of T . Then set Eα = τ − S. Uniqueness is a
consequence of the property that the only φt-invariant continuous section of
E is 0. �

We proceed now with the proof of the theorem. Writing E = TM, we
let F (E) denote the GL(n,R)-bundle of frames associated to E and PF (E)
the PGL(n,R)-bundle obtained as the quotient of the bundle of frames
by the center of GL(n,R). Equivalently, we could first consider the frame
bundle associated to

∧n(E∗)⊗E and then pass to the G-invariant SL(n,R)-
reduction P consisting of frames ω ⊗ σ for which ω(σ) = 1. We can then
think of PF (E) as the PSL(n,R)-bundle defined as P modulo the center of
SL(n,R).

Lemma 8.3 We assume the hypothesis and notations of Theorem 1.7. Then
the C0 algebraic hull for the SL(n,R)-action on PF (E) is PGL(n,R) and
the action is effective relative to the parabolic invariant corresponding to the
stable subbundle of k.

Proof. As indicated before, we may assume that k is in an R-semisimple
1-parameter group, which we call L, and the action of L is Anosov on TM.

We first remark that the L-invariant stable and unstable subbundles in
TM cannot be G-invariant. In fact, let g be the Lie algebra of G and let
X ∈ g be a nonzero vector in the Lie algebra of L. We also denote by X the
vector field on N that generates the L-action. If G preserves, say, the stable
bundle of L, then any conjugate Ad(g)X, g ∈ G, will generate a flow that is
Anosov on TM and is contracting on the stable subbundle of X. Denoting
by a the Cartan subalgebra containing X, then for any element s in the
Weyl group W (g, a) the flow of sX is also contracting on the stable bundle
of L since sX is of the form Ad(g)X for some g ∈ G. On the other hand,
any element of a is a positive linear combination of elements in the orbit of
X under W (g, a). Consequently, for each Y ∈ a, including 0, the flow of Y
is contracting on the stable bundle of L. But this is clearly a contradiction.

Therefore, the C0 algebraic hull HL for the L-action must be a proper
subgroup of the C0 algebraic hull for the G-action. According to the main
theorem, there must be a normal subgroup N of HG contained in HL

such that HG/N is a nontrivial homomorphic image of G. Since G is
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SL(n,R), HG ⊂ PGL(n,R), and HG/N is nontrivial, we conclude that
HG = PGL(n,R) and N is trivial. �

As a consequence of the lemma and Theorem 1.6, there is a C 0 section σ
of PF (E) and a homomorphism ρ : G→ PGL(n,R) such that g∗σ = σρ(g)
for all g ∈ G. The homomorphism ρ must be equivalent to either the
standard representation of SL(n,R) or its inverse-transpose.

Lemma 8.4 The section σ obtained above is smooth. Moreover, the Anosov
element k may be assumed to have smooth stable and unstable foliations.

Proof. If we show that σ is smooth on M[e], then it must be smooth on any
other fiber of M. Notice, in fact, that for each g ∈ G and y ∈M[g], we have
σy = (g∗σ)yρ(g)

−1. (In reality, we are only interested in smoothness over
M[e], which yields smoothness for the corresponding Γ-equivariant section
over M .) Moreover, as we remarked earlier, the Cartan subgroup A that
contains k may be assumed to be such that the A-orbit of [e] in G/Γ is
compact. Therefore, we may restrict the Anosov element k to a compact
A-invariant submanifold of N containing M[e] so that the standard theory
of (transversally) hyperbolic actions applies. In particular, the stable and
unstable subbundles of k are integrable and produce HP-laminations and
the boundedness assumptions needed for Lemma 8.2 are satisfied for those
laminations. The same is true for any conjugate of k that still lies in A. In
what follows, TM will denote the restriction of the bundle to that compact
set.

Let R be the set of weights for the representation ρ and let X be an
infinitesimal generator for the 1-parameter subgroup of A that contains k.
After a small perturbation of X in A, we may assume that α(X) 6= β(X)
for all distinct α, β ∈ R and that the corresponding flow is still Anosov. Let
Eα be the continuous subbundle of TM that corresponds to the weight α,
and let E− be the stable bundle for the flow φt of X.

Let Ω1 := |
∧n(T ∗M)| denote the line bundle of 1-densities for TM and

Ω1/n the line bundle of 1/n-densities, so that (Ω1/n)⊗
n

= Ω1. Remark that,
for each α, we can find a continuous norm on Eα ⊗ Ω1/n which expands
under φt with exact rate given by eα(X)t.

We now claim that E− (resp., E+) is the sum of Eα for α(X) < 0 (resp.,
α(X) > 0). First notice that any continuous L-invariant subbundle, such as
Eα, decomposes continuously as a direct sum

Eα = (E− ∩Eα)⊕ (E+ ∩Eα)
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and we wish to show that E+ ∩Eα = 0 (resp., E− ∩Eα = 0). For this end,
it will be enough to show that we can find sequences xk ∈ N and tk → ∞,
such that for any nonzero elements uk ∈ Eα(xk)

lim
k→∞

1

tk
log

‖Dφtkuk‖

‖uk‖
= α(X) < 0.

This is now a consequence of the fact that the flow takes place on a set of
finite volume. In fact, if ω is a nonvanishing volume density on our compact
A-invariant submanifold given as the product of a continuous volume density
on TM and an A-invariant volume density along the A-orbits, and if ft is
the function on the manifold defined by φ∗tω = fn

t ω, then for any t, fn
t has

average 1 over N . Fixing a sequence tk → ∞, we can then choose for each
k a point xk such that ftk(xk) = 1, and the claim will be satisfied for this
sequence since elements in Eα(x) grow with rate ft(x)e

tα(X).
For each pair (α, β) of distinct weights of ρ, define Eα,β := Eα⊕Eβ. We

claim that Eα and Eα,β are integrable and their respective foliations are HP.
To show this fact, we use again the Weyl group W (g, a) and recall that for
each s in it, sX commutes with X and is conjugate to X by some element
of G. Therefore, the flow of sX has the form gφtg

−1 and is also Anosov and
commutes with the flow of X. Let O denote the orbit of X under the Weyl
group. Using now the fact that the Weyl group for SL(n,R) consists of all
permutations of the weights, one can find subsets U1 and U2 of O for which

i. the set of weights γ such that γ(Y ) < 0 for all Y ∈ U1 is {α};

ii. the set of weights γ such that γ(Y ) < 0 for all Y ∈ U2 is {α, β} and
there is Y0 ∈ U2 such that α(Y0) < β(Y0) < 0.

Denoting by E−Y (resp., E+
Y ) the stable (resp., unstable) bundle for Y , we

have
Eα =

⋂

Y ∈U1

E+
Y and Eα,β =

⋂

Y ∈U2

E+
Y .

Therefore, as each E+
Y is the tangent bundle to an HP-lamination, the same

is true for Eα and Eα,β. We denote by Eα and Eα,β the laminations that
integrate Eα and Eα,β.

The final claim is that for each pair α, β, Eα is Eβ-regular. Once this is
shown, we can apply a theorem of J. L. Journé ([6]) to conclude that Eα

is smooth. Notice that, as a consequence, the stable bundle of X will also
be smooth. Therefore, the same argument that concluded the existence of
a continuous σ now gives a smooth σ.
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The bundles Eβ and Eα,β are Eβ-regular since they are both tangent
bundles to HP-laminations that contain Eβ. It follows that the bundle

E := (Eα,β/Eβ)∗ ⊗Eβ

is also Eβ-regular. Now, elements of E grow under the flow of Y with the
exact exponent β(Y )− α(Y ) > 0. It is, then, possible to apply Lemma 8.3
to conclude that the decomposition Eα⊕Eβ is Eβ-regular, which is what we
wanted to show. �

Lemma 8.5 Under the hypothesis of the theorem, any G-invariant contin-
uous tensor field on TM of type (r, s), r 6= s, defined on an open dense set,
must vanish identically.

Proof. Denote by T the linear space of tensors of type (r, s) on R
n and let

R be a G-invariant tensor field of type (r, s). Then R defines a continuous,
G-invariant, GL(n,R)-equivariant map from the frame bundle F (E) into T
(over some open dense subset of N). Since the G-action is topologically
transitive, R actually maps into an orbit H · τ0 of H = GL(n,R) in T . If H0

denotes the isotropy group of τ0 in H, we obtain in this way a continuous,
G-invariant, H0-reduction of F (E) over some open dense subset of N . But
we have already shown above that the C0 algebraic hull of the G-action
projects onto PSL(n,R), so that H must contain SL(n,R). Therefore, τ0

is fixed by all of SL(n,R). It is now immediate that τ0 = 0. �

Lemma 8.6 Under the hypothesis of the theorem, M admits a unique tan-
gential G-invariant smooth connection ∇. The connection is torsion-free
and its curvature tensor vanishes identically.

Proof. Once we have proved the existence of ∇, the vanishing of its torsion
and curvature will follow from the previous lemma. Also remark that the
vector bundle Ě :=

∧n(T ∗M)⊗TM is equipped with a smooth G-invariant
connection. In fact, if P denotes the frame bundle of Ě and σ is the smooth
section of P/{±I} obtained in Lemma 8.4, then there exists a unique con-
nection on Ě with respect to which σ is parallel, and it can be easily shown
to be smooth and G-invariant. Therefore, in order to obtain ∇, it suffices
to obtain a smooth invariant connection on

∧n(T ∗M).
Let k be the Anosov element assumed in the statement of the theorem

and E± its stable and unstable bundles. According to Lemma 8.4, E± are
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smooth. Also recall that k lies in an Anosov 1-parameter group generated
by X in a Cartan subalgebra a. We denote by E± the smooth foliations of
E±.

We first claim that the line bundle of top forms on E ε, ε = +,−, admits
a continuous X-invariant connection, ∇ε. In fact, observe that we can define
a smooth partial connection of Eε along E−ε (a Bott connection) as follows:

Dε
XY = Πε[X,Y ]

where Πε is the natural projection onto Eε, X is a vector field tangent
to E−ε and Y is a vector field tangent to Eε. Dε induces a smooth X-
invariant covariant derivative on the bundle of top forms on E ε along E−ε.
To obtain a covariant derivative on the same line bundle in the direction E ε,
we appeal to Lemma 8.2 and the characterization of invariant connections
in cohomological terms discussed in section 7. We obtain in this way a
continuous X-invariant connection ∇′ on

∧n(T ∗M).
Fixing a smooth (not necessarily invariant) connection ∇◦ on

∧n(T ∗M),
we define a continuous 1-form ω on TM by

∇′
vξ −∇

◦
vξ = ω(v)ξ,

where v is any element of TxM, x ∈ N , and ξ is a smooth section of∧n(T ∗M). Then, by the way in which ∇′ has been constructed, ω|Eε is a
Eε-regular 1-form on Eε, for ε = +,−.

Due to Corollary 7.4, G preserves a connection ∇̄ on the bundle of top
forms on TM over some open and dense G-invariant subset of N . But the
difference ∇′ − ∇̄ is (up to sign) a 1-form on TM invariant under the flow
of the Anosov element X, so that it must vanish. Therefore, ∇′ also is
G-invariant.

It remains to show that ∇′ is smooth or, equivalently, that ω is smooth.
Remark that its restriction to E ε, ε = +,−, is already known to be smooth
(along Eε).

We employ now the notations from Lemma 8.4. Let Y be an image of X
under some element of the Weyl group W (a, g). Then Y is also Anosov and
its stable (resp., unstable) foliation denoted E−Y (resp., E+

Y ) is smooth. Just
as for X, the restriction of ω to these foliations must be tangentially smooth,
so that the restriction of ω to any Eα,β, for any pair (α, β) of distinct weights
of ρ (as in the proof of Lemma 8.4) is also tangentially smooth. Therefore,
since

Eα,β =
⋂

Y ∈U2

E+
Y
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we conclude that ω(Zα) is smooth along Eα,β for each α and β. Therefore,
the same argument in Lemma 8.4 that uses a theorem of Journé, implies
that ω(Zα) is smooth for each α, so that ω is smooth. �

We now conclude the proof of the theorem by appealing to a result of
Y. Benoist and the second author [1] that classifies affine Anosov diffeomor-
phisms. First, remark that some γ ∈ Γ is an Anosov diffeomorphism of M .
To see that, recall that the vector field X can be taken to lie in a Cartan
subgroup A whose orbit through [e] is compact. I.e., A/(A ∩ Γ) is a torus.
Since a small perturbation of X inside the Lie algebra a of A is also the
generator of an Anosov flow, we can choose Y ∈ a such that [e] is a periodic
point for the flow of Y on G/Γ and the flow of Y on TM|O is Anosov,
where O is here the preimage in N of the orbit of [e]. In particular, the
1-parameter group generated by Y contains a γ0 ∈ Γ different from e. The
element γ0 is therefore Anosov on M and it preserves the flat connection
∇ on M , obtained from the identification of M and M[e]. Therefore γ0 is
an affine Anosov diffeomorphism with smooth Anosov foliations preserving
a smooth, flat, torsion-free connection ∇. It now follows from [1] that with
respect to the invariant affine structure given by ∇, M is a flat torus.

9 Rigid geometric structures

Let Gk(n,R) be the real algebraic group of k-jets at 0 ∈ R
n of smooth local

diffeomorphisms of R
n fixing the origin. Let M be a smooth manifold and

let F k(M) denote the bundle of k-frames, whose fiber above x ∈M consists
of k-jets at 0 of smooth local diffeomorphism from R

n into M sending 0 to
x. F k(M) is a Gk(n,R)-principal bundle over M and we denote the base
point projection by πk. Given σ ∈ F k(M) and g ∈ Gk(n,R) , we denote the
natural right-action of g on σ by σg. The natural projection from Gk(n,R)
to Gl(n,R) as well as that from F k(M) to F l(M) will be denoted by πk

l , for
k ≥ l.

Let V be a smoothm-dimensional real algebraic variety and let J k(V ) :=
Jk

0 (Rn, V ) be the space of all k-jets at 0 ∈ R
n of germs of smooth maps from

R
n into V . Jk(V ) has the structure of a smooth real algebraic variety. If

α ∈ Jk(V ), then α = jkf(0), the k-jet at 0 of a smooth map f from a
neighborhood of 0 ∈ R

n into V .
Let V (M) denote the associated V -bundle over M for a given real alge-

braic left-action of Gk(n,R) on V . A geometric A-structure on M of order
k and type V is defined in [4] as a smooth section s of V (M). Equivalently,
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it can be defined as a smooth Gk(n,R)-equivariant map G : F k(M) → V .
Starting with a real algebraic action ρ of Gk(n,R) on V , it is possible to

define on J l(V ) a real algebraic action ρl of Gk+l(n,R) in a canonical way,
so that if G : F k(M) → V is a Gk(n,R)-equivariant smooth function, one
can construct its prolongation, also canonically defined, which is a smooth
geometric structure Gl : F k+l(M) → J l(V ) of order k + l and type ρl. (See
[11, IV-14].)

Let ηm ∈ Jm(V ) be a sequence such that ηm maps onto ηm−1 under
the natural projection and denote by Hm the isotropy group of ηm in
Gr+m(n,R). Taking now somewhat of a shortcut to the main definition
of [4], we state

Definition 9.1 A geometric structure G of type V and order k is rigid if
there exists N0 big enough, depending only on ρ, for which the following
holds: for each sequence ηm in the image of Gm in Jm(V ) such that ηm+1

maps onto ηm under the natural projection, the isotropy group Hm+1 is
isomorphic to Hm for each m ≥ N0.

Suppose now that G acts smoothly on a smooth n-dimensional mani-
fold M so that the action is topologically transitive. Therefore, over some
open dense G-invariant set in M , the image of Gm lies in a single orbit
Gr+m(n,R)ηm.

Let P k(Uk) denote a G-invariant Hk-reduction of F k(M)|Uk
, where Uk ⊂

M is open dense and G-invariant and Hk ⊂ Gk(n,Rn) is a representative
of the smooth algebraic hull of the induced action of G by automorphisms
of F k(M). By the general properties of algebraic hulls, we can choose the
reduction P k(Uk) (after possibly having to translate on the right by some
element of Gk(n,R), and conjugating Hk by the same element) so that the
natural projection from P k+1(Uk∩Uk+1) into F k(M)|Uk∩Uk+1

actually maps
onto P k(Uk ∩ Uk+1) and Hk+1 maps onto Hk.

Definition 9.2 We say that the G-action is hull-rigid if the Hk, defined
above, eventually stabilize. More precisely, for some k0 and for all posi-
tive integers r, s such that k0 ≤ s ≤ r, the projections πr

s : Hr → Hs are
isomorphisms.

Lemma 9.3 Under the conditions of Theorem 1.8, the G-action is hull-
rigid.

Proof. We denote by Pk a G-invariant Hk-reduction of F k(M) such that Hk

is the smooth algebraic hull for the G-action. For simplicity, we omit refer-
ence to the open dense subset Uk where the reduction is defined. Similarly,
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we define K-invariant smooth reductions Qk of Pk with group Lk ⊂ Hk.
(Also defined on some open dense K-invariant subset of M .) After conju-
gating by appropriate elements of Gk(n,R) we may assume that πk

l maps
Pk onto Pl and Qk onto Ql, for k > l and l big enough.

Denote by Nk the maximal normal real algebraic subgroup of Hk con-
tained in Lk and remark that πk

l maps Nk onto Nl. By the topological
superrigidity theorem, Hk/Nk is a homomorphic image of G, which we de-
note ρk(G).

If the K-action preserves a smooth rigid geometric structure, then by
the next lemma Lk stabilizes, so that Nk must have bounded dimension.
Therefore, as ρk(G) also has bounded dimension, we conclude that the same
holds for Hk. On the other hand, πr

s : Hr → Hs is surjective for s ≤ r,
and its kernel is either trivial or infinite. (Remark that the kernel is con-
tained in the nilpotent radical of Gr(n,R).) Therefore, for sufficiently big
r, s, πr

s : Hr → Hs are isomorphisms. �

Lemma 9.4 Suppose that a group G acts smoothly and topologically tran-
sitively on a smooth manifold M . Then the action is hull-rigid if and only if
it preserves some rigid A-structure on some open dense G-invariant subset
of M .

Proof. If the action preserves a rigid A-structure, the sequence Hk of al-
gebraic hulls must be contained in subgroups of Gk(n,R) that eventually
stabilize. Hence the Hk also eventually stabilize.

For the converse, suppose that the G-action is hull-rigid and consider
a sequence P k ⊂ F k(M), k ≥ 1, of smooth G-invariant reductions defined
over open dense G-invariant subsets of M with group Hk. We may suppose
that πk

l projects P k onto P l. Then, by the definition of a hull-rigid action,
we have for big enough k that πk+1

k : P k+1 → P k is an isomomorphism. We

simplify the notation by writing π := πk+1
k , P := P k+1 and Q := P k.

Each σ ∈ P determines a horizontal n-plane in Tπ(σ)Q, where n is the
dimension of M , and such a plane determines a frame for Tπ(σ)Q. Therefore,
π defines a G-invariant, smoothly varying frame at each point of Q. More
precisely, over some open dense G-invariant subset U ⊂M there is a smooth
section σ of the frame bundle F 1(Q)|U such that each g ∈ G maps σ(q) onto
σ(g(k)q), q ∈ Q|U .

We claim that σ defines a G-invariant rigid structure. This amounts
to the following elementary fact: If a manifold is equipped with a smooth
full frame field and a diffeomorphism f fixes a point in the manifold and
preserves the frame at the fixed point up to order l, then f has the same
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l-jet as the identity map. �

10 Appendix

We sketch below a mostly self-contained proof of Margulis-Zimmer super-
rigidity in the following case.

Theorem 10.1 Suppose G is a simple real Lie group of rank at least 2 that
acts ergodically by measure preserving transformations on a standard Borel
space M with finite measure. Assume furthermore that this action can be
lifted to a left action on a measurable H-bundle P by bundle automorphisms
such that H is a simple noncompact real Lie group and is the measurable
hull of the action of G. Then there exists a representation ρ of G into H
and a measurable section σ of P such that

g · σ(x) = σ(gx)ρ(g).

In the statement above we have preferred the geometric language of
action and principal bundle to the equivalent language of cocycles, though of
course measurable bundle is just a somewhat unconventional way of talking
about the trivial bundle.

We want to use the following dictionary:

mesurable ↔ continuous ergodic ↔ topologically transitive

Everything essentially translates easily except the topological Furstenberg
Lemma, which requires a little care. We need for that a classical fact that is
used in the proof of various versions of the Borel density theorem, namely,
if L is a 1-dimensional noncompact algebraic group, then every L-invariant
measure on an algebraic variety V on which L acts algebraically is supported
on the set fixed points. A nice proof of this fact is contained in [4], and
relies on the following consequence of Rosenlicht’s stratification theorem:
the action becomes proper on a Zariski open dense subset of the product of
a sufficiently large number of copies of V .

Using this dictionary, and adding the hypothesis that T (as in section 2)
preserves a measure µ, our topological Furstenberg Lemma translates now
into an avatar of the classical Furstenberg Lemma. Let us see how it is done
using the notations of our proof. The map Φ̄ will also take its values in the
set of fixed points of T but for a somewhat different reason: it will take its
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values in the support of the T -invariant measure Φ̄∗µ. The rest of the proof
works mutatis mutandis.

With this point settled, we can carry out a translation of our main
theorem (plus the assumption that G preserves a finite ergodic measure) into
a mesurable statement by using the dictinary. This yields the conclusion of
the measurable superrigidity theorem, but with more restrictive hypothesis.

To improve it and get rid of the two extra hypothesis, namely that every
R-semisimple element acts ergodically, and that the hull of an R-semisimple
element is smaller than H, we need two observations.

The first is a theorem of which we do not know a topological analogue:
Moore’s ergodicity theorem, which exactly states that if a noncompact sim-
ple algebraic group acts ergodically preserving a finite measure, then every
noncompact closed subgroup of G (in particular any R-semisimple element)
is ergodic. This is classically the first use of ergodic theory in the proof of
Margulis superrigidity.

To eliminate the second hypothesis which correspond to the use of Os-
eledec’s theorem in [12] and of amenable cocycles in [17], we just need the
following lemma, of which a topological analogue is certainly wrong.

Lemma 10.2 Let P be a principal H-bundle over a standard Borel space
M , such that H is simple noncompact. Let T be a 1-parameter group acting
ergodically on M preserving a finite measure m. Then the hull of T is
smaller than H.

Proof. Let V = H/Q be a compact algebraic variety on which H acts
transitively, and which is not a point. Of course we can take Q to be a
parabolic in H, or we can take a minimal algebraic variety invariant by H
in the projective space of an irreducible representation; indeed, using the
Rosenlicht stratification theorem, the action of H is transitive on such a
minimal variety.

Now the classical Kakutani-Markov theorem yields a T -invariant prob-
ability measure µ on the total space PV of the associated V -bundle that
projects onto the G-invariant measure on M . Let µx be the measure sup-
ported on the fiber of PV above the point x, obtained by the desintegration
of µ. By ergodicity, the Zariski closure Jx in H of the stabilizer of µx is, for
almost every x, conjugate to a certain group J which will contain the hull
for the action of T . H itself does not preserve a measure on V . This follows
from the fact that such a measure should be supported on the set of fixed
points F (h) of an arbitrary R-semisimple element and that the intersection
of all the F (h) is empty since it is globally invariant under H. Therefore, J
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is strictly smaller than H and the proof is complete. �

The lemma above is to be compared with Zimmer’s result stating that
the hull of an amenable group is amenable. The point we wish to emphasize
is that we do not prove it for a parabolic in G as in [17], only for a single 1-
parameter group, in which case the result follows at once from the Kakutani-
Markov fixed point theorem.

Ultimately, since H is simple, every normal subgroup of H contained in
the hull of T will be the identity.

To summarize, the proof sketched above is self-contained apart from the
use of Moore’s ergodicity theorem, the Kakutani-Markov theorem, Rosen-
licht stratification theorem and the fundamental fact alluded to above con-
cerning invariant measures by algebraic groups. We have used nothing about
the structure theory ofH, and the structure theory we have used of G is sum-
marised in Proposition 5.1 and the following page. By the use of H-pairs,
a fancy name for “algebraic sets of sections of algebraic bundles,” we have
avoided the need for parabolic invariants as in the proof in [17], and we have
adapted the ideas using vector spaces of sections of vector bundles of [12],
avoiding use of proximal maps. For our topological superrigidity theorem,
we added hypothesis when no topological analogue of a mesurable result was
available, namely Moore’s theorem and the Kakutani-Markov theorem.

Although we have not checked, we expect the same proof to work when
H is a p-adic group.

Finally, from the point of view of Zimmer’s program, the fundamental
question is whether or not an element satisfying our hypothesis (iii), (iv)
and (v) exists for general, not hyperbolic, dynamical systems, at least for
the lifted actions on the jet bundles.
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à feuilletages stables et instables différentiables, Inventiones Mathe-
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