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1. Introduction

Let γ be an isometry of a metric space X . We recall that the displacement of γ

is
dX (γ ) = inf

x∈X
d(x, γ (x)).

In the case of the Cayley graph of a group � with set of generators S and word

length ‖ ‖S, the displacement function is called the translation length—or the

stable translation length—and is denoted by �S : �S(γ ) = inf η ‖ηγ η−1‖S. We

finally say the action by isometries on X of a group � is displacing, if given a

set S of generators of �, there exist positive constants A and B such that

dX (γ ) � A�S(γ )−B.

This definition does not depend on the choice of S. As first examples, it is easy

to check that cocompact groups are displacing, as well as convex cocompact

whenever X is Hadamard (i.e., complete, nonpositively curved, and simply

connected).We recall that a cocompact action is by definition aproperly discon-

tinuous actionwhose quotient is compact, and a convex cocompact is an action

such that there exists a convex invariant on which the action is cocompact.

The notion naturally arose in [7] where it is shown that for displacing repre-

sentations of surface groups, the energy functional is proper on Teichmüller

space and that, moreover, a large class of representations of surface groups

are displacing.

This definition is a cousin to a more well-known one. Assume � acts by

isometries on a space X . We say the orbit maps are quasi-isometric embedding—

or in short the action is QI—if for every x in X there exist constants A and B

so that we have

∀γ ∈ �, d(x, γ (x)) ≥ A‖γ ‖S−B.

The purpose of this modest note is to collect some elementary observations

about the relation between the two notions in order to complete the circle of

ideas discussed in [7]. For hyperbolic groups the two notions turn out to be

equivalent. In general, however, this relation is slightly more involved than

expected.

Does displacing imply QI? In general, the answer is no: this follows imme-

diately from the existence proved by Osin in [9] of infinite groups with finitely

many conjugacy classes. However, we isolate a class of groups for which dis-

placing implies QI. We say a finitely generated group is undistorted in its con-

jugacy classes (see Section 2)—or satisfies the U-property if there exists finitely

many elements g1, . . . , gp of �, positive constants A and B such that
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∀γ ∈ �, ‖γ ‖S � A sup
1�i�n

�S(giγ )+B.

We prove in Theorem 2.1.1 that some class of linear groups—in partic-

ular lattices—enjoy the U-property. We also prove that hyperbolic groups

have the U-property. For all groups enjoying the U-property displacing im-

plies QI.

Does QI imply displacing? In general, again, the answer is no: in Corollary

3.2.3, we show that for a residually finite group (see Section 3.1) any linear that

representation contains a unipotent is not displacing. It follows that SL(n,Z)

acting on SL(n,R)/SO(n,R) is QI but not displacing. However, again a simple

argument using the stable length shows that for hyperbolic groups QI implies

displacing (see Section 4).

We expand in the article the discussion of this introduction and start by

discussing the U-property.

2. Groups Whose Displacing Actions Have Orbit Maps That Are
Quasi-Isometric Embeddings

We say a finitely generated group is undistorted in its conjugacy classes—in

short, has the U-property,—if there exists finitely many elements g1, . . . , gp of

�, positive constants A and B such that

∀γ ∈ �, ‖γ ‖ � A sup
1�i�n

�(giγ )+B.

remarks:

• This property is clearly independent of S. (Hence we omitted the sub-

script S.)
• This property is satisfied by free groups and commutative groups. On

the other hand, the groups constructed by D. Osin [9] described in the

above paragraph do not have this U-property.
• Note also that this property is very similar to the statement of Abels,

Margulis, and Soifer’s result [1, theorem 4.1] and it is no surprise that

their result plays a role in the proof of Theorem 2.1.1.
• Finally, by the conjugacy invariance of the translation length, �(giγ ) =
�(γ gi), so we will indifferently write this property with left or right

multiplication by the finite family (gi).

lemma 2.0.1. If� has the U-property, then every displacing action has orbit maps

that are quasi-isometric embeddings.
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Proof. Indeed, assume that � acts on X by isometries and that the action is

displacing. In particular, we have positive constants α and β so that

∀x ∈ X , γ ∈ �, d(x, γ (x)) � α�S(γ )−β.
Moreover, there existsfinitelymanyelements g1, . . . , gp of�, positive constants

A and B such that
∀γ ∈ �,A‖γ ‖−B � sup

1�i�n
�(giγ ).

Hence, let x ∈ X , then

d(x, γ (x)) � sup
1�i�n

d(x, gi.γ (x))− sup
1�i�n

d(x, gi(x))

� α sup
1�i�n

�(giγ )−β − sup
1�i�n

d(x, gi(x))

� α.A‖γ ‖−Bα−β − sup
1�i�n

d(x, gi(x)).

Hence, the orbit map is a quasi-isometric embedding. �

We will prove in the next section,

theorem 2.0.2. Every uniform lattice—and nonuniform lattice in higher

rank—in characteristic 0 has the U-property. In particular, every surface group

has the U-property.

Moreover, we show that hyperbolic groups have the U-property.

2.1. Linear Groups Having the U-Property

We prove the following result that implies Theorem 2.0.2.

theorem 2.1.1. Let � be a finitely generated group and G a reductive group

defined over a field F, suppose that

• there exists a homomorphism �→ G(F) with Zariski-dense image, and
• there are a finitely many field homomorphisms (iv)v∈S of F in local fields

Fv such that the diagonal embedding �→ �v∈SG(Fv) is a quasi-isometric

embedding.

Then the group � has the U-property.

Since lattices are Zariski dense (Borel theorem) and that higher-rank irre-

ducible lattices in characteristic 0 are quasi-isometrically embedded [8], this
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theorem implies Theorem 2.0.2 for higher-rank lattices. The same holds for

all uniform lattices. A specific corollary is the following:

corollary 2.1.2. Let � be a finitely generated group that is quasi-isometrically

embedded and Zariski dense in a reductive group G(F) where F is a local field. Then

� has the U-property.

2.1.1. generalities for the U-property We prove two lemmas for the

U-property.

lemma 2.1.3. Let � be a finitely generated group. Let �0 � � be a normal

subgroup of finite index. If �0 has the U-property, so has �.

We do not know whether the converse statement holds, in other words,

whether the U-property is a property of commensurability classes.

Proof. We first observe that every finite-index subgroup of a finitely generated

group is finitely generated. Let S0 be a generating set for �0 and write � as the

union of left cosets for �0
� =

⋃
t∈T

�0 · t.

We assume that T is symmetric. Clearly S = S0 ∪T is a generating set

for �.

We denote ‖ · ‖�0 and ��0 the word and translation lengths, respectively,

for �0.

We observe that�0 is quasi-isometrically embedded in�. Hence there exist

positive constants α and β such that

1 ∀γ ∈ �0, ‖γ ‖�0 � ‖γ ‖� � α‖γ ‖�0 −β.
For any γ in �, we write γ = γ0t0 with t0 ∈ T and γ0 ∈ �0. Hence

‖γ ‖� � ‖γ0‖�0 + 1 � A sup ��0 (γ0gi)+B+ 1

since �0 has the U-property.

Next, we need to compare �� and ��0 . Let δ in �0, then

��(δ) = inf
t∈T ,η∈�0

‖tηtδη−1t−1‖�

� inf
η∈�0
‖ηδη−1‖� − 2
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� α inf
η∈�0
‖ηδη−1‖�0 −β − 2

� α��0 (δ)−β − 2.2

Finally, combining Inequality (2) and the one preceding, we have

‖γ ‖� � A

α
sup

t∈T ,i∈I
��(γ t−1βi)+B+ 1+ β + 2

α
.

This is exactly the U-property for �. �

Also,

lemma 2.1.4. Let � be a finitely generated group. Suppose that �→ �0 is onto

with finite kernel. Then the group � has the U-property if and only if �0 has the

U-property.

Proof. We choose a generating set S for � that contains the kernel of �→ �0.

We choose the generating set S0 for �0 to be the image of S. Then we have,

using surjectivity, for all γ projecting to γ0

‖γ ‖� � ‖γ0‖�0 � ‖γ ‖� − 1,

��(γ ) � ��0 (γ0) � ��(γ )− 1.

These two inequalities enable us to transfer the U-property from � to �0 and

vice versa. �

2.1.2. proximality We recall the notion of proximality and a result of Abels,

Margulis, and Soifer.

Let k be a local field. Let V be a finite-dimensional k-vector space equipped

with a norm. Let d be the induced metric on P(V ). Let r and ε be positive

numbers such that
r > 2ε.

An element g of SL(V ) is said to be (r , ε)-proximal, if there exist a point x+
in P(V ) and a hyperplane H in V such that

• d(x+,P(H)) � r , and
• ∀x ∈ P(V ), d(x,P(H)) � ε =⇒ d(g · x, x+) � ε.

In particular, a proximal element has a unique eigenvalue of highest norm.

Conversely, if an element g admits a unique eigenvalue of highest norm, then

some power of g is proximal (for some (r , ε)).

We cite the needed result from [1] and [2].
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theorem 2.1.5. ([1], theorem 5.17) Let G a semisimple group over a

field F. Let (iv)v∈V be finitely many field homomorphisms of F in local fields

Fv. Let ρv : G(Fv)→ GL(nv ,Fv) be an irreducible representation of G(Fv) for

each v.

Suppose that � is a Zariski-dense subgroup of G(F). Suppose that for every v,

ρv(�) contains proximal elements. Then there exist

• r > 2ε > 0, and
• a finite subset 
 ⊂ �,

such that for every γ in � there is some δ in 
 such that ρv(γ s) is (r , ε)-proximal

for every v in V.

This result is usually stated with one local field but the proof of the above

extension and the following is straightforward.

We shall also need the following Lemma.

lemma 2.1.6. ([2], corollaire p.13) Let � be a Zariski-dense subgroup in

G(k), G a reductive group over a local field k. Then � is unbounded if and only if

there exists an irreducible representation ofG(k), such thatρ(�) contains a proximal

element.

The special case of k = R was proved in [3].

2.1.3. proximal elements and translation lengths We recall some

facts on length and translation length in G(k) where G is a semisimple group

over a local field k.

Let K be the maximal compact subgroup of G(k). This defines a norm

‖g‖G = dG/K (K , gK ) in G(k), which satisfies

‖gh‖G � ‖g‖G+‖h‖G.
We also consider the translation length �G in G(k):

�G(g) = inf
h∈G
‖hgh−1‖G.

Observe that the translation norm is actually independent of the choice of

the maximal compact subgroup since they are all conjugated. The translation

length and norm of (r , ε)-proximal elements can be compared:

lemma 2.1.7. (compare [2] §4.5) Let G be a semisimple group over a local

field k. Let ρ : G(k)→ GL(n, k) be an irreducible representation. Let ε > 0.
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Then there exist positive constants α and β such that if ρ(g) is (r , ε)-proximal,

then

3 �G(g) � α‖g‖G−β.

Proof. Weuse classical notation and refer to [2, pp. 6–8] for precise definitions.

Any g in G(k) is contained in a unique double coset Kμ(g)K . The element

μ(g) ∈ A+ ⊂ A is called the Cartan projection of g . Here we see A+ as a subset

of a cone A× in some R-vector space.

For some integer n (n = 1 in the Archimedean case) the element gn admits

a Jordan decomposition gn = geghgu with ge, gh , gu commuting, ge elliptic, gu

unipotent, and gh hyperbolic, that is, conjugated to a unique element a ∈ A+.
We set λ(g) = 1

n a ∈ A×.
If we fix some norm on the vector space containing the cone A×, then (up

to quasi-isometry constants) the norm of μ(g) is ‖g‖G in G(k) and the norm

of λ(g) is �G(g).

Then by a result of Y. Benoist [2], there exists a compact subset Nε of the

vector space containingA× such that for every g such thatρ(g) is (r , ε)-proximal

we have
λ(g)−μ(g) ∈ Nε . �

The lemma follows.

2.1.4. proof of theorem 2.1.1 By taking a finite-index normal subgroup

and projecting (Lemmas 2.1.3 and 2.1.4) we can make the hypothesis that G
is the product of a semisimple group S and a torus T and � is a subgroup of

S(F)×T(F).
Moreover, since length and translation length for elements in T(Fv) are

equal, we only need to work with the semisimple part S.
Finally, it suffices to prove the existence of a finite family F ⊂ � and

constants A,B such that, for any γ ∈ �
4 ‖γ ‖S � A sup

f ∈F
�S(γ f )+B,

where S = �v∈VS(Fv). Indeed, since � is quasi-isometrically embedded in G,

‖γ ‖� is less than ‖γ ‖G = ‖γ ‖T +‖γ ‖S and �G(γ ) = �T (γ )+ �S(γ ) = ‖γ ‖T +
�S(γ ) is less than ��(γ )—up to quasi-isometry constants—and Inequality (4)

implies that � has the U-property.

Note that we can forget any completion Fv where the subgroup� ⊂ S(Fv) is

bounded without changing the fact that� is quasi-isometrically embedded. So
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by Lemma 2.1.6, for each v there is an irreducible representation ρv : S(Fv)→
GL(nv ,Fv) such that ρv(�) contains proximal elements.

Applying Theorem 2.1.5 we find a finite family F ⊂ � and r , ε such that for

every γ in � there is some f ∈ F such that ρv(γ f ) is (r , ε)-proximal for every

v. Hence, as a consequence of Lemma 2.1.7, we have for such γ and f :

‖γ f ‖S � A�S(γ f )+B.

This implies Inequality 4 and concludes the proof.

2.2. Hyperbolicity and the U-Property

Let � be a finitely generated group and S a set of generators. Let d be its word

distance and ‖g‖ = d(e, g). We denote by

〈g , h〉u = 1

2
(d(g , u)+ d(h, u)− d(g , h)),

theGromov product—based atU—on�. We abbreviate 〈g , h〉e by 〈g , h〉. Observe
that

〈gu, hu〉u = 〈g , h〉e.5

Recall that � is called δ-hyperbolic if for all g , h, k in � we have

〈g , k〉 � inf (〈g , h〉; 〈h, k〉)− δ6

and � is called hyperbolic if it is δ-hyperbolic for some δ. A hyperbolic group is

called nonelementary if it is not finite and does not contain Z as a subgroup of

finite index.

Then,

proposition 2.2.1. Hyperbolic groups have the U-property.

We recall the stable translation length of an element g :

[g]∞ = lim
n→∞

‖gn‖
n

.

We remark that obviously
[g]∞ � �(g).

We shall actually prove

proposition 2.2.2. Let � be hyperbolic. There exist a pair u, v ∈ � and a

constant α such that for every g one has

‖g‖ � 3 sup ([g]∞, [gu]∞, [gv]∞)+α.
In particular � has the U-property.
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remark:

• Let� be a free groupgeneratedby someelementsu, v,w1, . . . ,wn. ThenG

is 0 hyperbolic. If [g] 
= ‖g‖ thefirst letter of g must be equal to the inverse

of the last one. Multiplying either by u or by v we find a new element that

is cyclically reduced; for this element the stable translation length and

the length are equal. The proof of Proposition 2.2.2 is a generalization of

this remark.

2.2.1. almost cyclically reduced elements An element g in � is said to

be almost cyclically reduced if 〈g , g−1〉 � ‖g‖
3 − δ. We prove in this paragraph

lemma 2.2.3. If g is almost cyclically reduced, then

[g]∞ � ‖g‖
3

.

The following result [5, lemma 1.1] will be useful.

lemma 2.2.4. Let (xn) be a finite or infinite sequence in G. Suppose that

d(xn+2, xn) � sup (d(xn+2, xn+1), d(xn+1, xn))+ a+ 2δ,

or equivalently that

〈xn+2, xn〉xn+1 � 1

2
inf (d(xn+2, xn+1), d(xn+1, xn))− a

2
− δ.

Then

d(xn, xp) � |n− p|a.

This implies Lemma 2.2.3.

Proof. Let xn = gn. By left invariance and since g is almost cyclically reduced,

〈xn+2, xn〉xn+1 = 〈g , g−1〉 �
‖g‖
2
− a

2
− δ,

for a = ‖g‖3 . By Lemma 2.2.4,

‖gn‖ � n
‖g‖
3

. �

The result follows:

2.2.2. ping-pong pairs A ping-pong pair in � is a pair of elements u, v such

that
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1) inf (‖u‖, ‖v‖) � 100δ,

2) 〈u±1, v±1〉 � 1
2 inf (‖u‖, ‖v‖)− 20δ, and

3) 〈u, u−1〉 � ‖u‖
2 − 20δ and 〈v, v−1〉 � ‖v‖

2 − 20δ.

remarks:

• A ping-pong pair generates a free subgroup. This is an observation from

[5]. To prove this, consider a reduced word w on the letter u, v, u−1, v−1.
If xn is the prefix of length n ofw, the sequence xn satisfies the hypothesis

of Lemma 2.2.4.
• In the present proof, the third property will not be used.

We shall prove

lemma 2.2.5. If � is hyperbolic nonelementary, there exists a ping-pong pair.

Proof. In [6] explicit ping-pong pairs are constructed. Here is a construction

whose idea goes back to F. Klein. Let f be somehyperbolic element (an element

of infinite order). Replacing f by a conjugate of some power, we may assume

that

‖f ‖ = [f ] > 1000δ.

As � is not elementary, there exists a generator a of � that does not fix the pair

of fixed points f +, f − of f on the boundary ∂�: otherwise, since the action of

� is topologically transitive, ∂� would be reduced to these two points and �

would be elementary. Now, let us prove that for some integer N , ( f , af Na−1)
is a ping-pong pair. We have

lim
N→+∞ f N = f + 
= af + = lim

N→+∞ af Na−1.

It follows that the Gromov product 〈 f N , af Na−1〉 remains bounded, by the

very definition of the boundary. Hence, for N large enough, we have

( f , af Na−1) � 1

2
inf (‖f N‖, ‖af Na−1‖)− 20δ.

A similar argument also yields that 〈 f N , af −Na−1〉 remains bounded. There-

fore, ( f N , af Na−1) is a ping-pong pair for N � 1. �

2.2.3. proof of proposition 2.2.2 We first reduce this proof to the

following lemma.
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lemma 2.2.6. Let (u, v) be a ping-pong pair. Let g ∈ � such that

‖g‖ � 3 sup (‖u‖, ‖v‖)+ 100δ.

Then one of the three elements g , gu, gv is almost cyclically reduced.

Weobserve at once that Proposition 2.2.2 follows fromLemmas 2.2.3, 2.2.5,

and 2.2.6; choose a ping-pong pair u, v and take

α = 3 sup (‖u‖, ‖v‖)+ 100δ.

Proof. Assume g is not almost cyclically reduced. Then

7 〈g , g−1〉 � ‖g‖
3
− δ � sup (‖u‖, ‖v‖)+ 30δ.

Moreover, one of the following pair of inequalities holds:

8 〈g−1, u±1〉 � ‖u‖
2
− 10δ,

or

9 〈g−1, v±1〉 � ‖v‖
2
− 10δ.

Otherwise, by the definition of hyperbolicity we would have for some ε, ε′ ∈
{±1} ,

〈uε , vε′ 〉 � 1

2
inf (‖u‖, ‖v‖)− 10δ− δ,

contradicting the second property of the definition of ping-pong pairs.

So wemay assume that Inequality (8) holds. We will show that gu is almost

cyclically reduced. Let k = gu. By the triangle inequality, 〈u−1, g 〉 � ‖u‖. Thus
from Inequality (7) we deduce that

inf (〈g , u−1〉, 〈g , g−1〉) = 〈g , u−1〉.
Then, by the definition of hyperbolicity, we get

10 〈g , u−1〉 � 〈u−1, g−1〉+ δ.
Using Inequality (8) now, we have

11 〈g , u−1〉 � ‖u‖
2
− 9δ.

Note that

〈g , k〉 = 1

2
(‖g‖+‖gu‖−‖u‖) � 1

2
(2‖g‖− 2‖u‖) � 2‖u‖+ 100δ.
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By the triangle inequality again,

〈k, u−1〉 � ‖u‖.
Therefore,

inf (〈g , k〉, 〈k, u−1〉) = 〈k, u−1〉.
From hyperbolicity and Inequality (11), we have

12 〈k, u−1〉 � 〈g , u−1〉+ δ � ‖u‖
2
− 8δ.

Applying successively Inequalities (8) and (12), we get that

13 〈k−1, u−1〉 = ‖u‖− 〈u, g−1〉 � ‖u‖
2
+ 10δ � 〈k, u−1〉+ 18δ.

By hyperbolicity,

inf (〈k, k−1〉, 〈k−1, u−1〉) � 〈k, u−1〉+ δ.
Therefore, Inequalities (12) and (13) imply that

14 〈k, k−1〉 � 〈k, u−1〉+ δ � ‖u‖
2
− 7δ.

Since ‖k‖ � ‖g‖−‖u‖ � 3‖u‖−‖u‖+ 100δ, we finally obtain that k is almost

cyclically reduced. �

3. Nondisplacing Actions Whose Orbit Maps are
Quasi-Isometric Embeddings

We prove in particular

proposition 3.0.7. The action of SL(n,Z) on Xn = SL(n,R)/SO(n,R) is

not displacing, although, for n � 3, the orbit maps are quasi-isometric embed-

dings.

The second part of this statement is a theorem of Lubotzky, Mozes,

and Ragunathan [8]. Note that for the action of SL(2,Z) on the hyperbolic

plane H2 = X2 the orbit maps are not quasi-isometries so it is obviously not

displacing since SL(2,Z) is a hyperbolic group (see Corollary 4.0.6).

3.1. Infinite Contortion

Wesay a group� has infinite contortion, if the set of conjugacy classes of powers

of every nontorsion element is infinite. In other words, for every nontorsion
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element γ , for every finite family g1, . . . , gq of conjugacy classes of elements

of �, there exists k > 0 such that

∀i ∈ {1, . . . , q}, γ k 
∈ gi.

We prove

lemma 3.1.1. Every residually finite group has infinite contortion.

Proof. Let γ be a nontorsion element. Let g1, . . . , gn be finitelymany conjugacy

classes. We want to prove that there exists k > 0 such that γ k belongs to

no gi. Since γ is not a torsion element, we can assume that all the gi are

nontrivial. Let hi ∈ gi. Since all hi are nontrivial, by residual finiteness there

exist a homomorphism φ in a finite group H, such that

∀i,ϕ(hi) 
= 1.

Let k = ‖H‖, hence ϕ(γ k) = 1. This implies that γ k 
∈ gi. �

3.2. Displacement Function and Infinite Contortion

We will prove

lemma 3.2.1. Assume � has infinite contortion. Assume � acts cocompactly and

properly discontinuoulsy by isometry on a space X . Assume furthermore that every

closed bounded set in X is compact. Then, for every nontorsion element γ in �, we

have
lim sup

p→∞
dX (γ p) = ∞.

remarks:

• We should notice that the conclusion immediately fails if� does not have

infinite contortion. Indeed there exists an element γ such that its powers

describe only finitely many conjugacy classes of elements g1, . . . , gq, and

hence

lim sup
p→∞

dX (γ p) ≤ sup
i∈{1,...,q}

dX (gi) <∞.

• It is also interesting tonotice that there are groupswith infinite contortion

that possess elements γ such that

lim inf
p→∞ dX (γ

p) <∞.

Indeed, there are finitely generated linear groups that contain elements

γ that are conjugated to infinitely many of its powers. Hence, for such γ
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we have

lim inf
p→∞ dX (γ p) � dX (γ ).

Here is a simple example. We take � = SL(2,Z[ 1p ]) and

γ =
(

1 1

0 1

)
.

Then for all n, γ pn
is conjugated to γ .

• However, in Section 3.4, we shall give a condition—bounded depth roots

(satisfied, for example, by any group commensurable to a subgroup of

SL(n,Z)) so that together with the hypothesis of the previous lemma,

lim
p→∞ dX (γ p) = ∞.

Proof. We want to prove that

lim sup
p→∞

inf
x∈X

d(x, γ px) = ∞.

Assume the contrary, then there exists

• a constant R, and
• a sequence of points xi of points in X ,

such that for every p,

d(xi, γ
pxi) � R.

Now let K be a compact in X such that �.K = X . Let fi ∈ � such that yi =
f −1i (xi) ∈ K . Then

d(yi, f
−1

i γ pfi(yi)) � R.

Let KR = {z ∈ X , d(z,K ) � R}. It follows that
∀p, f −1i γ pfi(KR)∩KR 
= 0.

Observe that KR is compact. By the properness of the action of �, we conclude

that the family {g−1i γ
p
i gi} is finite. Hence the family of conjugacy classes of

the sequence γ p is finite. But this contradicts infinite contortion for �. �

corollary 3.2.2. Assume � has infinite contortion. Let C be its Cayley graph,

then for γ a nontorsion element

lim sup
p→∞

�(γ p) = ∞.

   You are reading copyrighted material published by University of Chicago Press. 
   Unauthorized posting, copying, or distributing of this work except as permitted under U.S. copyright law is illegal

   and injures the author and publisher.



displacing representations and orbit maps / 509

corollary 3.2.3. Assume� has infinite contortion. Let ρ be a representation of

dimension n. Assume ρ(�) contains a nontrivial unipotent, then ρ is not displacing

on Xn = SL(n,R)/SO(n,R).

Proof. Assume ρ is displacing. Let γ such that ρ(γ ) is a nontrivial unipotent.

Then for all p, dXn (γ
p) = 0. However, γ is not a torsion element. We obtain

the contradiction using the previous lemma. �

3.3. Nonuniform Lattices

lemma 3.3.1. For n � 3, the action of SL(n,Z) on Xn is such that the orbit maps

are quasi-isometric embeddings. But it is not displacing.

Proof. The group SL(n,Z) is residually finite. Hence it has infinite contor-

tion by Lemma 3.1.1. The standard representation ρ contains a nontrivial

unipotent; hence it is not displacing by Corollary 3.2.3.

By a theorem of Lubotzky, Mozes, and Ragunathan [8] irreducible higher-

rank lattices � are quasi-isometrically embedded in the symmetric space. �

3.4. Bounded Depth Roots

This section is complementary. We say that group � has bounded depth roots

property, if for every γ in � is a nontorsion element, there exists some integer

p, such that we have

q � p, η ∈ � =⇒ ηq 
= γ .
Observe that SL(2,Z[ 1p ]) does not have bounded depth roots. Note that

this property is well behaved by taking subgroups and is a property of

commensurability (see Lemma 3.4.4).

We prove

proposition 3.4.1. The following groups have bounded depth roots property:

• the group SL(n,Z),
• SL(n,O) where O is the ring of integers of a number field F,
• any subgroup of a group having bounded depth roots property or any group

commensurable to a group having this property, and
• in particular, any arithmetic lattice in an Archimedian Lie group.

lemma 3.4.2. (bounded depth root) Let � be a group with bounded

depth roots property. Assume � acts cocompactly and properly discontinuously by
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isometry on a space X . Assume furthermore that every closed bounded set in X is

compact. Then, for every nontorsion element γ in �, we have

lim
p→∞ dX (γ

p) = ∞.

For the proof see Section 3.4.3. The lemma and proposition above again

imply that the action of SL(n,Z) on Xn is not displacing.

3.4.1. bounded depth roots property for sl(n,Z) We prove the above

proposition.

lemma 3.4.3. SL(n,Z) has bounded depth roots.

Proof. Let A ∈ SL(n,Z). Let B ∈ SL(n,Z). We assume there exists k such that

Bk = A. Let {λA
j } and {λB

j } be the eigenvalues of A and B, respectively. Let

K = sup
j
|λA

j |.

Then,

sup
j
|λB

j | � K
1
k � K .

Hence, all the coefficients of the characteristic polynomial of B have a bound

K1 that depends only on A. Therefore, since these coefficients only take values

in Z, it follows the characteristic polynomials of B that belongs to the finite

family

P = {P(x) = xn+
k=n−1∑

k=0
akx

k : ak ∈ Z, |ak| � K1}.

Since P is finite, there exists a constant b > 1 such that for every root λ of a

polynomial P ∈ P ,

|λ| > 1 =⇒ |λ| � b.

Let q ∈ N be such that bq is greater than K . It follows that if Bq = A, then all

eigenvalues of B have complex modulus 1. Therefore, the same holds for A.

It follows from this discussion that we can reduce to the case where

∀i, j, |λA
j | = 1.

We say such an element has trivial hyperbolic part. Note that necessarily also B

has trivial hyperbolic part.
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We first prove that there exists an integerM depending only on n, such that

if C ∈ SL(n,Z) has a trivial hyperbolic part, then CM is unipotent. The same

argument as above shows that the characteristic polynomials of elements with

a trivial hyperbolic part belong to a finite family of the form

P = {P(x) = xn+
k=n−1∑

k=0
akx

k : ak ∈ Z, |ak| � K2},

where K2 depends only on n. Note that roots of polynomials belonging to P
that are of complex modulus 1 are roots of unity. Thus we may take M to be a

common multiple of the orders of those roots of unity and deduce that CM is

unipotent if C ∈ SL(n,Z) has a trivial hyperbolic part.

Returning to our setting we can replace A by AM and B by BM and consider

A = Bk where both A and B are unipotents. There is some rational matrix

g0 ∈ SL(n,Q) depending on A such that A0 = g0Ag−10 is in a Jordan form. We

claim that B0 = g0Bg−10 is made of blocks that correspond to the Jordan blocks

of A0 and each such block of B0 is an upper-triangular unipotent matrix (this

follows from observing that for unipotent matrices a matrix and its powers

have the same invariant subspaces). Moreover, note that the denominators of

the entries of B0 are bounded by some L ∈ N depending only on g0 (and thus

on A). By considering (some of) the entries just above the main diagonal it is

easily seen that k ≤ L. �

3.4.2. commensurability We observe

lemma 3.4.4. If � is commensurable to a subgroup of a group that has bounded

depth roots, then � has bounded depth root.

Proof. By definition a subgroup of a group having bounded depth roots has

bounded depth roots. Let G be a group and H a subgroup having finite index

k. Observe that for every element g of G, we have gk ∈ H. It follows that if H

has bounded depth roots, then G has bounded depth roots. �

3.4.3. proof of lemma 3.4.2.

Proof. Let K be a compact in X . We first prove that

lim
p→∞ inf

x∈K ,η∈� d(x, η−1γ pηx) = ∞.

Assume the contrary, then there exists
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• a constant R,
• a sequence of integers pi going to infinity,
• a sequence of points xi in K , and
• a sequence of elements ηi of �,

such that d(xi, η
−1
i γ piηixi) � R. It follows that

∀i, (η−1i γ ηi)
pi KR ∩KR 
= 0.

By the properness of the action of �, we conclude that the family {(η−1i γ ηi)pi }
is finite. But this contradicts the bounded depth root property.

We now choose the compact K such that �.K = X . It follows that

lim
p→∞ inf

x∈X
d(x, γ px) = lim

p→∞ inf
x∈K ,η∈� d(ηx, γ pηx) = ∞.

This is what we wanted to prove. �

4. Stable Norm, Quasi-Isometric Embedding of Orbits,
and Displacing Action

If a group � acts by isometries on a metric space X , we define the stable norm

with respect to X by

[g]X∞ = lim
n→∞

1

n
d(x0, gn(x0)).

We observe that this quantity does not depend on the choice of the base point

x0. The stable norm [g]∞ is the stablenormwith respect to theCayley graphof�.

We now prove the following easy result

proposition 4.0.5. Let � be a group. Assume that there exists α > 0 such

that

∀g ∈ �, [g]∞ � α.�(g).

Then every action of � on (X , d) for which the orbit map is a quasi-isometric

embedding is displacing.

Proof. By definition, if the orbit map is a quasi-isometric embedding, for every

x ∈ X there exists some constant A and B such that

A‖γ ‖+B � d(x, γ (x)) � A−1‖γ ‖−B.

It follows that

A[γ ]∞ � [γ ]X∞ � A−1[γ ]∞.
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Now we remark that

[γ ]X∞ � dX (γ ). �

The result follows:

remarks:

• We will show later that this inequality fails for SL(n,Z) for n � 3.
• On the other hand, we observe following [4, p. 119], that for� ahyperbolic

group, the stable norm of an element coincides up to a constant with its

translation length; there exists a constant K such that |�(g)−[g]∞| � K .

Therefore, we have

corollary 4.0.6. Let � be a hyperbolic group. If an isometric action is such

that the orbit maps are quasi-isometries, then this action is displacing.

5. Infinite Groups Whose Actions Are Always Displacing

We have

proposition 5.0.7. There exists infinite finitely generated groups whose actions

are always displacing. Hence there exists action for which the orbit maps are not

quasi-isometric embeddings, but that are displacing.

Proof. Denis Osin [9] has constructed infinite finitely generated groups with

exactly n conjugacy classes. Any action of such a group is displacing. For the

second part, we just take the trivial action on a point. �
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